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The transport of radiation in a turbulent, refracting medium is studied. It is shown that the conven-
tional transport equation must be generalized. Path integrals are taken along curved ray trajectories.
When these ray paths have torsion, a rotation of the polarization vectors needs to be taken into account.
Two derivations of the transport equation are given. One is phenomenological and one is based on
Maxwell’s equations. Some discussion is given of cross polarization of radar backscatter.

1. INTRODUCTION

Earlier papers’™® in this series have presented a
derivation from Maxwell’s equations of the radiation
transport equation for scattering by a turbulent
medium ** A transport equation of conventional form
was derived making two kinds of approximations. The
first of these amounted to treating the scattering from
a single “turbulent eddy,” or a single correlated
cluster of scatterers, in the distorted-wave Born
approximation (DWBA). The second approximation
made was the assumption that coherent propagation
in the refracting medium could be treated in the
eikonal approximation and, furthermore, that the
ray paths of the eikonal approximation could be
replaced by straight lines.

It was observed in I that the restriction to straight-
line ray paths is quite unnecessary for deriving the
transport equation. In the present paper we drop
the restriction to straight ray paths. The resulting
transport equation differs from the conventional one
in the appearance of a rotation operator acting on the
polarization indices and depending on the radius of
torsion of the ray paths.

To make our discussion definite, let us consider the
physical situation studied in I and illustrated in
Fig. 1. The scattering medium is of finite extent and
surrounded by empty space. The source of the radia-
tion is at a great distance from the scatterer. Thus,
the incident radiation at the scatterer can be considered
to be a plane wave, with wavenumber vector (say) k.
The detector is also at some distance from the scatterer.
Evidently, this particular choice of boundary con-
ditions is incidental for the derivation of the transport
equation.

In I the scatterer was assumed to be a plasma. This
is evidently easily generalized to other scattering
systems by replacing the Thomson scattering ampli-
tudes by those appropriate for the system of interest.

The eikonal approximation, although not required

for the formal derivation of a transport equation,
seems necessary to obtain the conventional form with
its usual geometrical interpretation. In Sec. 2 some
required properties of the eikonal approximation are
reviewed. A phenomenological derivation of the trans-
portequation, generalized for curved ray paths, is given
in Sec. 3. In Sec. 4 the same equation is derived from
Maxwell’s equations. (The corresponding quantum
form can be obtained, as was done in Ref. 4.) Several
applications, including a discussion of cross polariza-
tion for radar backscatter, are given in the final
sections.

Before considering the generalized transport equa-
tion, let us review briefly the conventional form of
this and the derivation given in I and IIL. In the
classical theory the quantity

I(x, P, w) d€y do (L.1)

represents the flow of radiant energy per unit area,
per unit time, having angular frequency w within dw,
and propagating parallel to p within the element of
solid angle d€),. When the shift in frequency due to
scattering may be neglected, o appears as just a
parameter in the transport equation. If, in addition,
the bandwidth of the radiation is sufficiently narrow
that frequency dispersion in the scattering may be
neglected, the transport equation may be expressed
in terms of the quantity

e}
I(x, p) Ef I(x, p, ») dw. 1.2)
0
It is for this case that the derivation in I was given.
The equation for I(x,, »), including frequency
shift, was obtained in III.

To describe polarization,it is necessary to generalize
(1.1). As described above, we suppose that an
incident plane wave with wavenumber vector k
illuminates the scattering medium. At a point along
a ray path we suppose the tangent vector is p. Two
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more unit vectors are then defined as
&(2) = C()p x k,
&) =82 x b (L.3)

For curved ray paths we take p as the local tangent in
Egs. (1.3).

The electric-field vector for a wavelet propagating
along the given ray path is therefore of the form

E = E,(1)&(1) + Ey(2)&(2), (1.4
and the generalized intensity is [here (i,) = 1, 2]
I;(x, P, w) = const X [EF(DE()]  (1.5)
The “const’ here is chosen so that

I=1y+ I

[The constant is given an explicit form in Eq. (3.6)
below.]

The radiation transport equation obtained in I was
of conventional form®:

d 1 A A
tg Lix, p) + ;Iij(x’ p) = B,(x, p), (1.6a)
where

2
Bi(x,p) = tZI dQ(ij| M |s)L,(x, §). (1.7a)
Here the derivative in (1.6a) is taken along the straight
line parallel to , /7'(x) is the absorption coefficient,
and (ij| M(p, §') Ist) is the scattering function. In
more compact matrix notation we write Eqs. (1.6a)
and (1.7a) in the form

2 yx, p) + 1 1(x, p) = B(x, p),  (1.6b)
ds I

B(x, p) = j dQM(P, P)Ix, ). (1.7b)

Equations (1.6) and (1.7) are applicable when the
frequency change with scattering may be neglected.
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The case specifically considered in I was scattering
by a plasma containing N electrons with coordinates
Z,, 23, * *, Zy. The probability distribution for these
coordinates was written as Py(z,, - - -, zy), normal-
ized so that

fPN‘PZI e dazzv = 1.
A set of distributions

Pl(zl)aPZ(zla ZZ)’ Tt PN—l(zl’ T, zN—l)

may evidently be obtained from Py by integration,
and Py, Py - - - were developed in terms of 2-particle,
3-particle, - - - correlation functions.In particular, P,
was written as

Py(z,, 22) = Py(2))P1(z)[1 + g(z1,2,)]. (1.8)

We shall here assume, as was done in I, that the pair
correlation function g has the approximate form

(1.9)

This assumption is not necessary for the derivation
of the transport equation, but does simplify the
equations by leading to a scalar, isotropic refractive
index.

The quantity M was then obtained in I in the form

M(D, p') = o,(p - p)m, (1.10)

8(2y, 7o) == g(2,; |2, — 1,).

where

(ij] m |st) = [&(D) - & (s)][&()) - &(N] (1.11)
and

o, B+ D) = pPWo(h- p) f PRg(x; R)
x exp [in, (x)k(p" — P) - R].
p(x) = NPy(x)

(1.12)
Here,

(1.13)

is the electron density and o is the appropriate cross
section for Thomson scattering:

a(p- ) = ro/(1 + ve/w?),

where r, is the classical electron radjus and v, is the
electron collision frequency. (Evidently the theory
may be adapted to other elementary scatterers.)
Finally, n.(x) is the real part of the refractive index
given in first approximation by [see Eq. (4.13)]

(1.14)

ni=1— wyl(o® + ), (1.15)
with w,, the electron plasma frequency.
The absorption coefficient has the form
1 1 1
-~ =>4 - = 2kn,, 1.16
| =Lt 2k (1.16)
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where n; is the imaginary part of the refractive index,
2
3 | aQu (il M@, 9 Is9)
= b3 [0, 0 901 + b+ 97)

= 0,17

(1.17)
and

It = [wpf(w; + v))(e/c)
(c is the speed of light).

As an alternative to Eq. (1.12), we may suppose the
medium to be characterized by a dielectric constant,
depending on certain random variables, and at time 7
and point r to have the value €(r, ). This may be
written in terms of its fluctuations de as

€ = de + (e),

(1.18)

(1.19)

where “(- - -)”’ represents an average over the random
variables.
In this case Eq. (1.12) may be rewritten in the form

o, = (f:;)z f ARGe(x, 0)de(x + R, 0))

x exp [in(x)k(p’ — p)-R]. (1.20)

The transport equation for the case that frequency
shift must be considered was obtained in III. This has
the form

j—l(x, b, w) + 1 I(x, b, ®) = B, p, w), (1.21)
S

where now
Bx, b, o) = [ "o [a0em@e. 150 — o)
0
x Ix, p, o), (1.22)
and
M, §'; Q) = o,(p- §', Qm. (1.23)

For the case corresponding to Eq. (1.12) we have
¥, 9 = Fotb- B[ dr [dRe(as R e

x exp [in(x)k(p’' — p)- R]. (1.24)

Here g(z; R, 7) is the time-dependent pair correlation

function for a stationary random process. Alterna-

tively, for the case corresponding to Eq. (1.20), we
have

k2 2

@9, ) = (i)

m
Xf dfjd:"R((Se(x, Noe(x + R, t + 7))

x € exp [in,(COk(H’ — P) - R],
(1.25)
where k£ = w/c.
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The approximations required to derive the transport
equation from the wave equation are given in detail
in I and 111. We briefly review these here:

(1) I, > R., where R, is the correlation range, or
the characteristic distance over which correlations
contribute to ¢,. As noted in II, for plasmas this
condition can often be replaced by the condition

o)) LT,

where { is the relative mean-square fluctuation in
electron density.

(2) n, & n,. This assumption is interpreted as
permitting us to neglect n, in Egs. (1.12), (1.20),
(1.23), and (1.24), where only n, was kept in the
exponentials. That is, we assume that (R.//) K1 in
these equations (this is convenient, but not, of course,
essential to our discussion). Assumption (2) is used
also in the next section [see Eq. (2.17), for example].
In addition to the above condition, we shall require
that |Vn,| be small, a restriction made more precise in
Eq. (2.29).

(3) The eikonal approximation may be used to
describe coherent wave propagation. We express the
condition for validity of this approximation in the
form

\Vn,| < kn?.

(4) The bending of eikonal ray paths may be
neglected, and these may be considered to be straight
lines.

(5) kI> 1, which we interpret as meaning that
successive scatterings occur in the wave zone. This
assumption is necessary if we are to use the eikonal
approximation to describe wave propagation between
scatterings.

The purpose of this paper is to obtain the transport
equation without making assumption (4).

2. THE EIKONAL APPROXIMATION

In this section we review several aspects of the
eikonal approximation which will be needed for
obtaining the transport equation. We shall follow the
treatment of Born and Wolf,” generalizing this to
obtain the Green’s function and to include a complex
retractive index.

For an electromagnetic wave of frequency w = k¢
propagating in a medium of finite extent and having
a refractive index n(r), the Maxwell equation for the
electric field E(r) is

[k%n2(r) — VxVx]E(r) = 0. 2.1
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Let us suppose that in the absence of the refractive

medium the field is Ey(r), where
[k? — VxVxJEy(r) = 0. 2.2)

As illustrated in Fig. 1, we suppose the source of E, to
lie far outside the refractive medium.

The field E may be expressed in terms of E; and
the dyadic Green’s function G%r, x) for infinite
space®:

E(M) = Ef(r) + f PG, x) - E(x)
x {(KHAmnx) — 11}, (2.3)
Here G? satisfies the equation
(k? — VXV, X)Gr, x) = —4730(r — x), (2.4)
where J is the unit dyadic. That is,

G'(r, x) = [J + k™*V,V,}(¢™F/R) — 3[4n/(3k*)]S(R),

(2.5a)
with R =r — x. For kR » 1, we have
G'(r, x) =~ [J — RRIG(r, x), (2.5b)
where
G'(r, x) = e*BIR, (2.6)

Finally, we desire the dyadic Green’s function
G(r, x) for the refracting medium. This satisfies the
equation

[k2n2(r) — V. xV x]G(r, x) = —4n3é(r — x). (2.7)

Let us now write the electric- and magnetic-field
vectors in the respective forms

E(I‘) — e(r) eikS(r)’

H(r) = h(r)e™s™, (2.8)

where the eikonal S is expressed in terms of its real
and imaginary parts as®

S =S5, +iS,. (2.9)

Since G and E satisfy the same differential equation,
except for boundary conditions, we may write

G(r, x) = e{r, X) exp [ikS(r, x)]. (2.10)
Now we consider e to be a dyadic satisfying the same
differential equation [Eq. (2.12)] as the vector e.
Substitution of (2.8) into Maxwell’s equations give
the two differential equations of the eikonal approxi-
mation for § and e (we are using the notation of Born
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and Wolf):
(VS)? = n?, 2.1

[(V2S) + (US)(VInr2) + 2(VS)-V]e =0. (2.12)

In addition, we have

h=(VS) Xe,
(VS)-e =0, (2.13)
(VS)-h =0,

in the first order.
The time-averaged Poynting vector is (following
Ref. 7, we are using unrationalized Gaussian units)

= < [Re (e x h*)]e 25
8

= 8»‘?—# (VS,)e - e*e 255, (2.14)

The real and imaginary parts of Eq. (2.11) lead to
the two real equations

(vsr)z - (Vsz)z = 7’73 - n?a
(VS)-(VS) = n,n,.

(2.15)
(2.16)

Because of our assumptions that #? < n?, we look
for a solution to these of the form

(VS,)* = ny,
with (VS,)? « (VS)2
Following the discussion of Ref. 7, we write the
equation of a given ray path asr = r(s), where s is the
path length measured from some reference point on
the ray. We let

.17

pr) = dr (2.18)
ds
be the tangent vector to the given ray path at the
point r and write
VS, = pn,. (2.19)
Equations (2.18) and (2.19) permit us to ‘“‘solve”
(2.17) in the form’
dp

—=V,Inn,, {2.20)

ds

SAr) = f n, ds, (2.21)
V, =V —pp-V. (2.22)

Equation (2.20) determines a given ray path, and (2.21)
permits us to construct S,, the integral being taken
along the ray path passing through r.

Equation (2.16) may now be rewritten in the form

p-VS, =n,. (2.23)
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This may be integrated to give
»

where 45, is subject to the condition
p-ViS, =0.

Thus, 6S; is constant along each ray path. The
boundary condition “E becomes equal to E, if we
follow a ray path backwards outside the medium”
tells us then that 05, = 0. For the Green’s function
the boundary condition at r=~x, implied by Eq.
(2.7), also then specifies that 45, = 0. We therefore

have
S; =fni ds.
g

We now turn to Eq. (2.12) for e. Let us write e in
the form

(2.24)

e = Ae'%3, (2.25)

where A is the magnitude of &, & is a unit vector, and
o« is a phase.

The discussion given in Born and Wolf” permits us
to obtain directly the equation

dA VZs,
— = —( )A. (2.26)
ds 2n,
For o and &, we obtain the equations
do V2S;
- = - 2.27)
ds 2n,
and
dé . A
— = —p(Vinn)-e (2.28)
ds

To check the consistency with Eqgs. (2.13), we use
Eqgs. (2.20) and (2.28) to obtain

i(é-ﬁ):é-Vllnn,——é-Vlnn.
ds

This vanishes if we can consider the contribution
from n, in Eq. (2.28) to be negligible. This will be the

case if
f Vn .o ' «1
b4 n?‘

everywhere along a given path. We shall assume that
the condition (2.29) is satisfied and that we can write
(2.29) in the approximate form

(2.29)

@ WV, inn)-e

= (2.30)
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The same approximation lets us set « = 0 in Eq.
(2.25).

If r and x are two points along a ray path, we may
integrate (2.30) to give

&(r) = P(r, x) - &(x),

P(r, x) = exp (—frf)(VJ_ Inn,) ds), (2.31)

X

using a somewhat terse notation.

We are particularly interested in the eikonal
representation for the Green’s function G(r, x). To
simplify the appearance of some of our equations, we
shall use interchangeably two notations for G, 4, etc.
For a set of coordinates z,, Z,, - - - , Z, we write

G, = G(z,, zp), (2.32)

with @ # § =1, 2, -, N. The unit tangent vectors
p = P(x) in Egs. (1.3) satisfy Eq. (2.20). These will be
written as p, = p(z,), etc. The eikonal is written as

g
Ses =f n ds.

In matrix notation we use the representation (1.3)
to write, for i, j =1, 2,
(1 Gup 11) = &, () + G+ &,(0)
= Ay exp (ikS,5)&,(j) * Py - él-,ﬂ(i), (2.33)
using Eqgs. (2.25) and (2.31). We emphasize that S,;

and A,, here are determined by Eqgs. (2.21), (2.24),
and (2.26). We may also write

(1 Gap 1) = Gopy (J) - Pog « &), (2.34)

where

Gup = G(z,, 25) = Apexp (ikS,g).  (2.35)

The expression (2.35) represents the eikonal approxi-
mation to the scalar equation

(V2 + K’n¥(2)]G(z, x) = —4md(z — x). (2.36)

The observation that Eq. (2.26) does not depend on
n; lets us introduce the Green’s function, expressed in
the eikonal approximation:

G(r, x) = A(r, x) exp [ikS,(r,x)].  (2.37)
This is the eikonal approximation to the solution of
(V2 + kEnD)G(r, x) = —470(r — x).  (2.38)
It is known?!? that
G@r,x) = G(x, 1), (2.39)
from which we obtain the important symmetry relation

Ay = Ag,. (2.40)
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522' 38, FIG. 2. A narrow tube
'35 of ray paths all passing
33, ! through the point z,.
2o

Let us now choose three points zy, z;, and z, all on
a given ray path. We construct a flux tube of ray
paths all passing through z; and enclosing the original
path on which z, and z, lie. We suppose the solid angle
0€2, formed by the tube at z, to be very small. The
respective cross-sectional areas of the flux tube at
z, and z, are 6%, and 8%, . This geometry is illustrated
in Fig. 2.

We assume for the moment that n, = 0. Then we
can represent the Green’s function G by G, Egs. (2.37)
and (2.38). The condition that energy is conserved
[i.e., n; = 0] in the flux tube [see Eq. (2.14)] leads us

to the relation
0Z,A%n,(2) = 0Z,43%n,(1). (2.41)

Here we have written n,(1) = n,(z,), etc. If we choose
z, to lie sufficiently close to z,, we have

Ay = Rfol
and
0%y = R%oagm
where
Ry=12,—1. (2.42)
Thus, we obtain from (2.41) the result
G T
A = — W\ < >
n(2)/ \0%2,
for two arbitrary points z, and z; we have
—19%
Ay = [(_—"f(ﬂ)) (32_) ] . (2.43)
n()/ \0CY,

Since Eq. (2.26) does not involve n;, we can consider
Eq. (2.43) to be valid even when 1, # 0 (but, of course,
subject to the conditions imposed on it).

Equations (2.34), (2.35), (2.43), etc., provide the
eikonal representation of the Green’s function which
will be required for our applications.

3. HEURISTIC DERIVATION OF THE
TRANSPORT EQUATION

In this section we give a phenomenological deriva-
tion of the transport equation for the case that curva-
ture of the ray paths must be taken into account.
Consistent with our assumption [see Eq. (1.9)] that
mean properties of the medium do not change
significantly over a correlation distance R., we shall
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assume that the scattering strength B in Eq. (1.6)
and the scattering function M are not modified.

Let us assume that the dielectric properties of the
scatterer are described by the dielectric constant e
[see Eq. (1.19)] which depends on certain random
parameters. The electric field E, which depends
parametricaily on these same parameters, satisfies the
equation

(k% — VxVx)E = 0. 3.0

Remembering that “(- - )" is considered to represent
an average over these random variables, we introduce
the coherent field at x as

E(x) = (E(x)). (3.2)

The coherent field satisfies the wave equation (2.1);
that is, as was shown in I,

(k*n® — VxVX)E, = 0. 3.3
The field E may be written as
E=3>E, 3.4)
A

where the sum runs over scattering from different
fluctuations in ¢ and includes E,. We suppose that
these terms are so chosen that the different E, are
mutually incoherent. Thus,

<E1El;> = 0, fOI’ l ;6 ll. (3.5)

An expression is required for the radiation intensity
Iz, D) [Eq. (1.5); we do not write explicitly the
frequency dependence here]. Referring to Fig. 3, we
consider a flux tube of ray paths all passing through a
given point z, within a small solid angle 6£),. The
electric field at z, associated with these ray paths will
be of the form (3.4). The index A is assumed to refer
to a scatterer at the point z, contained within the
volume of the flux tube. At the point z, the area of
the flux tube is 6%,.

If we write each E; in (3.4) in the eikonal form
(2.8) and use Eqs. (2.14) and (3.5), we see that

1,420, Bo) = g; (n,(0)/52)

/

X \; exp [—2kS(z,, 2;)1&,(i) - eje; éﬁo(j)>'
(3.6)

Fig. 3. The intensity

8 \Q, o Aatzgresults from sources
at points z; in the flux
zy)\ 2o tube,
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The unit vectors here are defined by Eqs. (1.3) with

Po = P(z)-
Using Eq. (2.43), we have

—1
5Q, = (@) 5z,
aQ,
- Az n,(ﬂ.)
" 1,(0)

- A(z);. nr(l) 621 .
n.(0)
To obtain the final form here, we have used Eq. (2.40).
Equation (2.25), with « = 0, lets us write

o,

(3.7

(3.9)

where s, is the source intensity at z, . Finally, (3.7) and
(3.8) let us rewrite (3.6), replacing z, by a general
point z, as

1,2, B) = n’(z) exp [~ 2kS,(2)]

e, = Ag:1€:(20)s;,

X <§ Ca&y(0) - €,6,()) - é,1>, 3.9

where the C, are independent of z.

To obtain the transport equation, we consider the
change in I if we displace the point z by a small
distance ds along the ray path. First, let us assume
that in the interval ds there is no energy added by
scattering from other ray paths. (This will later be
accounted for by including the scattering strength B.)
Use of Eqs. (1.16) and (2.24) gives

1
.
From Eqgs. (2.20), (2.38), and (1.3) we obtain

d
L (2kS) =
ds( )

Sl 8 = (~DGEG+ D& (.10)
where i .
b= - K/p x K&y - Vinn,.

In Eq. (3.10) we have adopted the following special
notation. When i =1,

&+ 1) = &((2);

(3.11)

when i = 2,

With these expressions, we obtain from (3.9) the
expression

d 1 o
ds Iz, p) = — I L[z, p)
+ (—1)j¢’1i;‘+1(1, p) + (_1)i¢1i+1 j(Z, )

1 .
= — —I; — 2 (jI R[sn)l,,. (3.12)
L s t=1
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In the first term we have introduced the notation
1 1 d

—=-—=Inn?.
L 1 ds
The second term describes the rotation of the polari-
zation vectors as the radiation moves along a ray path.
Scattering within the interval ds was omitted in
obtaining Eq. (3.12). If we include this, we must add
B to the right-hand side of (3.12). This gives the
generalized form of the transport equation (1.6):

(3.13)

d o1 . . .
d—I(x, p)+zl(x, p) + RI(x, p) = B(x, p), (3.14)
M

where B is given by Eq. (1.7). If frequency shift due to
scattering must be taken into account, we obtain the
generalized form of Eq. (1.21):

1
dil(x, B o) + 1 1(x, B, @) + RIGx, B, 0) = Bx, b, )
N

(3.15)

The scattering strength B is now given by Eq. (1.22).
Let us write out in detail Eqgs. (3.14) and (3.15).
For either case, the form is

d |
_Iu = - Elu - ‘15(112 + 121) + Bu,

1
— Iy = — illz + 95(111 — I) + By,

1 (3.16)
= - EIzl + ¢(111 - 122) + le,

1
"122 = - ilzz + ¢(I12 + 121) + Bzz-

For many applications the Stokes parameter
representation is more convenient than that of Eqgs.
(1.3). In this representation we write

I =1y,

Iy = Iy,

Ly = (I3 — i) = I3;.
(The detailed form of B in this representation was

given in IL) Equations (3.16), when expressed in
terms of the Stokes parameters, become

(3.17)

%1;1=_%11_¢13+B1,
Z_ISZ=_%12+¢13+BZ,

3.18
%=_%13+2¢(11—12)+B3, o
%=_%14+B4.
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~

p Fic. 4. Ilustration of
the unit vectors intro-

N P duced in Egs. (3.19) and

2, 2, (3.20).

A somewhat more “natural” choice than (1.3) for
the unit polarization vectors is illustrated in Fig. 4.
At each point on a ray path, &, lies in the osculating
plane along the principal radius of curvature. Thus,

ap @

2
- =—, 3.19
ds R, (3.19)
where R, is the principal radius of curvature. Then
& =8&xp, (3.20)
and we obtain
@ _ _ &
ds R,
de PO
acy —_— P + &
ds R, R, (3.21)

Here R, is the radius of torsion of the ray path.

If we define m, Eq. (1.11), and I, Eq. (3.6), with
&, and &, replacing the polarization vectors (1.3), the
only change in the transport equation [Eqs. (3.14) or
(3.15)] occurs in the rotation matrix R. After a simple
calculation using Eqs. (3.21), we obtain

d, 1

dS = Iu + [( 1)1 i+1 3 + ( l)j { H—l] + Bu

(3.22)

These have the same form as do Eqgs. (3.16), but with
¢ replaced by R;.
The form (3.22) will not be used in this paper.

4, DERIVATION OF THE TRANSPORT
EQUATION

We turn now to the derivation of Eq. (3.14) from
Maxwell’s equations'? [the corresponding derivation
of Eq. (3.15) following the method used in III, is
straightforward]. For this purpose, we can use the
development given in I with only superficial changes—
mostly of notation.’®* To avoid repetition of the
complete development in I, we shall just indicate here
these changes.

As in I, we shall suppose the scattering system
(plasma) to consist of N nonrelativistic electrons
confined to a finite volume and having the proba-
bility distribution Py(z,, - - - , z) described in Sec. 1.
This is illustrated in Fig. 1, where the source and
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detector are shown as being a large distance from
the plasma. [The extension to other scattering systems
is evidently straightforward. It is only necessary to
use the appropriate scattering amplitudes f;; in Egs.
(4.3), etc.] The multiple scattering representation for
the electric field was given by Egs. (I.3.1) and (I.3.2)%:

E(z,) = E/(z,) + E zeaﬂ(])Faﬂ(]) 4.1)

pl#a)=1 j=1

Here €,(j), j =1, 2, defined by Eqs. (1.3) with p
parallel to z, — z; and

E;(x) = &(1)E;(x),

represents the incident radiation, taken to be a plane
wave at the scatterer. The F,; are defined by the equa-
tions

F aﬂ(i) = Ggﬁfn(“ﬁ, ﬂO)EI(zﬂ)

4.2)

N
+ 3 3G R, 43)

The notation of I has been used here, with

Gaﬁ = G%z,, zZp), 4.4)
as defined by Eq. (2.6), and
f;ﬁj(aﬂ’ ﬁO’) = foéaﬂ(i) ° éﬁa(j)s
fulaB, BO) = fol,s(i) « &1). (4.5)

The quantity (—f;) is the classical electron radius
divided by (1 — iy [w).

If we expand Egs. (4.1) and (4.3) in a sequence of
scatterings and express the result in vector form, we
have

E@,) = Ez) + 3 (foGga LA

+ fg z a(t)ﬁl * G31ﬂ2 * Gl?zﬂ' T ) ' EI(za)’
B1.B2
(4.6)

where GY; = G°(z,, zp) is the expression (2.5b) and
no two adjacent subscripts «, f;, * - - above are equal.
For a coherent sequence of scatterings we obtain

(1.3.22) in the form
G =G+, 3 f G, - G,,Pi(zy) d°2
+fs

0
quﬁl Gﬁlﬁz Gﬂzﬂ
b1, Bz(*ﬂl)

X Py(z5,)P(25,)8(z5, ,zh)d z,,ld Zg,s  (4.7)
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where g is the pair correlation function of Eq. (1.8),
etc. We emphasize that Eq. (4.7) is just Eq. (1.3.22)
rewritten in vector notation.

For |z, — 25| < R,, we can rewrite Egs. (1.3.23)
and (1.3.24) as

Gﬂzd g{exp [inr(zﬂx)kﬂw ) Rﬁzh]}Gﬁld 4 (48)
Gyop, 2 13— Ry, 5, Ry 5, [exp (in, (250K Ry, 0 )V Ry g, -
(4.9)

Here k; , is the wavenumber vector at z, for a ray
originating at z,. This represents a generalization
approximate to curved ray paths of the notation used
in I. We observe that [see Eqgs. (2.13)]

ks, Gy = 0. (4.10)

Use of Egs. (4.8), (4.9), and (4.10) lets us rewrite
(4.7) as the vector generalization of Eq. (I.3.25):

G, =G, + f Gl - Gy(g)dz;,  (411)

where
@) = p@fs + P@S? f FRBI + @ - R
x g(z; R){exp [in, (kR — &+ R)}/R (4.12)

is just the expression (1.3.26b).
It follows from Eq. (2.4) that G, [defined by Eq.
(4.11)] satisfies Eq. (2.7) with

n2(z) = 1 + 4n/k?y(z).

We may therefore use the eikonal representation
(2.33) for G, .

Equations (I.3.31) and (1.3.32) may now be rewritten
as

(4.13)

N
E(z,) = E/(z,) +ﬂ($z)=1éba(j)Eaﬁ(j)’ (4.14)

Byl = 3 ((il Gop IDFis(2Bs BOEL(2, )

=1 N
+ S (il Go DS, ﬂG)Eﬂa(j))- (4.15)
a{#p)=1

In Eq. (4.14) we have written &, (j) = & (j; «, f),
j =1, 2, to indicate the unit vectors (1.3) on the
ray path joining z, and z,. [When no confusion will
result, we shall use the abbreviated notation of Egs.
(4.14) and (2.33).] In Eq. (4.15) we now take

fii(2B, fo) =foébﬂ(l§ af) - épﬂ(j; fo),

etc. The cokerent field E, is just the quantity (3.2). It
satisfies Eq. (3.3) with E; as the incident field. At a
point z the tangent vector to the ray path of E; will be

(4.16)
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written as
pe = Por2). 4.17)
Then,

E(2,)) = & (j) - E.(2). (4.18)

Finally, the Green’s function (i| G,4 |/) in Egs. (4.15)
is defined by Eq. (2.33).

The transport equation is now derived just as in I.
To describe the coherent intensity, we use the ¢
function (as in I) [p, P.(z)], having the property

ff (P)O[B, D.(2)] d2y = (Do), (4.19)

where f(p) is nonsingular at p = p,. Then, Eq. (1.5.8)
is written in the form

I(z,, ) = Jo(2,)0[P, (2]

+ ony(z,) f (@) ds(z)U(a, ). (4.20)
0Q,

The first term here represents the intensity of the

coherent field at z,. From Eq. (2.14) we see that

(Jc(z))i:i = (C/SW)H,(Z)E:(Z, i)Ec(Z, ])
The integral in the second term in Eq. (4.20) is taken
in the reverse direction along the ray path which passes
through z, with the local tangent p. The notation of
Eq. (2.43) has been used, with 62, being the area at
z; of a flux tube of ray paths which pass through z,
with tangent p and lie within the small solid angle
0Q,.
The quantity U(«, f) is defined by [Eq. (I.5.14)]

U, ) = G% © G, ([cn,(zﬂ)]“M(ocﬂ, BO)T,(z,)

+ f 2, M(af, o), a)). 4.21)

Here M is defined by Eqgs. (1.10), (1.11), and (1.12),
and we have used the index pairs («f) and (Bo) to
indicate the direction of the unit vectors  and p’ at
zy in Eq. (1.10). The notation G}; ® G, is used to
denote the open product (i| G4 |j)*(/| G4 |5).

From Egs. (4.20) and (4.21) we obtain the transport
equation

I(z, p) = J(2)4[p, p.(z)]
+ J (Zi) ds(x)G*(z, %) ® G(z, X)

2z

x (222 {42, M(bo0, 90105, ). (422
n,(x)

Here p(x) is the tangent at x of the ray path passing

through z with local tangent .
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Equation (4.22) can be simplified using Egs. (2.33),
(2.39), and (2.41). Since
*(z,x) = 2

(.a_gfi) A4z, x ,
00, n,(x)
we obtain

Iz, p) = L,(2)d[p, p.(2)]
+ f zds(x)l:exp (——f %):‘ (%)
x P(z,%) ©® P(z, X) f dQ,M(B), DX, ).

(4.23)

Both path integrals here are taken over the ray passing
through z with local tangent p. The quantities P here
are matrices with elements

(ll P(za’ zﬂ) IS) = éﬁ“(i; %, ﬁ) ° Paﬁ ¢ éiyﬁ(S; x, /3)5
(4.24)
where P,; is the quantity (2.31).
To further simplify Eq. (4.23), let us define the
matrix
V(z, x) = P(z, x) ® P(z, x).

This has matrix elements, for i, j, s, t =1, 2,

5 V(2> 29 51)
= [8,()* Puy - &,()] X [8,,()* Puy - &, (5)). (4.26)

Use of Eqgs. (3.10) and (3.11) lets us obtain

(4.25)

i(ijl V(z, %) |s0)

= (=13 + 1| V |st) + (=1)’¢(ij + 1| V |st).

(4.27a)
This is equivalent to

‘%V(z, x) = —R(2)V(z, x), (4.27b)
§

where R is the matrix introduced in Eq. (3.12).
Finally, then, we rewrite (4.23) as

I(z, ) = L(z, p)
2 2 ds\ 7 (nX(z)
+f ds(x)[exP <_fx _l):] (nf(x))
X V(z, x) f dQyM(B(x), P)I(x, p).  (4.28)
The coherent intensity in Eq. (4.23) has here been
abbreviated by writing

L(z, p) = J(2)0[p, p.(2)]. (4.29)

More generally, when there are several sources or
incoherent sources, we may interpret I, in Eq. (4.28)
as the intensity of unscattered radiation.
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Equation (4.23) represents the integral form of
Eq. (3.14). Indeed, on differentiating (4.28) along the
ray path with tangent p, we obtain the differential
form (3.14). [Comparison of Egs. (3.9) and (4.28)
makes this obvious.]

5. DISCUSSION OF THE COHERENT
INTENSITY

Let us first suppose that scattering can be neglected
so that B = 0 in Eq. (3.14). In this case we have only
the coherent intensity I, of Eq. (4.28). This satisfies
the differential equation

s (L .
L1 p) + (L + R)Ic(z, =0 (5.1

We consider the case of a single coherent source, so

that through any point z there passes only one ray

path (with the exception of possible singular points).
In terms of the Stokes parameters [see Eq. (3.17)]

I=1L+1,,

Q=1 -1,

U=1,, (5.2)
V= 149

Eq. (5.1) becomes (in the remainder of this section
we drop the subscript “c”” from I,)

Z-ﬁ + %1 =0, (53)
%E + Il, V=0, (54
i¢+%¢+r¢= (5.5)

Here we have written
=) e
r = 2igo, = 2¢(_(1) é) 5.7

If z, and z, are two points on a given ray path, we
may integrate Eq. (5.3):

b o (4] (22

= T2, DI(z,, By (5.8)

In the second writing here we have introduced 7(2, 1)
for the function which translates I at z, to the point z,.
From Eq. (5.4) we evidently obtain

Vize, po) = T2, V(24 By). (5.9)
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To integrate Eq. (5.5), we first define

O, 1) =2 f " b ds. (5.10)
Then the integrated form of (5.5) is
Q(z5, o) = T(2, 1[cos ©(2, DQO(z;, )
+ sin ®(2, 1)U(zy, py)],
U(zs, o) = T(2, D[cos O(2, DU(z,, By)
~ sin ®(2, DQ(z,, p1)]- (5.11)

The above results let us write the solution to Eq.
(5.1) in the form

1o(za, Do) = T(25, )V (22, 2)1e(Zy, P

Here T(z,,z,) = T(2, 1) is defined by Eq. (5.8) and
V by Eq. (4.27). From Eq. (5.11) we can extract the
matrix elements of V. These are given in Table I for
the I, Q, U, and V representation and in Table II for
the I, I,, I, and J; representation.

The energy flux vector at a point z, is

(5.12)

I = f 1z, p) 9. (5.13)

Referring to Fig. 5, we construct a tube of ray paths
passing through z, with solid angle 6£2, . The tube has a
cross section of area 4%, at some fixed reference point
z,. Differentiation of J/n, along the ray path then
leads to the equation

i) =i [

—1
_4 f 1(?_22) s,
ds J n,\dQ,

Now, according to Eq. (2.43),

)
20,

(5.14)

— Ag nr(o)
", (1)
2 1,(0)
EON

=A (5.15)

TasLE I. Matrix elements of V(z,, z,) in I, Q, U, and V repre-
sentation. Here ® = @(l, 2) in the notation of Eq. (5.10).

(1) o) U@ V()
1(2) 1 0 0 0
[0[¢3] 0 cos @ sin ® 0
U@) 0 —sin ® cos © 0
V(2) 0 0 0 1
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TasrLe II. Matrix elements of V(zg,z;) in I,, I,, I, and I,
representation. Here @ = ®@(1, 2) in the notation of Eq. (5.10).

I(1) L(1) (1) I(1)
I(2) 31 +cos® 3 —cos®) isin® 0
L) 31 —cos®) 3 + cos D) —3sin® 0
I;,(2) —sin @ sin @ cos @ 0
15,(2) 0 0 0 1

Substitution of this into (5.14) and use of Egs. (5.3)
and (2.26) leads to the differential equation

gs(:((zz))) - —(1; + V:sr) (ni) - R(n%). (5.16)

r r

The scalar flux

J(z) = f Iz, §) 49, (5.17)
is seen from (5.16) to satisfy the equation
2
) =600 o
ds\n, ! n, / \n,

This agrees with Eq. (37), p. 116, of Born and Wolf.”!5

A slightly different version of the above discussion
can be given as follows. We first integrate both sides
of Eq. (5.8) over the solid angles of p,. There results

f I(zy, By) dQ, = T(2, DJ(1). (5.19)

Now,
1
00, - a0, (22 ()
9Q,/ \0Q,
= dQ, (f‘i) ("_7(2_))
A/ \n (1)
From Eq. (2.26) we obtain
2 Zg (72
% = exp (f v S’ds).
A02 z1 nr
Substitution into Eq. (5.19) leads to
Zy 2
= (12w -+ 7] s
n(1) u\l  n,
(5.21)

in agreement with the similar result of Ref. 7 and an
obvious integral of Eq. (5.18).

Fic. 5. Illustration of S‘Q"
the flux tube on which E,l 820
Eq. (5.14) describes the ~-—
intensity. Zo

~

(5.20)
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The result (5.21) permits us to integrate the set of
Egs. (5.16) in the form

J(z) = J(2)V(z, z,)J. (5.22)

Here J(z) is specified by Eq. (5.21), V by Eq. (4.27),
and J is a constant column matrix specifying the
polarization at z,:

Sy
- Js
J=1. (5.23)
Jy
i
Since J(z) is the total flux, we must have
S+ D=1 (5.24)

in Eq. (5.23).

6. RADAR BACKSCATTER IN THE DWBA

In this section we discuss radar backscatter in the
distorted wave Born approximation (DWBA). This
is illustrated in Fig. 6, where the transmitting and
receiving antenna is located a point y very far from a
plasma scatterer. In the DWBA only a single scattering
is assumed to occur. This means that the flux of energy
may be obtained from Eq. (4.22) as (assuming no
coherent backscatter)

Iy) = f 1y, ) 4,
= f A*xG*(y, x)

® Gy, x) f dQMB), PILX, P).
(%)

(6.1)
Since
Ic(xa f)’) = Jc(x)a(p’, ﬁc(x)),

this may be rewritten in the form

39) = [ exp (- [ &) veomepao. boo

xw

Ay, I x). (62)
n,(x)

Fig. 6. Backscatter,
using the same antenna
for transmitting and re-
ceiving. .

Scatterer
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Now, from Egs. (1.10) and (1.11), we see that
M(—f)c(x)’ f)c(x)) = Gg(_ 1)‘(’13

({19 |st) = (=1)"*18,8;,

6.3)
where
(6.4)

in the representation of Eq. (1.11).

We shall assume the incident radiation to be a plane
electromagnetic wave. The quantity J.(x) has,
according to Eq. (5.22), the form

Jo(x) = JXV(x, ), (6.5)

where J has the form (5.23) and specifies the polariza-
tion of the'incident radiation. As the point x moves
outside the plasma along an incident ray path, J,(x)
assumes the constant value J(y).

Since y lies outside the plasma, n,(y) = 1. When
x and y are both outside the plasma,

A(y, x) = |x —y|™.
Thus,

AAx, )P~ 1, x Ky,

as x moves outside the plasma along an incident ray
path. Therefore, we may write

ALY

ey (6.6)

*ds
1A vy exp (- [ 2)
¥y
That is, the quantity on the left satisfies the differ-
ential equation (5.18) and the appropriate boundary
condition on an incident ray path.
The above results let us write Eq. (6.2) in the form

I =0 f dxo,(— IR (Y]

x [V(y, 0)FV(x, y)J1 (6.7)

In the usual Born approximation, V = 1, the unit
matrix, #,(x) =1, and J,(x) = J,(y). Thus, in the
Born approximation,

I0) = U@yl [#xo (<D, 68)
To further simplify Eq. (6.7), let us use the I, Q,

U, and V representation of Eq. (5.2). In this repre-
sentation,

I I
Q Q

o=l (6.9)
14 —V

With the grouping of terms implied by Egs. (5.3),
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(5.4), and (5.5), we may write

=()=(9

§=0a,00,, (6.10)
R =21 ® o,,
where
_ (1 0)
c, = 0 —1)
Also,
V2,1) =exp [-iP22, D1 ® 0], (6.11)

where @ is defined by Eq. (5.10). We see that §2 =
1®1and
JRT = —R.
Thus,
§V(y, x)¥ = [V(x, I,

and we may rewrite Eq. (6.7) as
() = @3 f o (~ DRI (6.13)

The lack of cross polarization on backscatter,
characteristic of the Born approximation,is therefore
also found in the DWBA. We emphasize, of course,
that we have shown this only in the eikonal form of
the DWBA and also when the approximation (1.9) is
valid for the pair correlation function.

(6.12)

7. THE DIFFUSION APPROXIMATION

When the cross section o,(p-p’) is sufficiently
strongly peaked in the forward direction, the scattering
function B can be simplified by making the diffusion
approximation. The appropriate form was derived in
I1. We quote this here.

Using the representation (3.17) and polar coordi-
nates for p [that is, writing I = I(x, 8, ¢)] with k as
polar axis, we have

B(x, 6, §) = 20'tP((sin o) %)
+o, %((1 — ) gi)

2
ot =iyt 2L

3 (1.1)
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Here
5= 3[d0,0 = b -9 (1)
and P is the matrix with elements
e @

all others vanishing.
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The main result in the present work concerns a criterion on the existence and the structure of proper
values in a class of bounded operators (Schrodinger-type tridiagonal operators) on an abstract
separable Hilbert space. The realization of these operators in the space of square summable sequences
ly(1, 0) represents a boundary-value probiem of difference equations of the following form: fn+ 1)+
[ = 1) + a(n) f(n) = Ef(n). In our case f(n) € I(1, w), and the condition f(2) + a(1)f(1) = Ef(1) must
hold. The approach followed is based on the reduction by Deliyannis and Ifantis {J. Math. Phys. 10,
421 (1969)] of the above boundary-value problem to an abstract operator form, which makes possible the
application of the methods of functional analysis. It is shown that for every monotonically convergent and
real-valued sequence a(n) # 0, n = 1, 2, - -, there exist proper values, the greatest of which can be deter-

mined by the Ritz approximation method.

I. INTRODUCTION

One of the most important approximation methods
for the evaluation of proper values is the well-known
Ritz method for the determination of the greatest
proper value of a bounded self-adjoint operator in
Hilbert space. A well-known operator class, in which
the Ritz method has been applied in the past, is the
class of positive completely continuous operators. The
reason for this successful application is the fact that
in the aforementioned operator class the existence of
proper values is well known and the value of the norm
is the greatest proper value.

Another class of self-adjoint operators in which the
Ritz method can be applied is the class of operators
of the form

T=T,+ 4, (1)

where T, is a bounded self-adjoint with continuous
spectrum and A completely continuous and self-
adjoint. Moreover,

173 > 1Tl @

must hold. This is because, due to the Weyl theorem,?
the operators T, and T have the same essential spec-
trum. Therefore, if (2) holds, the extension of the
spectrum of T is due to its point spectrum, i.e., the
value || T is the absolutely greatest proper value of T.

A large class of Schrédinger-type tridiagonal
operators (Sec. IT) is of the form (1), and it is useful
to know when (2) holds. This is due to the fact that
in the case of the Schrodinger-type tridiagonal
operators the Ritz method can be easily applied
(Appendix A). However, before its application, the
existence problem must be solved. Concerning the
existence problem and the structure of the point
spectrum of the Schrodinger-type self-adjoint tri-

diagonal operators, an important criterion is derived
in the present paper.

In Secs. IT and IIT we simply give the definition of
the Schrodinger-type tridiagonal operators and state
some simple propositions, which we use later.

In Sec. IV a representation of the Hardy-Lebesgue
space by means of the shift operator is given. Through-
out the paper, we often use certain results which follow
with the help of the aforementioned representation.
Besides, it is of special interest since it connects the
proper value problem of tridiagonal operators with
problems of analytic functions in the unit disc.

In Sec. V we derive a criterion for the existence and
position of the point spectrum for a large class of
bounded seif-adjoint tridiagonal operators of the
Schrédinger type. In Sec. VI two theorems are proved
concerning the structure of the spectrum.

II. THE SCHRODINGER-TYPE
TRIDIAGONAL OPERATORS

Let V" be the shift operator on a separable Hilbert
space J, over the complex field C, with an ortho-
normal basis {e,},", Ve, = e,,,. Vis an isometry and
its adjoint ¥V'* a partial isometry. We call every opera-
tor T of the form T'= T, + A4, where Ty = V + V*
and A4 is a diagonal operator, defined as

Ae, =ame,, n=1,2--, aneC,

a tridiagonal operator of Schrddinger type. The opera-
tor T, = V + V* is self-adjoint with purely contin-
uous spectrum (Appendix C) covering the closed
interval [—2, 42). In case a(n) is real and lim a(n) =
a ¥ o, as n — oo, we may assume A to be completely
continuous and self-adjoint without restriction of the
generality. Then, we have the following theorem.?
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Theorem 1: The operator T cannot have a discrete
spectrum {E,} such that lim E, as n — oo exists; i.e.,
it cannot have a pure point spectrum with a single
limit point. In case ||T}| > 2, the point spectrum
is not empty.

In the case of the Schrodinger-type tridiagonal
operators the Ritz approximation method can be
easily applied. In Appendix A two examples are given,
in which we can compare the approximate values
found with the exact ones.

III. SOME BASIC PROPOSITIONS

We list below the propositions concerning ¥'* and
T =V + V* + A which we shall use later.

Proposition 1: Every point z in the interior of the
unit disc in € belongs to the point spectrum of V*,
and the set of proper elements

a0
fz = zlzn_len’ fO = €1,
e

forms a complete system in J in the sense that, if f is
orthogonal to f, for every |z| < 1, then f= 0.

The first statement is obvious. The second follows
from the fact that, if

(/)= 2(fiez" =0
n=1
for every [z| <1, then (f, e,) = O foreveryn,ie.,f= 0.

Proposition 2: If f# 0 is a proper element of T,
then (f, ;) # 0 because, if (f, ¢;) = 0, then we have

(Vf, &) + V¥, e)) + (4f, ) = 0,

i.e., (f, e) = 0 and, consequently,
(fs 93) = 0 te and f=z(f’ en)en = 0
n=1

Proposition 3: For a Schrédinger-type tridiagonal
operator the proper elements are uniquely determined
if the proper values are known. That means that, if the
proper values are known, the problem of finding the
proper elements is straightforward.

This follows from the previous proposition because,
if we normalize the proper element f by taking
(f, e;) = 1, then we can uniquely determine the other

components (f, e;), (f; €s), " *.

IV. THE REALIZATION OF THE SCHRODINGER-
TYPE TRIDIAGONAL OPERATORS IN THE
HARDY-LEBESGUE SPACE

Proposition 1 allows us to establish a one-to-one
correspondence between the elements fe J and the
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analytic functions
2 = (f..f) = 3 (e N2 121 <1,

with the additional property

Sles. NI < .

We can make the following remarks: (a) If the
element f corresponds to the analytic function ¢(z),
i.e., if f— ¢(2), then

Vi— 2¢4(2),
V¥ — 271 (z) — 4(0)] (3)
because
(fz’ Vf) = (V*fz ’f) = z(fz’f) = Z(}S(Z)

and

o VN = UL N) =2, — e, f)
=z (/.. /) — (e, )] = 7' [$(2) — $(O)].

(b) For Schrodinger-type tridiagonal operators, we
have ¢(0) = (e;,f) # 0, in case that f is a proper
value.

This follows from Proposition 2 of the previous
section. Now let

¢@) = (/..f) and (£, If) = FI$(@2)];
(2> If — Ef) = Fl$(z) — E¢(2). ©)

We observe from (4) that the problem of finding the
proper values E of the operator T is equivalent to the
problem of finding the values of the parameter E, for
which the solutions of equation

Fi$(2)] — Ep(z) = 0 &)

are analytic within the unit disc and fulfill the con-
dition

then

§1|a<n)|2 < o, ©)
where "
1) = Sanz?,
a(n) = ¢ VO))(n — 1)!.
Let

o0

fi=2Xa(me,, fo=3 bin)e,.
The analytic functions in the unit disc which corre-
spond to the elements f;, f; € ¥ are

$(2) = S amz" dy(z) = 3 bz,

©
n= n=1
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The set of analytic functions within the unit disc with
condition (6) obviously forms a linear space 3, with
the usual addition and multiplication by scalars. If we
define an inner product in J¢, as

($1(2), ba(2)se, =nEla(n)b(n) = (f1, s>
then J€, becomes a separable Hilbert space with the
functions p,(z) =2z"', n=1,2,---, forming a
complete orthonormal system corresponding to the
basis {e,};" in J.
X, is the so called Hardy-Lebesgue space, and con-
dition (6) is equivalent® to the condition

27
sup |p(re®)2df < 0, z = re®.

0<r<1 JO

M

The proper value problem of tridiagonal operators in
X is therefore represented as a proper value problem
of operators specified by (5) in space ¥,. In the
following, we derive some results which we shall use
later.

We define the operator 4, as

k
Apf =Y an)(f, e)e,, feX, a(n)=realnumbers,
n=1

and consider it as perturbation of the operator T, =
V 4+ V* If ¢(2) = (f,,f), then the analytic function
which corresponds to the element A4, fis

% a(m$" O
n=1 (n — 1)! .

Thus, by virtue of (3), Eq. (5) has the form

z2¢(2) + z7[¢(2) — $(0)]
x a(”)‘#‘(n—l)(o) zn—l — E¢(Z) = 0,

n=1 (n — 1)!
ie.,

8 = 4O 3 PEY"G — Bz + 1)
or
$(z) = $0)(z* — Ez + 1)'II(E, 2), 4(0) %0, (8)

where the IT,(E, z) are polynomials in z of degree k
and the P,(E) are polynomials in £ of degree n — 1.
Due to the fact that 4, is nuclear and self-adjoint, the
values |E| < 2 belong! to the continuous spectrum of
T, + A,. For |E| > 2 the real roots z, and z, of the
equation z? — Ez 4+ 1 =0 are different and, by
virtue of z,z, = 1, one of them, say z,, is contained
in the unit disc. Thus, in order for ¢(z) to be analytic
in the unit disc, we must have Il (E, z,) = 0 or,
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because 2% — Ez; + 1 =0,

LIz + D/z1, z,] = 0. (9a)

Let z,(E) # 0 be a root of the polynomial I (E, z),
1e.,
IL(E, 2) = [z — z,(E)IL,_4(E, 2).

Then the values of £ which satisfy the relations
Izz(E)l < 13
zi(E) — Ez{E) + 1 =0 (9b)

are proper values of the operator T, + 4,. In fact,
from (8) we have

$(2) = $(0)(z2* — Ez + 1)z — z,(EWIL,4(E, 2)
= ¢(0)[z — 1/z,(E)] 'L (E, 2)
= — ¢, _1(E, 2)z(E)[1 — z,(E)z]?

and, because |z,(E)| < 1,
#z) = —$ONAE D2(E) 3 BT e .

{Note that from the last of the conditions (9b) it
follows that

E+4+2=[z(E)+ 1P/z{(E) S 0,

and from this that |E| > 2.}
For the operator 4,,

A1f= a(l)(f> el)el ’ fE Je’
relations (9b) give
lzd = [1/a(D] <1 or

z’i(E) § Oy

la(D)] > 1
and

1/a*(1) — Efa(l) + 1 =0 or E = a(l)+ 1/a(l).
The normalized proper element is
_ (02(1) —_ 1)‘} 0 L n—1
T a) 2 (a(l)) e

For |a(1)| < 1 the point spectrum of T, + A4, is empty.
An interesting result which follows directly from
(9a) is the following:

fo

n=1

Proposition 4: For k < oo there can exist only one
finite set of proper values of T, + 4,.

V. THE EXISTENCE CRITERION

Let B be defined as Be, = b(n)e,, n=1,2,---,
and assume that there exists a proper value E, corre-
sponding to the normalized proper element f of the
operator 7, + B, i.e.,

a0

(Ty + B)f = Ef with f=Y c(n)e,
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and

A1 = 3 le(mf = 1. (10

Then we have

Ty + AF1® = W(To + B)f + (4 — B)S|I*
= |Ef + (4 — B)f|)?

= S le,/* E + a(m) — b,

and from this, in view of Theorem 1, it follows that, if

Sl E+a(m — b >4 (1)

then the point spectrum of T, 4 A is not empty.
Because of (10), relation (11) is satisfied if

|E + a(n) — b(n)| > 2 (12)
holds for at least some »n and
|E + a(n) — b(n)] > 2, (13)

for every n. For

b(n) =a(l), for n=1,
=0, for n>1,

we know from the previous section that the operator
T, + B has a unique proper value E (JE| > 2) if and
only if Ja(1)] > 1. In other words, for real a(l) > 1
and a(n) > 0, relations (12) and (13) hold and,
therefore, the point spectrum of T, 4 A is not empty.

The above criterion, as well as some others, which
was established in Ref. 2, is very strong for the case
in which a(n) > 0 for every n, as we may see by using
for the definition of the operator B the sequence

b(m)=2bn?, n=1,2,---,b>0. (14

The greatest proper value E of the operator T, + B,
where b(n) is the sequence (14), is E = 2(1 + b¥)?
(Appendix B). Thus, if we choose b = 2k(k? — 1)1,
k > 1, then, in case a(n) > 0 for every n, conditions
(12) and (13) are satisfied for n > k because the
relations
A+t — bkt =1,
A+ bk +7y1>1, 7=1,2,--,

hold.

The fact that (13) is satisfied for #» < k implies
conditions on the values of the sequence a(n) (n < k).
These conditions follow if we set b = 2k(k?* — 1)1 in
the relation

20 + )t + a(n — 1) — 2b(n — 1)1 > 2;
ie.,
al) 24k +1)1—-0 as k—

3141

and

an— 122 —-2[(n— Dk? — 4k +n—1]
X{m—Dk—-n+11"r—-0 as k—> 0. (15

We see from (15) that for every sequence a(n) with
positive terms a and k, therefore, a value of b in (14)
can be chosen such that condition (13) is satisfied for
every n < k.

For a sequence a(n) with negative terms we choose
b(n) = —2bn72, b > 0. The least proper value E of
the operator T, + B is then £ = —2(1 + 5%t and,
therefore, relations (12) and (13) remain the same as
for the case in which a(n) > 0.

Finally, we note that, if a(n) > 0 [a(n) < 0] for
every n, then the points inside the interval {— o0, —2]
([2, o)) belong to the resolvent set of the operator
T, + A. In fact, for every f€ ¥ we have

IV +V*+ 4 - 2E)f|
> |I(4 = 2B)f1 = IV + V*fI] (16)

and
I(4 — 2E)f)? = 211((14 —2B)f, e,
= §::1Ia(n) ~ 2EP|(f, e,)P
= 43 Ha(n) — EF|(f, e
But "
lam) —E| > p>1 if a(n)>0,
and

—w0o<E< -1 or

1e.,

a(n) <0 and 1 <E < oo,

(4 = 2E)f|* > 4p* | F1I°.
Thus,

14 = 2E)fI| = WV + V¥fI 2 2p IIf)
=1+ VHA 22 0f1 = 2111
=2p~-DIfI >0
and, in view of (16), the following condition holds:

T —2E)fil 22(p — D IfIVfeXk
and 2(p— 1) >0,

which is the necessary and sufficient for 2 to belong
in the resolvent set of T.
We summarize the conclusions in the following:

Theorem 2: For every real-valued null sequence
a(n) #0, n=1,2,---, with all the terms of the
same sign (either positive or negative), the point
spectrum of the operator T = T, + A4 is not empty.
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It lies in the interval [— || T||, —2]in the case a(n) < 0
and in the interval [2, [|T|] in the case a(n) > 0 for
every n.

VI. THE STRUCTURE OF THE SPECTRUM

To obtain the structure of the spectrum of Ty + 4,
we first prove a theorem which is analogous to a well-
known theorem in the theory of completely continuous
operators.

Theorem 3: Let € > 0. For the operator 7, + 4
there can exist only one finite set of proper values £
for which [E] > 2 + e.

Proof: Assume that T, 4+ A4 has an infinite set of
proper values {E,}7°, |E,| > 2 + ¢, corresponding to
the normalized proper elements {f,}°. [In our case, to
each proper value there corresponds only one proper
element (Proposition 3); i.e.,

(To + Af, = E f,, If.ll =1and (f,,f.) = 6, -]
Then we have

and
But

IEfu = Enfull = (B2 + ER > 2 + 02
and

I Tofn = L) AT 1S = Sl = 242

Therefore,

>(2+ey2-2/2=¢/2>0.

Thus, |4f, — Af,ll = €2, which contradicts the
compactness of the operator 4.

Corollary: The points —2 and +2 are the only
possible accumulation points of proper values which
lie in the intervals [— o0, —2] and [2, co].

Theorem 4: Every proper value E of the operator
T, + A is unstable in the following sense: There
cannot exist a number N such that for &k > N the
point E belongs to the point spectrum of all T, + 4,,
where A, — A as k — 0. (4, is defined in Sec. IV.)

Proof: The proof is based on the following char-
acteristic property of tridiagonal operators: If fis a
proper element of 7, + 4 and at least two of its
successive components (f, &) and (f, e,.,) are equal
to zero, then (f,¢) =0V k=1,2,:--. The proof
of this property is similar to that of Proposition 2.
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We have the following three possible cases:

(a) (T0+Ak)ﬁc=Eﬁcs E>2, |ifil =1, and f;
infinite set, f;, # fi s, i= 1,2, -,

b)) To+ A4)f=EfE>2,|fl=1k>N,

© (To+ A fe = Efy, E>2, Ifil =1, and f,
finite set, k > N.

We can exclude case (b) by the following reasoning:
Let

(T, + Ak)f= Ef, (To + Ak+1)f= Ef’\
(To + Ak+2)f = Ef-
Then
Ay — 4)f =0 and (A — A1) f =0,

ie.,

([, e = 0, Gepolf, Gi)er = 0,

or

(f’ ek+1) = (f, ek+2) = 0.

Hence all the components of f are zero. For case (c)
let f1, f2,+ -+, f,, be proper elements of the operators
Ty + Ay, k > N. At least one of them, say f;, must
appear as a proper element of T, 4+ A4, an infinite
number of times. Let

(To + A9fs = Efy and (T + A0 = Efy;

then

(Aisy — A1 = G e)eris + Gio(f, €xpa)erre
+ e+ ak+v(f’ € k+v)ek+v = 0.

Hence
(fiseed) = (foe) = = (f1, &) =0
and, therefore, f; = 0. Consider now case (a), and let
Tofe + Arfo = Ef,, f #0, 17
Tofers + Aprfenn = Eferss Jo £, (18)

Tofers + Aurofire = Efiras [fi # frra # frsa, etc.
(19)
Observe that
(€r1s ford) # 0,
(exr2> frra) # 0
because, if, for instance, (€41, fr1) = 0, then 4, £, =
A1 fri1. That means [because of (17) and (18)] that
E is a proper value with multiplicity, contrary to
Proposition 3.
Equations (17) and (18) give

((Ak+1 - Ak)fk ,ﬁc+1) =0,

(ek+1 9ﬁc)(ek+1 ,fk+1) =0,

20)

ie.,
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from which, by virtue of (20),

(exs15f) = 0.
Equations (17) and (19) give

((Ak+2 - Ak)fk ’ﬁc+2) =0

@n

or

ak+1(fk » €511 (€1 » Jer2) + ak+2(fk s €rr2)(@rras frro)s

ie.,
(ﬁcs ek+2)(ek+2 aﬁc+2) = 0,

and, because of (19),

(ﬁc3 ek+2) = 0
From (21) and (22) it follows that f,, = 0.

(22)
QED

Remark: If a(n) is not a null sequence but coverages
monotonically to the real number a, then all the above
theorems hold for the operator T, + A — a, the
spectrum of which is simply a translation of the
spectrum of T, + A.

APPENDIX A: THE APPLICATION
OF THE RITZ METHOD

It is convenient for the application of the Ritz
method to choose in the present case, as a complete
system of elements in JC, the orthonormal basis
{e,}y". Then the n-approximate greatest proper value
of the operator T =V + V* 4 A is given! from the
greatest root E of the equation

(Tey,e)) — E (Tey, 1) (Te,, e;)
(Tey, ep) (Tey, e) — E (Te,, e,)
(Tela en) (Te2s en) (Ten, en) - E
=0. (Al

Example 1: Here we give the case of the operator
T=V4+V*+Adam)=12nt,n=1,2,---.
(A2)
Using the system of the two vectors e¢; and e,, we
have Te, = e, + 12¢; and Te, = e, + e; + 6Ge,.
Therefore, Eq. (Al) takes the form
. 12— E 1

=0
1 6 —E ’

from which we obtain the greatest root £ = 12.1622.
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Example 2: Here we give the case of the operator

10forn=1
Oforn>1

Then, similarly, we have F = 10.099.

We compare the approximate values found for the
greatest proper value of the operators (A2) and (A3)
with the exact ones. In the first example the exact value
is E=2(1 + 69} = 12.1654 (Appendix B); in the
second, (Sec. IV) £ = 10 + 10~ = 10.100. Thus, we
obtain a very satisfactory approximation by using the
system of only two vectors e; and e,.

T=V+V*+4, a(n)={ . (A3)

APPENDIX B

Consider the proper value problem of the
Schroédinger-type tridiagonal operator

T=V +V*+2bC,,
where C, is defined as follows:

(BI)

Coe,=ne,,n=1,2,---.
This problem has been solved® by classical methods.
The proper values of (B1) for & > 0 are found to be
E, = 2[1 + (bk)].

Here we give a simple solution with the help of the
realization of T in the Hardy-Lebesgue space. Assume
that the proper value equation

(V +V*+2bCe")f=2f, E=2, b>0,
or, equivalently,
(CoV + CoV* + 2b)f = 2¢C, f. (B2)

Assume that ¢(z) = (f,, f) is the analytic function
corresponding to the element fe X, ie., f— ¢(z).
Then the elements f, belong to the definition domain
D(C,) of Cy, and

Cof > 24'(2) + $(2)

holds. In fact, we have

(B3)

ICfull®> =2 n? 22" Y < o for |z] < 1
n=1
and

(fz’ Cof) = (Cofz ’f)
= S0, /) = 262 + $(2)

because
¢'(z) = z‘l( Zlnz”—l(en ) — ¢>(z)).
Similarly, we can prove

CV*f— ¢'(2),

CoVf — 224" (2) + 2z¢(2). (B4)
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By virtue of (B3) and (B4), Eq. (5), for the proper
value problem (B2), has the form
224 (2) + 2z¢(z) + ¢'(2) + 2b¢(2)

— 2¢[z¢'(2) + ¢(2)] = 0,

from which
&(z) = const X A(z)/B(z) for e +1,

where

(B5)

AD) =z —e+ (62 _ 1)1}]b(e2—1)—¥_1,
B(Z) = [Z — € — (62 _ l)i‘]b(ez—l)‘%-u’
and

#(z) = const x (z F 1)7%*“™ for e= £1.

For ¢ < 1, ¢(z) cannot be analytic. Thus, the case
which the Weyl-von Neumenn theorem predicts? is
excluded. ¢ must be contained in the interval
[1,1 4+ 2b]. For ¢>1 we make the following
remark: From the integral condition (7) it is easy to
obtain the fact that, if ¢,(z) or ¢,(z) is bounded on the

unit disc, then
$1(2)pa(2) € Ky

Because of this statement and the fact that ¢ +
(2 — 1)} > 1, we have from (B5)

B¢ —D=k+1, k=0,1,2,---,
i.e. (because b > 0),
E, = 2¢ = 2[1 + (bl

Similarly we can find the proper values for b <0,
E, = =2[1 + (b/k)*}.

APPENDIX C: THE SPECTRUM OF
THE OPERATOR V + P*

From the relation |V 4 V*| = 2 (see Ref. 2) it
follows that all E, |E| > 2, belong to the resolvent set
of V + V*. Thus, if there exists a proper value E of
V 4+ V*, then |E| < 2. But then the components
a(n) = (f, e,) of the proper element f must satisfy
the equation

alr + 1) + a(n — 1) = Ea(n). (ChH

The solutions of the above equation for |E| < 2 are
oscillatory, and for E = 42 they have the general
form

a(n) = ein + ¢y,

am) = cu(—1)" + ¢c;,

for E=2,

for £= -2,
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where ¢, and ¢, are constants. Thus, in any case, they
do not belong in (1, ). The point spectrum of
V 4+ V* is therefore empty. To prove that the entire
closed interval [—2, 2] is the continuous spectrum of
V + V*, we have only to prove that every E, |E| < 2,
belongs to the spectrum of ¥ + V*,

Suppose that there exists an E which does not
belong to the spectrum of ¥ 4+ V*. Then the inverse of
V + V* — E exists and is bounded; i.e., the equation
(V + V* — E)f = g has a unique solution fe J for
every g € . We shall show that this is impossible for
|E| < 2.

Choosing g = e;, we first observe that the com-
ponents of the element fin the equation

V+V*—E)f=¢

cannot be finite because, otherwise, all the components
must be zero. [In fact, if

(.f;ek)=(f;€k+1)=-..=0

from some k # 1 on, then we must have

Vf, e + (VY &) — E(f,e) = (e1,€,) =0

or
(f, e = 0.

Consequently,

. (Vfa ek—l) + (V*f’ ek—l) = 0,

ie.,

(f, e,c/_z) =0 as.0.]

Thus the components of the element f are infinite,
and it is easy to see that they satisfy the equation (C1)
with the condition

a(2) ~ Ex(l) = 1. (C2)
But the solutions of the equation (Cl) do not belong
in L(1, o) for |E| < 2. [Note that, for |E| > 2, we
can find the unique solution of equation (Cl),
a(n) = —A” € (1, o), which satisfies the condition
(C2). Ais the solution of the equation A2 — EA 4+ 1 =
0, whose absolute value is less than unity. This is
consistent with the relation |V + V*| = 2.]
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A direct connection between the spin and conformally weighted functions on the sphere and geometric
objects in Minkowski space is established through the isomorphism of the conformal group of the sphere
to the restricted Lorentz group. It is shown that with the use of these functions one can duplicate all the
standard work on the representations of the Lorentz group. It is shown further that these functions can be
used to obtain a generalization of the classical equations of motion in which internal degrees of freedom

arise naturally.

1. INTRODUCTION

It is easily demonstrated that the restricted Lorentz
group is isomorphic to the conformal group of the
extended plane, and hence (via the stereographic
projection of the sphere onto that plane) to the
conformal group of the 2-dimensional sphere. Thus,
an operation of an element of the Lorentz group on a
geometric object defined in Minkowski space may be
identified with an operation of the conformal group
on an object defined on a 2-sphere. The main purpose
of this paper is to identify those objects on the sphere
and to establish their connection with objects in
Minkowski space. We shall show that the required
objects are tensor densities of arbitrary rank and
weight, or equivalently the spin and conformally
weighted functions on the sphere. It is these latter
functions that play a dominant role in our work.
With the use of these functions we can duplicate all
the standard work on finite, infinite, and unitary
representations of the Lorentz group. It will also be
shown in Appendix A that the use of these functions
arises naturally in certain physical situations. In
particular, this leads to a generalization of the classical
equations of motion in which internal degrees of
freedom arise naturally.

In the course of this work, the operator edth, 8, will
be used extensively.l'? It is assumed that the reader is
familiar with both this operator and the associated
spin s spherical harmonics. In Appendix B to this
paper, we demonstrate a method for obtaining a
Clebsch-Gordan type angular momentum decom-
position using the operator 8.

2. PROPERTIES OF THE UNIT SPHERE

Starting with the standard line element on the unit
sphere

ds® = d6* + sin? 0 dg* @.1)

and introducing the complex stereographic coordinate

{ = cot 166, .2)

the line element becomes
ds? = d{ di|P?,

where P = }(1 + ().

Essential to the formalism are the two complex
vectors m# and m* which obey the normalization
conditions

@2.1)

(2.3)

mfm, =1, m*m, =0, p=1,2

These vectors are naturally chosen to make Re m*
and Imm* tangential, respectively, to the curves
Im { = const and Re { = const. Thus, they take the
form, in this coordinate system,

m* = 2 P8, m*= /2 Pot. (2.4)

The generators of the conformal group are defined
as i£*(0/0x*), where £* is a solution to the conformal
Killing equation

Eﬂ:v + Ev;u = kguv- (2'5)

We obtain the general solution to this equation by the
following procedure.
Letting &, be a solution to (2.5), we form the scalars

§,=§&m" and &_=¢m*
which are of spin weight 1 and —1, respectively. Then
transvecting (2.5) with m*mv, m*mv, and mtiy, we
obtain the three equations

8¢, =0, (25"
B, + 86 = J2k(L, ), (2.5")
§&_ =0. (2.5")

As &, is to be nonsingular on the sphere, §, can be
expanded as a series,

8

3
g_lalm 1},lm(C1 Z)s (2.6)

§+=
=0

where a,,, are complex constants and ,Y;,({, ) are
the spin-s spherical harmonics.
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TABLE I. Generators of the Lorentz group and their associated infinitesimal conformal and spin
weight factors.

El‘

k, infinitesimal iA, infinitesimal

Generator a ax,‘ conformal factor spin weight factor
1 d 0 j

M=i  —jle-vg-@-ng) 0 —5@+D
i 4 d 1

Ny =L, é{(§2+1)a—£+(52+1)a—z} 0 —-3C-0

? 9

Ny =L CB_{ - ZEE 0 i
if o, 0 I+ 1

MM gle-ng+@-ng o -5
1 _ .

Ny =M, 3 {(C2 + 1)— @+ a:} —ilz—_,_—fz 5’(4 +0

- del g2 1=-4
Ne=Ms =il Eaz} R 0
From (2.5") it follows that / = 1, so that transformations, together with their associated k.

fe=a Y+ b, Y+ 1Y, (2.7
As £ is real, ;
E— = §+1 (28)
so that i
=0,y —b 41+ ‘i—lYl,—l- (2.9)

Substituting (2.7) and (2.9) into (2.5"), we obtain

(@—0)oYu+ 0+ B)oYm +(c— a1 =k
(2.10)

By setting k = 0, we obtain the general solution for
a rotation,

£

where p is a complex constant and g a real constant.
Using the relation

§ = £+ £t

we obtain the three generators of the rotation group.
These are labeled L,, L,, and L; and are shown in
Table I.

Setting

=p1 Yy +ig Yo+ 51, (2.11)

(2.12)

k =2SOY11 + 2t0Y10—2§0YL_1, (2.13)
we obtain the solution for the ‘“‘pure” conformal
(boost) transformation

& =51Yy + t1Y10— 801, (2.14)

with s complex and ¢ real.
Using (2.12) we obtain the generators of the boost

These are listed as M;, M,, and M, in Table I.

The normalization of the various vectors has been
chosen so that the generators give rise to the canonical
commutation relations

[Li, Lj] = ifijkLk, [Li, M,'] = ifijkMk,

(M, M;] = —ie;pLy. (2.15)
These are seen to be identical to the commutation
relations of the proper Lorentz group.® The finite

transformation associated with these generators is

al+b
cl+d’

where a, b, ¢, and d are arbitrary complex numbers
subject to the condition ad — bc = 1. This, the
fractional linear transformation, is known to be
isomorphic to the proper Lorentz group. Thus the
isomorphism of the conformal group on the sphere
to the proper Lorentz group is established.

Two functions which play a major role in the
remainder of this paper may be defined from the
fractional linear transformation as follows:

r'= (2.16)

i aZ’/aC cl+d 217
¢ (az;'/az_;) &+d @17)
k=ugtf
P
= (1 + {Dl(a¢ + b)al + b)
+ (¢l + DL + DI, (2.18)
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where

o oL

— .2 =1 "= 1 7

A is interpreted geometrically as the local angle of
rotation of the two coordinate grids given by { =
const and { = const (after transformation). The
infinitesimal form for 4 is given in Table I.

K is the conformal factor associated with the trans-
formation of the spherical metric under (2.16), i.e.,

dydy _addl
Pl2 P2

Under a pure rotation X = 1, while under a boost
K # 1. For the form of an infinitesimal boost, i.e.,
K =1 4 ¢k, see Table I.

From Eqgs. (2.17) and (2.18) it follows that

0 ; P

%_ 'K, (2.19)
ar’ P

a relation that will be extensively used.

3. SPIN AND CONFORMALLY WEIGHTED
FUNCTIONS

In this section we will consider functions on the
sphere which transform as

(& D —~n''T) = K*e**n(L, )

under (2.16).

Functions of this type are said to be spin and
conformally weighted, with s the spin weight and w the
conformal weight. They arise naturally if we consider
tensor densities on the sphere of rank s and weight
n= —4w+s5). (With no loss in generality the
densities may be taken as symmetric and trace free—
any 2-dimensional density can be decomposed into its
irreducible parts and represented as a sum of terms
of this type.) From the transformation properties of
a tensor density, i.e.,

3.1)

» OX° ox?

—_——— e b e —

ox'* ox"”

A(’”...v)_‘ = (@ f)g s (32)
where s denotes the number of indices, by con-
tracting with m’*---m’ and using the complex

stereographic coordinates of the previous section
(thus m'* = /2 P'4t), we obtain

, nf 90\

33
% (3.3)
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Eliminating J and 9{/9{' by Eqs. (2.18) and (2.19)
results in
(2n+s)

’ —{(2n+s P i3
Aprp = K0t ’P/(Ws) €4, (3.4a)
or
. 7', 0) = K*e*n((, D), (3.4b)
where

N = AC...;P(M“’,
,'7/ = ACIIN.CIP/(?IH‘S),
w=—2n + s).

We now wish to consider in particular the behavior
of these functions under the infinitesimal fractional
linear transformations associated with the conformal
Killing vectors of the previous section,

Defining the Lie derivative £(£,) of a function with
respect to the conformal Killing vector §, ,a =
1---6,by

Wl D) — (L, D) = £(E)y = f (N, — iwk, + sy,

3.5)

where N, is the generator i§#(9/0x*) and k, and 4, are
the associated conformal and spin weight factors of
Table I. The six operators i£(£,) obey the identical
commutation relations (2.15) as the associated
operators N,, and so yield a new realization of the Lie
algebra of the proper Lorentz group.

Next we calculate the Casimir operators associated
with this realization. They are

I — M=%+ wiw + 2),
LM, = is(w + 1). 3.9)
It is well known that each irreducible representation
of the proper Lorentz group is determined by a pair
of numbers* k,, ¢, where k, is integer or half-integer
and c is any complex number. If the Casimir operators

are calculated in terms of these numbers, the results
are

L—Mi=kl+c2—~1,
LM, = —ikgc. 3.7)

Since k, is required to be positive, and integer or
half-integer, this leads to the natural identification
ko = 5|, and ¢ = —s/|s| (w 4+ 1) with the additional
restriction that s is integer or half-integer. Thus, for
every irreducible representation of the proper Lorentz
group we have an associated realization of the Lie
algebra in terms of i£(§,), and conversely. The
relations between k, and ¢, which determine whether
the representation is finite dimensional, unitary, etc.,
now apply to the related s and w.

In choosing basis functions for the representation
we diagonalize L, and L? (the Casimir operator
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associated with the rotation subgroup). They are

_:9_70
L3 = Caz ZaZ + S,
L=l
o 0 o f, 0 9
= 0+ D5+ zo(c 7 it s)
= —88 + s(s + 1. (3.8)

The eigenfunctions of these operators ,Y,, are
determined by the equations

L3 sYlm =m sYlm
and

LYy = Ul + 1) Y.

The functions ,Y,,, defined in this manner are (when
properly normalized) just the spin s spherical har-
monics.!*® (In order to exhibit the proper behavior
under the boosts, these functions are assigned con-
formal weight w.)

4. PROPERTIES OF REPRESENTATIONS

At this point we wish to state a series of results
concerning representations, the proof of which is
postponed till the end of this section.

Consider infinitely differentiable functions of the
sphere 7({, {) and n'({', {) which transform with spin
weight s (s integer or half-integer) and conformal
weight w (w an arbitrary complex number), such that
both % and #' are expandable in spin-s spherical
harmonics, i.e.,

M =l—z| ,alm sYlm(Ci Z)’

7 =3 ain Yl D) = K @)
I=|s

These functions then form the vector space of a

representation (not necessarily irreducible) of the

proper Lorentz group, which will be denoted by D, ,

y=m,n)=w—s+1,w+s+1). “42)

The reason for this notation will be obvious later.
A converse statement is also true; any irreducible
representation can be realized on these D, spaces.®

To be more precise, we consider the space of two
complex numbers n; and n,, given by Eq. (4.2). We
say that y = (n,, np) is an integer point of this space,
if n, and n, are integers of the same sign and both
nonzero. We then have the following results:

(a) A representation associated with a noninteger
%, is irreducible and infinite dimensional. In addition,
it is equivalent to the representation associated with
the point —y.
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(b) A representation associated with a positive
integer point (», and n, positive integers, or equiva-
lently w and s both integer or half-integer, with
w 2 |s|) is neither irreducible nor totally reducible.
The D, possesses an invariant subspace E, which is
spanned by the finite basis vectors ,Y,,, |s| </ < w.
The E, are the vector spaces for all the finite-dimen-
sional representations. It is possible to obtain an
infinite-dimensional representation also from D, by
considering the factor space D,/E,. The factor space
is isomorphic to the two equivalent representations
D D_,. .- In fact, given a vector in D

o
ny—ng — —-—ni1,n

labeled by 7., , the vectors

n1,me?

N1 s-1) = 000 )

and _
N—w—1,—3-1) = 5w-iﬂﬁ‘ln(s,w) (43)
arein D_, .and D, _, ., respectively.
There exists one last isomorphism, namely
Dm.nz/Em.nzg— —n1,—nz?
where F_, _  (see next paragraph) is a subspace of
D_, _.. Themapping D, . —F_ _  isexplicitly
given by

Mesmt) = 5w+s+15w~s+1,,’(s.w) .

(4.4)

(¢) A representation associated with a negative
integer point [—y = (—n;, —ny), n; and n, positive]
is also neither irreducible nor totally reducible. D_,
now possesses an infinite-dimensional invariant
subspace spanned by _,Y,,., /> w =}, + n) — 1,
and denoted by F_, The factor space D_,/

1,—ne’

F_, _.,~E, .. Explcitly, the mapping from
D_,—E, ,. isgiven by
’r)(s,w)(C9 E) =JM(C’ Zs CI’ Z’)’?(-s,—w—z)(cl, ZI)/ dQ’,
(4.5
where d€)' is the area element of the sphere and
M= 3 a0 . Y¢. D)
s

with

a(ls,w) = (—I)H's (W + ,S' + l)' (W - ’SD' (46)

w+ 1+ DI = D)!

The proof of these assertions is quite simple. We
first show the isomorphism between the spin and
conformally weighted functions and the homogeneous
functions of two complex variables and then,translat-
ing into the language of spin and conformally weighted
functions (via this isomorphism), known theorems
which relate these homogeneous functions to the
Lorentz group.
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We begin by considering the infinitely differentiable,
homogeneous functions of the two complex variables
z, and z, and their complex conjugates Z, and Z,; the
degree of homogeneity is n, — 1 in z; and z, and
n, — lin Z; and Z,, i.e.,

flaz,, azy, azy, azy) = a™av Y (zy, 23, 7y, Z,).
4.7
The linear transformation
z, = az; + fz,,
zg = yz; + 0z, (4.8)

induces a transformation on the f, namely that

4.9

f'(z1, 23, 21, 23) = f(z1, 22, 2y, Z2).

With each f(z;, 25, 7, , Z2), We can associate a function
of one complex variable

LD =rC 1D
The f can be recovered from ¢ by
i 4

[z 20, 21, 5p) = Zgl_lz_grl(i’(— -
Zy 2y

). (4.10)

The transformation on finduced by the transforma-
tion on the z’s, in turn induces a transformation® on
the ¢, namely,

(L) =L+ oG+ F LD (4.11)

with

and w—s=mn, —1,
w4+ s=mn, — 1.

Now by using Eqgs. (2.17) and (2.19), we obtain

¢'[P™ = K¥e**¢/P¥. (4.12)
Thus, by identifying 5 with ¢P~*, we complete the
proof of the isomorphism. The assertions then follow
immediately.®

In addition it is easily seen,from either the iso-
morphism or by direct calculation, that the unitary
representations are given by:

(1) principal series; s integer or half-integer, and
w = —1 4+ ic, where c is an arbitrary real number.

(2) supplementary series; s = 0,and w = —1 4 p,
where p is an arbitrary real number, —1 < p < 1.

Given a representation labeled by (s, w), the
conjugate representation is (—s, w).
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5. CONNECTION WITH MINKOWSKI SPACE

It is the purpose of this section to establish a direct
connection between the spin and conformally weighted
functions and geometric objects in Minkowski space,
namely, tensors and spinors and possibly more
complicated objects. More precisely, we will show a
simple and direct correspondence, so that the spin and
conformally weighted functions will have geometric
meaning in Minkowski space.

At an arbitrary point P in Minkowski space,
consider an orthogonal space-time tetrad (z#, x*, y*,
z*). (A Lorentz transformation will be a “rotation” of
this frame.) In the 3-space orthogonal to z*, let S
denote the unit sphere. We coordinatize S by the
complex stereographic coordinates {, Z, the stereo-
graphic projection being taken from § onto the
(x#, y*) plane. At each point of S we introduce the
complex tangent vectors m*({,l) and m*({,?),
tangent to the { and C lines. These vectors are of
course identical to those introduced in Sec. 2, but here
they are considered as residing in Minkowski space.
Relative to the chosen tetrad, any null direction can
be labeled by the stereographic coordinates of S by
simply projecting the null direction into the three space
and noting where it intersects S. We thus write an
arbitrary null vector as /*({, {); as {, { go over S, /*
sweeps out the null cone. The “length’ of /# is normal-
ized by the condition /,t* = 1. A point to be noted is
that, given the frame, by this construction there is no
freedom of choice in the vectors /* and m®.

In a second orthogonal frame (obtained by a
Lorentz transformation from the first) at P, the iden-
tical construction can be used to find an alternative
description of the null cone by the vectors I'#({’, {'),
with a unit sphere S, coordinatized by {’, {’, with
tangent vectors ne'* and 7',

We now contend that, for any proper Lorentz
transformation, there will correspond a transforma-
tion of §'«» §’, given by

, al+b
= . 5.1
‘ el +d ¢
Moreover,
I'* = KI*, m* = e (m" 4+ HI"), (5.2)

where K and 4 are the conformal factor and rotation
angle of the previous section and H is a function of X.
(See Appendix A.)

The proof can be given by direct calculation, but it
is easier to infer it directly from work on the Bondi-
Metzner-Sachs group”® by just keeping the super-
translations all zero and restricting the considerations
to flat-space.
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With each pair of vectors /*({, {) and m*({, [), we
can associate a unique pair of two component spinors
o4(¢, ) and (B(¢, ) normalized so that 0,4 = 1, by

A_B’

n " A_B'
I'=o04p070",

m" = olypt76".
When /* and m* transform by Eq. (5.2), it is easily

seen that
o4 = KEg 4

With this result we can establish the direct relation of
the spin and conformally weighted functions with
spinors.

An arbitrary irreducible spinor, and consequently
any irreducible tensor through the known association
of tensors with spinors, can be written

(DA"'BA""C' s
with w — s symmetric unprimed indices and w + s
symmetric primed indices. By defining

q 4 o
N = (DA"-BA’-"C'O e OBOA e OC 5

(5.4)

we see that,under a Lorentz transformation of the
Minkowski space, we have

7' = K " (5.5)
(We point out that,though it may appear as if we are
not performing a Lorentz transformation on the

spinor @ .. 4. itself but only on the o4, this is
not true. The following example should clarify this

point.)
Consider a vector 4, in two coordinate frames, i.e.,
i
with
yd: 4 S
J*= a_xllu = Ka_x 1
ox" ox*

then A/* = KA Jor ' = K7, ie,w=1,5=0.

What we have thus shown is that,when an irreducible
spinor (or tensor) at a point is contracted with a
variable 2-component spinor o4, which spans the
light cone, the result is a spin and conformally
weighted function given on the local unit sphere. A
local Lorentz transformation from one frame to
another is equivalent to the fractional linear or
conformal transformation of one unit sphere onto the
other.

It is not difficult to see that this contraction can be
reversed for the finite-dimensional representations, by
using the orthogonality properties of the spin-s
spherical harmonics.

One can generalize the above notions to a spinor or

(5.3).
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tensor field, ¢4..p4...c(x*) or T, ,(x*). They would
correspond to a spin weighted function field %(¢, £, x¥).
In this manner invariant equations for spinor or tensor
fields would be written as a scalar equation in a 6-
dimensional space. In addition, one need not limit
oneself to just the finite-dimensional representations.
The infinite-dimensional or even the partially re-
ducible representations are just as easily described
in this manner as the finite-dimensional ones.

Finally, we point out that, in some sense, one can
give a geometric meaning to the infinite-dimensional
representations. In a given frame,

WG = 3 a®) YL, D).

I=|s]
The a,,,(x*), —! < m < I, can each be identified with
a 3-dimensional “tensor’ (or spinor) totally symmetric
and trace free in / spatial indices,

(5.6)

Ay > Qgjonr)y

Thus, 7 is equivalent to an infinite set of 3-dimensional
tensors (or spinors), each transforming irreducibly
under O(3) [or SU(2)], but being completely mixed
under a Lorentz transformation.

APPENDIX A

As an application of the results of Sec. 5, we present
here a generalization of the classical relativistic
equations of motion for a free particle. The generaliza-
tion consists of extending the representation of the
homogeneous Lorentz group associated with a vector,
s = 0and w = 1 (in particular the velocity vector of a
particle), to its related infinite-dimensional, partially
reducible representation, the additional components
representing internal structure. For future reference,
slightly more material is developed here than is
needed.

We begin by taking the parametric form of an
arbitrary timelike world line in Minkowski coordinates
() to be y* = £(u). The Minkowski coordinates of
an arbitrary point can be expressed in terms of null
coordinates x* = (u, r, x2, x3), associated with the
light cones emanating from the line, by

Vo= Eu) + r*(u, x4, A =2,3, (A1)

where x® = y is a measure of proper time on the world
line, with each cone being labeled by u = const;
x! = ris an affine parameter along each null ray lying
on the cones as well as a measure of the radius of each
sphere given by u = const, r = const; x2 and x® are
“angular coordinates” which are related to the
complex stereographic coordinates { and { by { =
x2 + ix®; and A* is a null vector field which sweeps
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out the directions of the full cone at each u = const as
{ and { vary. Since A* is null,it must satisfy the
conditions -

WA, = WA, =", 4 =0, (A2)

where a dot denotes ¢/0u and a comma-A denotes
0/0x4. In addition we require the normalizations

Ml =1, &, =2 (A3)
where the 2 implies that u is V22 times the proper

time. Finally, in order to specify how null directions
are to be propagated along the world line, we let

=P, F=ID, v=0u] (A4)

and differentiate with respect to u. This yields the
propagation law

A= —(0[v)A*, (AS)

which simply expresses the parallel transfer of the

direction of A*. Note that from (A3) and (A4) we
obtain the relations

v=E&1, o=E1,. (A6)
We can now calculate the metric tensor g, (x*) in
the null coordinates by means of (Al) and the trans-
formation law
_roy
Buv = ox* 0x* T s

where 7,, is the usual Minkowski metric 7,, =
diag (1, —1, —1, —1). Using (A2)-(A6), we find that

D
gu1=625 g00=2(1—';7‘),

¥ 4l _
804a=0, gup= —Z;“L]?rz- (A7)
Since /* and v were defined in (A4) only up to an
arbitrary u-independent factor, we may choose this

factor such that

l“,Alu,B = —6AB/2P(%: (A8B)

where
Py = }(1 + LD).
A solution to (A8) is given by

(A9)

NS (R cgj—z i~ 1),

(A10)
It then follows from (A6) that
bt L+l 0=l 1=
v_\/i(E v Tt +1+€Z§)'
(Al11)
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By means of the relationship { = cot 0e*¢, we can
also express v in terms of ordinary spherical harmonics
Y.(8, ¢) as

% — .
v = 2meY, — (2;") [+ i9//2 Yia + €Yy
- —iHNIY, (A1)

The line element in the null coordinates can now be
written as

7‘2

a9
=

ds2=2(1—9r) du® + 2 du dr —
v

d¢ dg.

(A13)

Thus, the world line uniquely determines the metric
and the metric determines the world line.

Assuming that /* is a spin weight zero quantity, one
can show by straightforward calculation from (A10)
that

Sk =0, (A14)

where 8, denotes the operation of 8 with respect to
Py =31 + {2). 1t also follows from (A2) and (A8)
that

180, = 18,1, = 0, 3ol = —1. (Al5)
With the help of (A14) and (A15), we then obtain the
results

Bol* - Solu = 8ol* -5 0801,4 =0,

PEGBl, = — 58801 - BeBol, = 1. (A16)

Defining the real null vector »# and the complex null
vectors m* and m* by

e e (A17)

mh = Bl At = 5~ (A18)

we have constructed a null tetrad system (/%, n#, m*,
m*) for Minkowski space, which satisfies the standard

orthonormality conditions, namely,
n, = —mtm, =1,

(A19)

with all other scalar products equal to zero. In terms
of this null tetrad, the Minkowski metric 7,, can be

expressed as
Ny =Ip, + 0l —mm —mm,. (A20)

Now, consider two arbitrary vectors A*(u) and
B#(y) which are attached to the world line and let
A= A4"l,, B=DPB"1,. (A21)
Multiplying (A20) by A#B" and using (A17) and (A18),
we obtain
A"B, = 2AB + AB,5,B + B35,4
— BoA  ByB — 5yA - 5,B. (A22)
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In particular,

£, =2 = 2(0" + v8yBel — BoP * Bod)
or

v? 4 BSBev — Jov * B = 1. (A23)
This last equation simply states that the Gaussian

curvature JG of the 2-surface, whose metric is given by
g5 pdxL dx® = (d{ d{[P%?), is equal to 1, i.e.,

K = 28,8, log (Pe) = 1. (A24)

From the results of Sec. 5 we note that under a
proper Lorentz transformation of the original
Minkowski coordinates /* and v transform according
1o

't = KI¥, (A25)

that is, v has conformal weight 1. For completeness,
let us also consider the transformation of the vectors
m* and n#. Putting m’* = 8 /'* and using (A25) we have

v' = Kuv,

2 P, 8 9
* =P — (KI"y =2~ P, = — (KI"
m oag,( ) P, °a§’a§( )
=B % 5k
P, ol

With the help of (2.19), we then get

m' = éi(m* + "8, log K). (A26)

Similarly,
= I 4 5gdgl
= KI* + K™ %5,5,(K1")
= K [n* + m"5, log K + "8, log K
+ K% =14 5,8, log K

+ 8, log K - 5, log K)]. (A27)
We can simplify (A27) by using the identity
3,0, log K =1 — K2, (A28)

which can be easily proven from the definition of X
given in (2.18). Thus, under a proper Lorentz trans-
formation the tetrad vectors transform as
It = K, (A29a)
m'* = e*(m* + HI"), (A29Y)
't = KYn" + Hm* + Hi* + HAM), (A29)
with H = 8,log K.
With this background, we now give a simple gen-
eralization of the relativistic equations of motion
ImEXu) = F*(u). (A30)
(The extra factor 4 comes from the fact that our uis
/2/2 times the proper time.) Contracting (A30) with /¥,
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we immediately obtain the equivalent statement,
namely,

md = F(u, {, ), (A31)

with F = F#[,. By leaving (A31) unchanged in form
but now considering v and F to be associated with the
infinite-dimensional representation s =0, w = 1

© w©
(i-e-; v = z vlelm and F = ZFlelm)>
1=0 1=0

we have generalized (A30). The vy, 0, and Fy, Fy,,
are related to the usual 4-velocity and 4-force as in
(A12); the higher / components v,,, can be associated
with the internal structure or moments, with the higher

1w acting as the driving “force” for these moments.

Equation (A31) can be generalized further by
applying the results of Sec. 4 and recalling that » has
s =0and w = 1. It can be easily verified from (4.3)
and (4.4) that the expression

aw + Po'stsiy + yr°iv - B, (A32)
where o, f, and y are constants, also has s = 0 and
w = 1. Though other expressions with this property
can be constructed, (A32) is the simplest. By adding
this to (A31) we obtain

Imo = F 4 av + Bu'dedio + yu*dsv - dav  (A33)
as a nonlinear relativistically invariant equation of
motion for a particle with internal degrees of freedom.

A remarkable coincidence arises if we specialize to
a=0yp=—f= (12\/2 k)™* (x being the gravita-
tional constant) and treat the particle as free, i.e.,
F = 0. The resulting equation

mi = (64/2 1) W3(B - B3v — vBIBW)  (A34)
is identical to the Robinson~Trautman equation,®0
which arises in the study of algebraically special
solutions of the vacuum Einstein field equations. In
several recent papers,'''® we have argued, from a
slightly different point of view, that this equation
(A34) represents equations of motion.

APPENDIX B

A function f which obeys L% = I({ 4 1)f is con-
sidered to have an / value. In general the product of
two such functions does not have an / value. It is well
known,though, that this product may be decomposed
into a sum of terms, using the Clebsch~Gordan
coefficients, each of which does have an / value. In this
appendix, we present a method of obtaining this
decomposition which requires neither knowledge of
the Clebsch—~Gordan coefficients nor of the azimuthal
decomposition of the individual functions.
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As an example, consider two functions f and g,
both with / value one. Using the operator §, we may
write

Jz = 1/6(2fg + 8 Bg + Bfdg)
+ 1/6(4fg — BfBg — ¥fbg). (Bl)

Considered as functions, the two bracketed expressions
are easily seen (using the equivalence L2 = —83 for
spin weight zero quantities) to have / values 0 and 2,
respectively. We shall now prove that this decom-
position can be obtained generally and give a method
for its construction.

From the properties of the Wigner D matrices and
their relation® to the spin-s spherical harmonics, it is
easily shown that the product of two spin-s spherical
harmonics is given by

81 }’llml(o, ¢) 83 lezmz(o’ ¢) %
— ((211 + D2, + 1)) Y, (6, 6)
"\ 420 + 1)
X (s my, mg | LmY, L —sy, —s, | 1, —5),
(B2)

where {/,1y; my, m, | I,m) is a Clebsch~-Gordan
coefficient of the rotation group®®

m=m1+m2,
§=S1+52,
th =Ll <1< L+ 1)

Choosing 5, = —s, =5 (s > 0), we rewrite (B2) as

8" Ym0 Vigms
=(=1yY ((11 + 9! + 3)! §211 + 1)@, + 1))%
(h— 9! (I, — 9)!4n2l + 1)
X Yl by my, my | Lm)(ly, by —s, 5|1, 0.
(B3a)

l

For s’ < 0, (B2) becomes

5 Yrym® ™ Vigms
s ((ll — )10y — $)1 2 + D2y + 1))*
(L + ) (I + s)14n2L+ 1)
X Yl Iy my, my [ 1, m)h, s s', —s'| 1, 0).
(B3b)

Assuming that ; >/, then (B3) represents 2/, + 1
independent equations.

If fand g have / values /; and /,, respectively, they
may be written

f= zaﬂqulml’ 8= zb'mzYlsmz’ —li S mi S lz
™ " (B4)

1
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Multiplying (B3a) by a,, and b,,, and summing over
m, and m,, we get
55°g
1S ((11 + )1 (L + 91 QL + D@, + 1))*
(L =9y —)!4n2l + 1)
X (I, Ip; —s,5|1,0)
X 2 Iy, ly; my, mz, I, ma, by, Yim

my,me

= ;asZDl(C, Z),

14

(BS)

where o, are constants (see below) and D! satisfies

[85 + /(/ + DIDYL, D) = 0. (B6)
Similarly, from (B3b), we obtain
38’ = X (=), DY (B5")
11

where we have set 5" = —s in (B3b),so that 0 < s <
I, and have made use of the identity!?

(hy Ly s, =s | 1,0) = (=)7K, y; —s, 51, 0).

[The indices /; and /, have been suppressed in (B5).]
The normalization of D' is not uniquely determined,
as any variation results in a corresponding variation
of the constants o,;. The expansion we seek then is

fg =S uauDt =3 D" (B7)

Equations (B5) and (B5’) form a set of linear equations
for the DV’s in terms of 8% d%g and 8% 8%, which may
be inverted to give expressions for the D¥s of the form

D'=Y a,55'g + b, 55°g. (B8)

From Egs. (BS) it can be seen that,while the expression
3°f8% does not have good parity, the combination
5°f8% + 5°fb°g has parity +(—1)+%, Since D' has
parity (—1), (B8) must be of the form

D'= 3 a,[5'f5°g + (—1)" 5 5tgl.  (BY)

In order to generate the coefficients a,,, we make
use of the easily established identity (valid for 0 <
s<LL,— 1)

B5(5°f5°8) = 5°*f5"g
= [L(h + D + b, + 1) = 25" 5°g
+ (W + 1) —s(s — 1]
X [l + 1) — s(s — DI5*7'f5* g,
(B10)
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Substituting (B9) into (B6) and using (B10), we equate
the coefficient of §*+1f5*+1g to 0 and obtain the recur-
sion relation

a, =L +D)+ LU+
—2(s + 1 — I + Dlay oa
=L+ D) —(s+ s+ 2)]
X [l(ly + 1) — (s + (s + 2)]a;, 540,

where 0 < s </, and q,,, is arbitrary, reflecting the
arbitrariness in the choice of D*. Using these relations,
it is a simple matter to generate all the expressions D
of the same parity as fg and hence the final form

fege= ; o, DY

(B11)

As indicated above, expressions D! with parity
opposite to that of fg are easily calculated. A case of
particular interest is that when /; =/, =/=1. Let
f, g, and h be three vectors such that

fxg=h (B12)

We form the function f({, {) associated with the
vector f by

%
D= (2{) [=(f, ~ )¥al D)

+ (fx + ify)Yl,—l(C’ Z) + \/ifzylo(la Z)]
(B13)

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 11

HELD, NEWMAN, AND POSADAS

with similar expressions for g(¢,{) and A({, §)
formed from g and h, respectively. The functions
/. g, and & all have / value equal to one.

From the above it follows that §f8g — §f8g has /
value to one. In fact,

(il2)(3/8g — BfBg) = h, (B12')

giving an expression for the cross product of two
vectors expressed in our formalism,
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the electromagnetic field is coupled in), but it also
predicted a type of internal structure for the singu-
larity as well as the dynamical laws governing the time
development of this structure. Though it was possible
to interpret this structure as being loosely related to
the mass (or “electric”’ type) multipole moments,
there was nothing that could play the role of the spin
(or “magnetic”’ type) moments. In particular, there
was no means of treating the motion of a singularity
with intrinsic angular momentum.

It is the purpose of this article to try to remedy this
defect. (Though we here work only with the linearized
Einstein equations, we believe that the method can be
extended to the full nonlinear theory.) By first inte-
grating the Bianchi identities in flat space (using a
null coordinate system associated with an arbitrary
timelike world line) with the condition that no
moments® higher than the dipole should exist, two
functions of integration, representing the mass and
the complex dipole moment (mass dipole and angular
momentum), are obtained. Then, by effectively using
the condition that the angular behavior of the linear-
ized metric be regular (i.e., be expandable in general-
ized spherical harmonics), conditions on the motion of
the singularity and the time development of the
moments are derived, and then shown to be identical
with the well-known relativistic equations of motion
for the pole—dipole particle.®”

The authors believe that though the results are not
new, the method of approach is sufficiently novel and
holds out the strong enough hope for generalization
to the full nonlinear theory to justify the present
description.

2. THE NULL COORDINATE SYSTEM
As in Refs. 1-4, we introduce a null coordinate
system x* = (u,r,x4), a =0,1,2,3,4=2,3,and
an adapted null tetrad (/*, n*, m*, m®) and apply it in
flat space-time. The coordinates and tetrad are to be
based on an arbitrary timelike world line c:y* =
&%(u), where y* are Minkowski coordinates and the
time coordinate u is normalized according to
£=2, (1
and the affine parameter r chosen to satisfy /%€, = 1.
Further specialization results in a metric'-?

5 2
ds2=2(1 —£r) du® + 2 du dr — 1= dt dt,
P 2p?

w2 i3
and a null tetrad £ _- x* —ix%, (2)
=01, n'=6+ <—1+£r)a;‘,
P
me = — L1, ey, 3
r
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The quantity P(u, x4) has the interpretation'-? that
P|P is in one-to-one correspondence with the accelera-
tion vector £2.

The zeroth-order spin coeflicients are then calculated
from the field equations, with the Weyl tensor
¥, (n = 0 — 4) set equal to zero [see Ref. (2), Egs.
(B1) and (B5) with ¢ =y =0 and K = 1].

The following notation will be used: A superscript
zero (e.g., ¥?) indicates that the quantity concerned is
independent of r; a subscript zero sign (e.g., 8,) will
be used, where necessary, to distinguish zeroth-order
from first-order quantities (this is done only in Sec. 5);
if s* and ¢° are 4-vectors, then s2, (st) denote the inner
products s%,, s°,, respectively; and [(s)/] is used to
denote a quantity®® whose angular behavior is like a
spin-weight s, angular momentum /, spherical
harmonic ,Y,,,.

3. FIRST-ORDER CALCULATIONS
The linearized Bianchi identities for the first-order
Weyl tensor depend only on zeroth-order spin
coefficients and are written

-3
Dy, + (5 —mi2 =2V 12.3,4, (4)
r r
P » v
e + —1+—r)Dn+[2—n—r—1—n}—E
v ( P ¥ ( )P r
—~By, _P
=_-_1/_).i1+nwn_15_’

P
n=0,1,273. (5
Here D = 9/0r and®®

9
&y = 2P — Py,
Ul oL
- )
By = 2PV — Py, 6
7 5 7 (6)

where { = x2 — ix3. y, has spin weight 2 — n.

In the usual multipole interpretation,® y, is specified
by giving the quadrupole and all higher moments, so
the dipole assumption amounts to

Yo = 0. (7
The radial integration of (4) can be carried out
explicitly:

0
"P1=:{)_:,
0 x,0
W2=%+§r—'lf1,
RN
r r 2r
r r 272 6rt
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where the 49 ,n = 1—4, are constants of integration.
Substituting the expressions (8) for v, into the
propagation Eqs. (5) and equating coefficients of like
powers of r, we obtain

3yl =0, (9a)
. P .
By = 3;1/1‘2 — 9, (9b)
p .
Bys = 3=y} — yi, (9¢)
P
0 __ f ()} 0
Syg =3 P Y3 — Y3. (9d)

Since 8[(s)s] = 0, Eq. (9a) states that ? is a [(1)1]
quantity—in some sense the dipole moment. The
Egs. (9b)-(9d) can be regarded as determining
¥, ¥3, ¥? in terms of 9} (and possibly arbitrary
constants); Egs. (8) then yield the complete solution
for v, .

The general method of solution of Egs. (9) can be
illustrated by its application to the second of these
equations. [Essentially the technique is to analyze
each equation according to its various angular parts
(i.e., / values) and then use the raising properties
(s— s+ 1) of 8. References 6, 7, and Appendix A
of Ref. 2 will prove helpful in following the manipula-
tions through in detail.] Write

59 =37 ¥ — il = Ay + By,
ie.,
0
3[(0)] = [(01] x [(D1] — o [(D1] = [(D1] + [(D2].
Then
P
5B, = 41p25; .

{Note 8[(s)s] =0, but 5(d/ou[(s)s]) # 0, or more
generally, the time derivative of an [(s)/] quantity is

not an [(s)/] quantity. We give here three useful
general formulas for any (s) quantity #:

0 P

Z ¥ =n=8"

ou K nP g .
n(n+s— 1)5;'—:- 8™y + 5,

_a_gnn=n£8nn

ou P 10

s o

+n(n ~ s = DBL- By + B,

2

_ P P

— 88y = 25— 2—88
du K SP"7+ P I

P - - P

S5—-8yp —sbn -0

OGO SO0,

AND R. YOUNG

Continuing the analysis:

- . P
855B, = —4B, = 43 (1,)2 3 ;),

P - P
By = 29— — ¥y?-85—,
2 %P k21 P
A2=5‘Pg"32
P < P
=wi’;+6¢i"5;—wi’-
Thus
_ vo=m + a + b,
ie.,

(O] = [(0)0] + [(O1] + [(02], (1n

where m is an arbitrary [(0)0] function of integration
(a function of u), a = 484,, and b = —15B,. It is
convenient to introduce the [(0)1] quantity G defined
by 9% = 8G. In terms of G,

a=865L_¢ (12)
P
P P s P

b=3G= — {5G6— — $5Gd = 13
3G — 3868 T — 0G5 ( »)

Proceeding along similar lines with Eqgs. (9¢c):

Sy3= M + 4, + By, + C;,
i.e.,

S[(—=1] = [(00] + [O)1] + [(0)2] + [(0)3], (14)

where

, P =P <, P
M= —m+%a;+%8a61—3+%6a6;, (15a)

P axP 5 P
A3=3m}—)—a+%ba6;+%6a8;, (15b)
P <P = P
B3=%a;—§6a6;—§6a6;—b
o RN
3b8 — + 305 —, 15¢
+1 p T 0, (15¢)
P <P P
Cy =3b = — 185b8— — $5b5— . 15d
3 p — 1068, — i865 (15d)
Since § is a (—1) quantity, we must have
M=0, (16)

which is the first of the equations of motion. In the
case of the pure mass monopole (ie., G = 0), this
reduces immediately to the mass conservation law
m=0.

As will be shown later, further restrictions on %9
and ¥ follow as a consequence of the first-order field
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equations:

A; =0, 17
Im (@) =0, (18)
Im (m) =0. (19)

Equations (16)-(18) in fact constitute the equations
of motion®? for a pole-dipole particle. Equation (19)
forbids a “spin” monopole or “magnetic”’ type
monopole. For a pure monopole (G = 0), Eq. (17)
implies

P[P =0, (20)
so that the monopole is constrained to have a time-
independent mass and move along a geodesic in
flat-space.

The radiation field 43 consists of a linear combina-
tion of (—2)2, (—2)3, and (—2)4 quantities, and may
be calculated from Eq. (9d):

P

P
"'%— 12(5 0B, +

24623 + 606 6C3 + 12062C
(A snmllar result may be derlved for the radiation

field of the electromagnetic dipole moving along an

arbitrary world line;

— 42 = 336, +——5G +356, 22

ou P’

where now ¢§ = 3G,, Ge representing the electric

and magnetic dipole moments.)

4. THE POLE-DIPOLE EQUATIONS
In the present notation with the normalization
&2 = 2, the pole-dipole equations of motion [Egs.
(5.3) and (5.7) of Ref. (6)] take the form
8% 4 £leq®l = 0, @1
=0, (22)
where S® is a skew-symmetric tensor, representing the
intrinsic dipole moment and angular momentum, and
at = SN,
P°=méE + o, (23)
[Usually the additional condition that the dipole
moment vanishes is imposed; namely
S9&, = 0. (24)
Though we will not use (24), it will be mentioned
later.]
Note that the full content of (21) is expressed in
S*E =0, (21%)
where the * represents the operation of taking the
dual.
Before establishing the connection between (21)
and (22) with the equations of the previous section, a

few mathematical results are stated. If s* and 2 are
vector fields defined along ¢, orthogonal to the
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velocity vector £, then contracting with Eq. (A3) of
Ref. 2,we obtain

—(st) = 28T + 8SBT + 5T3S, (25)
with § = (Is), T = (It). Further, it may be shown
that if

he = \_/5 Eabcdébsctd

(which is the cross product of ¢ with s in the 3-space
normal to £), then, defining H = (/h),

i — -
H = — (8S8T — 3S3T).
\/2( )
Multiplying Eq. (22) with & and /* — 4, respec-
tively, we obtain

(26)

@7

. 2m — (af) = 0,
m% + @) + }(«) = 0.

By using (25) and the identification @ = —3(«/), we
obtain Eqgs. (16) and (17).
The tensor S¥ can be represented by

Sy = qaéb - ‘Ibé + eabcdrcéd
where g, = %S &, r, = 4S,,8. From (21'),
Go — qu Ea + eabcdrcfd‘fb =0

Multiplying by /, and using (25), (26), and (27), we
obtain

20 + [5<R— "Q)‘Sg—S(R+iQ)-6§] =0

where Q = (q/), R = (rl). [Use has been made of the
identity (¢)) = O + Q(P/P).] Finally setting G =
6(R — iQ), Eq. (18)is obtained. With G so defined and
a = —3(a/), the consistency Eq. (12) can be shown
to be identically satisfied.

Note also that the vanishing of the dipole moment,
ie., Eq. 24, is equivalent to R = 0.

5. COMPLETE FIRST-ORDER SOLUTION
A subscript zero is now attached to all zeroth-order
quantities, e.g., «d, Py, 8. All spin coefficients and
metric variables without a zero subscript are first-
order quantities.
Using certain coordinate conditions,* the first-order
radial field and metric equations can be integrated:

p=0, k=nr=e=0,
o= a"r‘z,
a = —a¥r ! + &35% 2
B =% — ale% % — Jopt3,
T=a+f,
Y =" — dyar® + ooyl — a0P) — 2804d)r 7,
A=214 5%Y
po= 0t — T — 3,
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v =" =yl = oyt + 438 — By,
£4 = g4l _ 08042

1 0_—2

- %"Plr s
X4 = XM + 3y + P,
U=U"—("+)r
— 33 + FDrt — 4@yt + B,
Substituting in the linearized nonradial field and
metric equations yields relations between the first-
order constants of integration. The new first-order
variable £°4 is taken as —PyI(1, i) {see Eq. (3)]. Thus
the zeroth-order P of the previous sections becomes
the first (plus zeroth)-order Py(1 + I). It then follows
from the field equations, using further coordinate and
tetrad conditions [see e.g., Ref. (4)] that

- %I’

o = o'

XO_A — 0’ yo

_ P _
’Vo = 160F0 + 601,

—u® = —U° = K = 2I + 8,5,I.
In addition ¢° and I must satisfy the first-order equa-
tions
3 — P = Bo® — 855", (28a)
o =861’ + D), _ (28b)
vy = — 0l — 28018059 + 2 Zogo . (28¢)
Py, Py
Note that, though (28) satisfies (9), identically it
imposes, by its structure, severe conditions on 3 and
9. Since o® and A° 4 B2/ are spin-weight —2 quanti-
ties, it follows immediately that 9§ has no [(—1)0] or
[(—D1] part and that yd — 93 has no [(0)0] and
[(0)1] part. These restrictions amount to nothing more
than a restatement of Egs. (16)~(19).
In addition (2b) implies

By = B5i(2° + B

_2 835" — 3 5’535“ + 830, (29)
u P,
and, from Egs. (14)-(17) and (19),
dyy=—b+3 L

0

P = P L= P

$a~2 — §8a -8, = — §Bpa- B —°). 30

+(3aPo £50 OPo o OPO (30)
Equating (29) and (30) yields a single equation for

the determination of ¢® and /. Though the solutions

are not unique, by making the identification

— 53"

(€Y
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and

8 PO ( ‘Po = P)
3a — — 3| 8al; — + B,a8,—
3 PO % (1] OPO 0 OP

—{ P
—35,5 (a ;") = 5,83, (32)
the solutions ’

@ = 4,68 12,

Py
I
)
are obtained. The alternate solutions can be con-
structed by means of infinitesimal coordinate transfor-
mations that are generalizations of supertranslations.
By means of this freedom it is possible to make
I = 0, but then the ¢® becomes a nonlocal function of
G, i.e., it depends on a time integral over G. It appears
as if (33) is the only local solution.

It is possibly of interest to note that,in the case of
R = 0, the “news’’ which has been broken up into two
parts, o® and 1, is such that o° contains the “magnetic”
part of the news and I the “electric’” part. Further-
more, it appears likely that a new congruence of null
vectors can be introduced which are no longer hyper-
surface orthogonal but are now shear free, i.e., the
“news” which was in ¢° would then be placed in the
curl or twist of the new congruence. This suggests that
in the full theory one should look at the algebraically
special solutions which are curling in order to study
equations of motion of spinning bodies. In fact, the
above was suggested by a study of the Kerr metric. In
addition it appears possible that the condition R = 0
might be derived rather than assumed.
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The behavior of a previously discussed model of phase transitions for Fermi systems is analyzed in the
region very near the critical point. It is shown that for a very general class of 2-body interactions the
chemical potential is analytic in the temperature and density at the critical point, so that the model is in
this sense equivalent to the classical theory of phase transitions. An extension of the model to include
certain 3-body and higher interactions leaves this conclusion unchanged.

I. INTRODUCTION

In the past decade the problem of phase transitions
has become widely recognized as one of the outstand-
ing unsolved problems of statistical mechanics.® The
question as to whether statistical mechanics is even
applicable near the critical point was, of course,
answered in the affirmative by Onsager?® in 1944 with
the solution of the 2-dimensional Ising model. Since
that time several rigorous theorems on the behavior
of the partition function near a phase transition have
been derived,?® but a large portion of the theoretical
effort has been directed toward the analysis of various
models that undergo phase transitions. With a few
notable exceptions,® the analyses of these models have
of necessity involved approximations of some sort,
and, as a result, descriptions of the phase transition are
generally obtained which are in agreement with the
classical theory of Van der Waals.” As the Van der
Waals theory is not in quantitative agreement with
current experimental results® near the critical point,
the basic problem of the phase transition remains
unsolved and the search continues for models which
on the one hand are simple enough so that the thermo-
dynamic properties can be found via statistical mechan-
ics and on the other hand are sufficiently complex
so that nonclassical critical point behavior can be
obtained.

In this work we consider a model of a phase transi-
tion, proposed in a series of papers by Gartenhaus and
Stranahan,®* in which the thermodynamic behavior
of a system of fermions is studied near the liquid
vapor condensation region. The model is defined by
the Hamiltonian

H =3 t00N, + 55 3 Wk ONNe, (1)
X 2Q i

where N, is the number operator for a fermion of

spin and wave vector k, #(k) the single-particle kinetic

energy, Wi(k, q) the two-particle interaction, and

the quantization volume. In the thermodynamic limit

(€ — o0, particle density n fixed) the partition func-

tion for the model can be evaluated exactly'? and the
resulting thermodynamic functions are summarized
by the formula

n(, u) = f 2k

@2ny

Pk, B, ), 2
where r is the particle density, u the chemical poten-
tial, g the reciprocal of Boltzmann’s constant times
the temperature, and where we have changed the sum
to an integral by the usual prescription. The quantity
p(k, B, u) is the single-particle density matrix which
obeys the nonlinear integral equation

p(k, B, )
= [1+ewp(100+ |

dq -t
K, - .

) Wk, @)p(q) u)}
(3)

By considering the properties of this equation, a set of
necessary and sufficient conditions on the interaction
W(k, q) have been obtained which must be satisfied
in order that a phase transition occur in the model.?
When these conditions are fulfilled, it is shown that
the transition in the model exhibits all the qualitative
behavior observed in condensation phenomena.
However, turning to a quantitative study of the model
near the critical point, Gartenhaus and Stranahan
found that,!! for the attractive, factorable interaction
W(k, q) = —h(k)h(q), the critical exponents all as-
sumed their classical values.’® Therefore, for this
special case the model is not in quantitative agreement
with experiment near the critical point.

In this paper we investigate the critical-point behav-
ior of the model for a class of more complicated
interactions to determine whether it is possible in some
cases to obtain nonclassical values for the critical
exponents. We show that, for a very general class of
interactions satisfying only certain integrability cri-
terion, the critical exponents always retain their
classical values regardless of the detailed properties of
the individual interactions. We also find by extending
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the model to include simple 3-body and higher inter-
actions that these conclusions are unaltered.

Our analysis is organized in the following manner.
In Sec. II we consider the behavior of the model
near the critical point and show that any singular
behavior at that point must be due to the vanishing
of a certain function D(, ). In Sec. III the properties
of the function D(B, u) near the critical point are
determined and the equation of state in the critical
region is derived. In Sec. IV we define an extension
of the model to include 3-body and higher inter-
actions, and study the critical-point behavior of this
model. Section V contains our conclusions.

II. PROPERTIES OF THE MODEL NEAR
THE CRITICAL POINT

In this section we enumerate the model properties
that will be needed to carry out our study of the
critical region. For this purpose, we calculate the
derivatives of the density with respect to temperature
and chemical potential and investigate their behavior
near the critical point. To facilitate this investigation,
we define a function y(k, 8, u) by

vk, B, 1) = f Wy e b @)

@ny?
where p(k, 8, u) satisfies Eq. (3). Upon substitution
of w(k, 8, p) into the argument of the exponential in
Eq. (3), the single-particle density matrix p(k, 8, u)
now becomes a functional of ¢(k, 8, u) given by

p(k, v, ) = {1 + exp Br(k) + p(k) — ul}™. (5

The advantage of this formulation is that the inter-
action W(k, q) appears as the kernel of the nonlinear
integral equation (4).

In this work we consider the behavior of the model
for a class of interaction W(k, q) which has the follow-
ing properties: First, all interactions in the class must
have the necessary behavior so that a phase transition
does occur in the model®; secondly, all interactions
must be expressible, either exactly or as an approxi-
mation in the mean,' by a symmetric interaction of

the form
N

Wk, q) = iZlai(k)ﬂ,-(q), (6)
where N is a positive integer and each «,(k) and §,(q)
is a bounded function defined over a finite interval in
k space. In the following calculations, we shall only
consider interactions in this class, so that the interac-
tion form above will always be used.

In order to calculate the derivatives of n(f, i), we

differentiate the density formula (2), utilizing Eq. (5)
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for the single-particle density matrix,and we find

() B[ o [(a"’(k))ﬂ ] o

(Z;) f 0] (ag;k)) CIINC

where the functions F(k) and I(k) are defined by

Fk) = —p(0)[1 — p(k)], ©)
1, (1= p(k)

I(k) = In {————}, 0

® =8 “(,,(k)) (10)

and where y(k) is given by Eq. (4). Differentiating
Eq. (4) successively with respect to § and u and
making use of Eq. (5), we find the derivatives of y(k)
satisfy the linear integral equations

(aw(k)) ﬁJ‘(z . Wk, QF(q )[( WL‘I)) 1]’

(11
)l 0]
(12)

Upon substitution of the interaction defined by Egq.
(6) into the above equations, both are reduced to
systems of inhomogeneous algebraic equations which
can be solved by Cramer’s rule. The solutions of
Eqgs. (11) and (12) are therefore given by

op(k) M(, j)
(aﬂ )= ﬂ“E_IZ(k)(Fﬂ) Gy
dpk)y X M(, j)
— | = > o K)FIB, 14
(aﬁ)mz_lm Ve 09
where we have used the notation
(15)

and D(f, p) is an N’ x N determinant, the elements
of which are functions of # and u defined by

D, = 6:’:‘ - ﬂ(Fuiﬂj)' (16)

The quantity M(i,j) is the minor of D(f, x) formed
by deleting the ith row and jth column. Now, inserting
Eqgs. (13) and (14) into Egs. (7) and (8), respectively,
we find

M(, j)

(a") g f Fa)Fp) 2ED _ gy, (17)
» DG, 1)
on N M(, j)

FI FI. 18
(aﬂ) B3 FeaEip) 3B 4 0. a9
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We shall see that the function D(B, ), which we
subsequently refer to as the denominator function,
contains all of the information needed to describe the
behavior of the model very near the critical point.

We now consider the quantities (0n/du), and
(0n/09p), near the critical point. According to the
criterion

- (2)- /-,

at the critical point, (dn/du), must diverge at that
point. Upon examination of Eq. (17) we see that, in
order to satisfy Eq. (19), the denominator function
must vanish at the critical point, i.e.,

D(.Bc s fe) = 0, (20)

where 3, and g, are the values of § and u at the critical
point. It follows then that the density is a nonanalytic
function of the temperature and chemical potential at
the critical point. We shall show in the next section,
however, that, by choosing density and temperature
as our independent thermodynamic variables, we
obtain the equation of state u = u(B8, n) which is
analytic in a neighborhood of the critical point. It is
this equation of state which allows us to conclude that
the critical exponents for the model all retain their
classical values.

III. THE EQUATION OF STATE IN THE
CRITICAL REGION

In this section we study the behavior of the denomi-
nator function D(f, ) in the variables § and n near
the critical point. By showing that all derivatives of
D(B, u(B, n)) = D(B, n) with respect to # and n exist
near the critical point, we prove that, for the class of
interactions defined in Sec. IT, D(B, n) is analytic!® in
f and n at the critical point. Then, given this result,
it is straightforward to derive the equation of state in
the form u = u(f, n) near the critical point. We will
see that the equation of state, like the denominator
function D(8, n), is analytic at the critical point. As
this analyticity is the basis for the classical theory of
phase transitions,'®'® we are able to conclude that,
for the given class of interactions, the critical expo-
nents of the model agree with those of the classical
theory.

In order to determine the analytic behavior of the
N x N determinant D(8, u) [Eq. (16)], it is sufficient
to consider a general element of D given by

D;; = 6:‘:’ - ﬂ(F‘xiﬂi)-

We consider first the behavior of D;; as a function of
the density, holding the temperature constant. As D;;
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is an implicit function of n through the function
u(B, n), the derivative of D,; with respect to the density

is given by
(= (5o
onJs ou )p onls

The quantity (9u/0n), is given by the reciprocal of
Eq. (17) and the derivative of D,; with respect to u

is
(22

=—mkmnl—

@21

(F %B,)

SEREE

where F(k), p(k), a;, f8;, and (k) are all defined in
the previous section and where the integration
notation defined in Eq. (15) is used. It will be recalled
from Sec. II that the derivative of (k) with respect
to u at constant f is given by Eq. (13). Substituting
this equation into Eq. (22) and keeping only terms
proportional to D~(8, u), we find
D(B, 1)

(3
23)

Now, inserting the reciprocal of Egs. (17) and (23)
into Eq. (21), we see that the D~1(8, u) term cancels,
and we are left with

£ 3 [ufF( — M(L, m)

1, m=1

2p)%,J(FB )

(22) e -

onls N@B.w’

where A(f, p) is the numerator in Eq. (23) and
N(B, p) is the expression which multiplies D-1(8, x)
in Eq. (17) and where terms proportional to D(8, n)
have been ignored in numerator and denominator.
We shall hereafter refer to N(B, u) as the numerator
function. If N(f, u) is nonvanishing at the critical
point,'” then the first derivative of D,; with respect to
n at constant f§, according to Eq. (24), is finite.
Applying the same argument to all higher derivatives
of D;; with respect to n, we conclude that D, is
analytic in 7 near the critical point for all interactions
in the given class.!®

Turning now to the derivatives of D,;, with respect
to f§ at constant n, we make use of the theory of
Jacobians'® to write

(5 (G Gal - GG/ G

(25)
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The quantities (dn/ou),, (0n/0B),, and (0D,;/0p),
are given by Eqgs. (17), (18), and (23), respectively. In
analogy with Eq. (22), (0D,,/9p), is given by

(3),

= —(Fo.3.) — ﬁ- o0
= —(Fa,f;) ﬁaﬁ(F i)

~(Faf) = Bl 1 - 2p)[ﬁ (%’—;) + I(k)}}.

(26)

Substituting for (dy/df), and keeping only terms
proportional to D71(8, u), we find

aD, I M(l, m)

) = B3 [u,F(1 — 20)0)(FIB, .

( % )ﬂ B gﬂ[%ﬂ,«F(l p))(FIB )D(ﬂ,y)
(27)

Making use of the Egs. (17), (18), (23), and (27), we
find after some manipulation

aDia‘ — X ij
(52 = (2 At B0, MG
— M(k, DM(p, q)]) / D(B, ), (28)
where
HE, 0 (B2 1) = BFo)FIB)I(L — 2p)a,f,,)(FB,).

(29)
We now employ the identity?®

(30)

where M(i, j; k, I) is the minor of D(f, u), formed by
deleting rows i and j and columns k and /. Upon
substitution of Eq. (30) into Eq. (28), the D7Y(8, 1)
singularity is cancelled and (9D/0p), becomes

€2Y

Assuming again that the numerator function N(8, u)
is nonvanishing in a neighborhood of the critical
point,'? it follows that (9D,;/9p), exists in this neigh-
borhood. As was the case for the density derivatives,
we can apply the same arguments to higher derivatives
of D;; with respect to § at constant # and we find that
the cancellation always takes place. On the basis of
this result and the ecarlier result for the density
behavior, we conclude then that, for all interactions
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in the given class defined by Eq. (6), the associated
denominator function D(B,n) is analytic’® in a
neighborhood of the critical point.

The analyticity of D(8, n) allows us to expand it
in a Taylor series about the critical point and, very
near that point, to keep only the lowest-order terms.
Thus we may write

D(ﬁ’ n)% a(n - nc)k + b(ﬁ - /30)
+ c(n — nc)(ﬁ - ﬂc) +-0, (32)

where a, b, and ¢ are constants and k is the order of
the lowest nonvanishing derivative of D(B, n) with
respect to n at constant §.2° Sufficiently close to the
critical point we can replace the numerator function
N(B, u) by a nonzero constant N, , and the reciprocal
of Eq. (17) becomes

(a—"‘)ﬁz Ny'la(n — ) + b8 — o)

on
+c(n—n)B—B)+ -1 (33)

Integrating this expression in the critical region, we
obtain

#— po=dn — n )+ + e(f — B)n — n) + f(B),
(34)

where f(f) is a function of § only vanishing at the
critical point, and d and e are constants. Examina-
tion of Eq. (34) shows that this equation of state is
equivalent to the classical equation of state.!®* We are
thus able to conclude immediately that the critical
exponents of the model, for all interactions in the
given class, are the same as those of the classical
theory.

IV. EXTENSION TO MANY-BODY
INTERACTIONS

In view of the results of the previous section, we
now consider an extension of the model to include
3-body and higher interactions in the hope that
such a model may exhibit nonclassical behavior. If
such interactions are included the model Hamiltonian
becomes

H = S 100N + 5o 3 Wilk, ONuNo

2Q i

1
+ Z Wyk, @, pP)NyNoN, + - -+ . (35)
p

3! Q2 k,q,
If we consider two through m-body interactions all
of which are independent of the momentum variables,
then the interaction part of H can be expressed as a
polynomial of degree m in the operator >, N,/Q.
The methods of Girardeau again allow us to calculate
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the thermodynamic functions exactly in the lim Q —
o, and the nonlinear integral equation for the single-
particle density matrix of the new model is

pk, B, u) = {1 + exp B[r(k) + P(n) — pu}}™, (36)

where P(n) is a finite-degree polynomial in the den-
sity n.

In order to study the critical-point behavior of this
model, we proceed, in the same manner as the
previous sections, to determine the analytic behavior
of the chemical potential u(8, n) near the critical point.
Substituting the expression for p(k), Eq. (36), into
the density formula (2) yields an implicit equation
for n(g, u). Differentiating this equation with respect
to 4, holding # constant, we find

ou -1 ,
bt I 7
(an),, TP (37)
where
dk
F) = F(k
(F) f G

and F(k) is given by Eq. (9), and where P’(n) is the
derivative of P(n) with respect to n. Since the single-
particle density matrix p(k, 8, p) is positive definite
for finite temperature, it follows from Eq. (9) that (F)
is nonzero. Thus we conclude that, because of the
critical point criterion (du/dn), = 0, Eq. (37) vanishes
at the critical point and is defined in some neighbor-
hood of that point. Furthermore, the calculation of
higher derivatives shows that all derivatives of u with
respect to n at constant § exist in this neighborhood,
and so the chemical potential is analytic in n. To see
that u is analytic in §, we differentiate the implicit
formula for the density with respect to u, holding n
fixed, and we find

B

. BEF)’

where I(k) is defined by Eq. (10). Again since (F) is
nonzero and (I) is finite, we see that (du/dp), and all
higher derivatives of x4 with respect to £ exist near the
critical point. We therefore conclude that u(8, n) is
analytic in n and f at the critical point.!® It now
follows that the equation of state can be written in a
manner similar to Eq. (34), and thus the critical
exponents for our modified model are again the same
as those of the classical theory.'®

V. CONCLUSIONS

From our analysis of the model of Gartenhaus and
Stranahan in the preceding sections, a distinctive
feature of this model has emerged: namely, the fact
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that for a very general class of interactions the critical
exponents associated with the model always retain
their classical values. Before discussing this character-
istic wenote that perhaps themost important over-all
property of the model is the fact, as shown by Garten-
haus and Stranahan, that all the qualitative features
of the liquid vapor phase transition are exhibited. The
conclusions obtained in this paper apply only to the
region very near the critical point and do not effect
this general result. We also remark that the interac-
tions considered for the model generally do not have
a term corresponding to a hard-core repulsion between
the particles. However, for the present case of a
fermion system, the catastrophic collapse which might
otherwise occur is prevented by the Pauli principle.!
In Secs. II, 111, and IV we analyze the model for a
large class of 2-body interactions and for certain
simple 3-body and higher interactions. Our main
conclusion was that, for all interactions considered,
regardless of their detailed properties, the critical
exponents for the model always assume the classical
values. From our analysis, we see that the reason
the model exhibits classical behavior for such a wide
range of interactions is the fact that, for each of
these interactions, the equation of state u = u(8, n)
can be expanded in a Taylor series about the critical
point. This analytic behavior in the region near the
critical point was in turn derived in general for any
interaction which could be expressed approximately
as a finite sum of factorable interactions of the form
given by Eq. (21). Thus, we conclude that this analytic
behavior at the critical point is a basic property of the
model, irrespective of the interaction used in the
Hamiltonian (subject only to certain general integra-
bility criterion outlined in Sec. II). In retrospect, this
result is not entirely unexpected since all interactions
considered have, by assumption, infinite range, and
it has been shown that a large class of systems with
local, infinite range interactions also have classical
values for the exponents.?-22 In this sense our con-
clusions confirm an earlier conjecture!! that the theo-
rems of Lieb®* and Lebowitz and Penrose?! can be
generalized to nonlocal interactions as well. It appears
to be a general fact, therefore, that, when the limit of
an infinite interaction range is taken in order to
evaluate the thermodynamic properties of a given
model, while a phase transition can be produced in
such a limit, any nonanalytic behavior of the thermo-
dynamic functions near the critical point is lost.
Finally it has been shown® that, if we assume
Girardeau’s methods can be applied to infinite power
series in the operator Y, N,/Q, then by judicious
choice of the coefficients in this series we can obtain
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a phase transition in the model with nonclassical values
for the exponents 8, 6, and «'.
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APPENDIX: THE CASE N(8,, 11,) = 0

In this appendix we investigate the consequences
of the assumption that the numerator function N(8, u)
vanishes at the critical point. We recall from Sec. II
that N(8, u) is defined by

N

NGB = 3 (Fo)(FBMO, ),

1,J=
where the quantities on the right side of the equation
are defined in this section. We shall show that, if
Eq. (Al) vanishes at f=f,, u =y, then the
behavior of the model contradicts the well-known
result® that the density fluctuations, given by

(A1)

Bn = o) = (3, (A2)
ou/s
must diverge at the critical point.
To see this, we examine the numerator function as
a function of the variables 8 and n, N(8, u(8, n)) =
N(B, n). 1t is sufficient for our analysis to consider
this function in the one phase region T > T,, along
the critical isochore, n = n,. We recall from Sec. II,
Eq. (31), that, near the critical point,

(a_D) . _const
o8/ N(B.m)’
where D(f,n) is the denominator function, also
defined in Sec. II, and expressed here as a function
of # and n. Now, since N(f, n) as well as D(B, n)
consists of sums of terms of the form
(Fa)(FB)(Fouufy) - - -, (Ad)

the reasoning leading to Eq. (A3) can also be applied
to N(B, n), so that

(G_N) __ _const

(A3)

(A5)

o)y N@B,m)

Setting n = n, and making use of the fact that

N(B.n;) = 0 by hypothesis, we solve Eq. (AS5) and
obtain

N(ﬁ’ nc) = a(ﬂ - ﬁc)é’ (A6)

where a is a constant. Substitution of Eq. (A6) into
the equation for (9D/98),, Eq. (A3), we find that
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D(B, n,) also can be expressed in the form

D(ﬁ’ nc) = b(ﬂ - ﬂc)t

where b is a constant.
Now according to Eq. (32) of Sec. II, the density
fluctuations are given by
oy NG

(g_:)n ~ " T D@, ny’

where ¢ is a constant. Substituting Eq. (A6) and (A7)
into Eq. (A8), we see that (dn/du), remains finite as
the critical point is approached along the critical
isochore n = n,. Since the divergence in the density
fluctuations is a primary characteristic of the liquid-
vapor transition, we conclude that, for all models
considered in Sec. IT which undergo a phase transition,
the numerator function N(B, n) does not vanish at
the critical point.
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A general solution is derived for a system of nonlinear partial differential equations describing longi-
tudinal plasma oscillations. The method of construction of the solution involves the imposition of
arbitrary functional relationships among the integrals of an associated system of ordinary differential

equations.

1. INTRODUCTION

The purpose of this paper is to discuss a mathemat-
ical technique for deriving general solutions to a
subsystem of the nonlinear differential equations
describing the interactions of electromagnetic fields
with ionized media.

The nonlinear interaction of an electromagnetic
wave with a plasma layer has been investigated
theoretically and experimentally by Whitmer, Teten-
baum, and Barrett.l~* The mathematical model on
which these studies are based consists of Maxwell’s
equations, together with the continuity equation and
the “Navier-Stokes” equation for the electrons. The
latter equations may be derived by taking the first
and second moments of the Boltzmann equation. In
this model, n represents the electron density;' n;o is
the steady-state positive ion concentration; V is the
electron velocity vector; e and m are the charge and
mass of the electron; collisions are between electrons
and neutral particles, are assumed to be elastic, and
are described by a collision frequency v.

In this model, the nonlinear terms nV, VXB, and
(V- V)V appear. In Refs. 1-4, the authors discussed
nonlinear effects produced by these terms, such as
harmonic generation and frequency mixing. The
approach taken was to expand all terms into Fourier
series in time, match frequency components, and solve
a sequence of boundary-value problems for the linear-
ized equations in a plasma slab. In general, the resuits

of the experiments gave good agreement with the
theoretical predictions made by this method, within
the limits of the small-signal theory.

In the present paper, a method is described for
deriving general solutions to a subset of the nonlinear
equations of the model, by exploiting the fact that
the equations in the subset have identical principal
parts.® From these general solutions, infinitely many
special solutions may be derived, expressed in terms
of the plasma parameters v and w,. These solutions
correspond to longitudinal oscillations of the plasma.
In the present paper we shall not treat the case of a
strong dc magnetic field, which may produce coupling
between these oscillations and transverse components
of the electromagnetic field.

LetE, ,E, E,,B,,B,,B,,and V,, V,, V, represent
the £, y, and Z components of the E, B, and V vectors,
respectively. We shall assume a simple geometry in
which all spatial variation is in the x direction only,
and we shall begin by investigating the solution in
which E,, E,, B,, B,, V,, and V, are = 0. We retain
the equations

Qg =t fn,,
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0 0 e
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describing longitudinal plasma oscillations. Multi-
plying (1) by ¥, and adding to (2), we derive

dfe d[e

—~{—E, V,—{—E,| = —0?V,, 4

at(m ) + xax(m x) ? “)
where w2 = n; e*fme,. The “plasma frequency” w,
is assumed to be constant. We shall derive a general
solution to the nonlinear system (3), (4).

2, INTEGRALS OF THE NONLINEAR SYSTEM

Observing that the Egs. (3) and (4) have the same
principal parts, we consider the equivalent system of
nonlinear ordinary differential equations

dt _dx _dl(emE,] _ dv,
1 V, - - (efm)E, — vV,

The integration of systems of first-order partial
differential equations having the same principal parts
may be achieved by deriving integrals of such systems
of ordinary differential equations.® Three integrals
will be derived from (5) be standard techniques (Ref.
6, Chap. 6), and a general solution will be constructed
from these integrals.

It can be easily shown that a general solution to (5)
may be written in the form

(3)

2
—w,V,

xX(f) = Cret 't 4 Cyet t + G,
V() = ACyet t 4 A Cpet
(e/m)E(t) = ——wf,Clef’ — wiCye !,

(6)

where
= —0f2 4 i(wl — 1)2/4)%,
= —uf2 ~ i(w? — v,

and C,, C,, and C; are arbitrary constants.
Equivalently, we have the relations

o +E(En0)] - .

i3

—Ai—t

xiwinm+§iiamﬂ=cb @

[(—:; Ew(t)> + wf,x] = Cs.

We observe that at ¢ =0, (7) provides explicit
solutions for the constants of integration C,, C,,
and C, in terms of the initial values V,, x,, and
[(e/m)E, (0)). We also observe that for the original
system of Eqs. (3), (4), appropriate initial data would
be of the form

Vo=V, (x,t = 0) = F(x),

LEQ© =%E, (x,t=0) = GX).
m m
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These initial data give rise to functional relations
among the constants C,, C,, and C,. This method
of construction of general solutions to the system
(3), (4), by utilizing the functional relations that the
initial data impose among the constants of integration,
may be stated in the form of a theorem:

Theorem: Let $(x,, x,) and ¥(x,, x,) be any C?
functions of two variables whose first derivatives do
not vanish. A general solution to the system (3), (4)
may be found by solving the equations

¢(C1, Ca) =0= ‘F(Cz, Ca)-

Proof: The proof consists of calculating the
derivatives:

9 _,_ 3%3C , 243G,
ox 0C, 0x  9C, ox
ai’)=O=§—‘;‘L§——C1 %%, ete.,
ot oc, dt  9C, dt

and then substituting for C,, C,, and C, the integrals
derived above. The resulting equations regenerate the
system (3), (4). |

For example, suppose that we impose the following
functional relations on the integrals:

G =f(C:s),
C = h(Cs);

where f(x) and h(x) are arbitrary differentiable func-
tions f(x), h(x) £ 0.
It follows that we have

[M—_(i E,,) + i, Vm:l
w, \m

= 20,0} — ppAlel Y (;‘;— E, + wf,x) (8)

and

—ilt
[”G@—%q
w, \m

= 20,0} — L)t (i— E, + wf,x). ©)

Any explicit choice of the functions f(x) and h(x)
in Eqgs. (8) and (9) will result in a pair of equations
defining ¥, and (e/m)E, as explicit functions of (x, ¢}.

To illustrate this idea, let f(x) = 1 = h(x). This
choice results in the spatially independent solutions

(i Ex) = —2wie"*{cos [(w: — 02/4)%]}, (10)
m v

V, = —e v cos [(? — v?4)H]
+ 2w? — o4 ¥sin (w2 — vk}, (11)
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Once (e/m)E, and V, have been determined, the
electron density n(x, t) can be derived from either
Egs. (1) or (2):

2

i~e~Em + Wk = Ln(x, ) = _—a(—-Em)/Vx.

dxm me, ot \m

It is easy to verify that (10) and (11) and the
resulting value of n(x, t) are exact solutions of the
original nonlinear system (1), (2), and (3). For small
values of the collision frequency, v/w, < 1, these
solutions represent pure longitudinal oscillations
close to the plasma frequency; the collision frequency
produces exponential damping.

3. DISCUSSION

A general solution has been found for the system
of equations in the nonlinear model in the special
case B,=B,=E, =E, =V, =V, = 0. The method
of construction of the general solution involves the
imposition of arbitrary functional relationships among
the integrals of the associated system of ordinary
differential equations, thus displaying an infinity of
possible longitudinal oscillations which satisfy the
equations. The method has been illustrated by the
choice f(x) =1 = A(x) in Eqs. (8) and (9). This
particular choice gives rise to spatially independent
plasma oscillations (10) and (11). An infinity of
possible solutions may be generated in this way,

3167

corresponding to different initial conditions for the
system (1), (2), and (3). For example, if f(x) = x =
h(x), the resulting solution represents a longitudinal
oscillation that grows linearly with (x) and contains
Fourier components at all integral multiples of the
plasma frequency. The choice f(x) = cos (x) = h(x)
gives rise to interesting nonseparable wavelike
solutions.

It is expected that further research will provide an
extension of this method of integration to construct
approximate general solutions to the nonlinear
model in cases where the transverse field components
do not vanish, and where spatial variations in more
than one dimension are allowed. A subsequent paper
will treat the effect of a strong transverse magnetic
field, which will introduce coupling between the
longitudinal oscillations described above and the
transverse components of the field.
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In Paper I, we presented an expansion of the pressure and density in grand canonical form and
corrections to the Maxwell rule for a system of particles with short-range repulsion and weak long-range
attraction. These expansions can be ordered in powers of y, the inverse range of the attractive potential.
It was assumed that the thermodynamic functions and the molecular distributionfunctions of the reference
system, i.c., the system with only the repulsive interaction, are given. In the present paper we have
calculated the y expansion of the pair distribution function, under the same assumption. The result is
obtained by functional differentiation of the series for the pressure and presented in the form of a series
of diagrams. The dominant order in y of each diagram is the same as the order of that diagram in the

series for the pressure, from which it is derived.

1. STATEMENT OF THE PROBLEM

In Paper I,* we obtained the pressure and density
of a fluid of particles with short-range repulsion and
weak long-range attractive interaction as functions of
the fugacity and correction terms to the Maxwell rule.
These results are given in terms of diagram expansions
which can be ordered in ascending powers of the
reciprocal range (y) of the long-range attractive
potential.

It is known that expansions in reciprocal range have
several shortcomings. The expansion fails in an ob-
vious manner at the van der Waals critical point. It also
yields a phase transition for the 1-dimensional model
of Kac, Uhlenbeck, and Hemmer® for v > 0 at
temperatures below the van der Waals critical tem-
perature, while the exact solution shows that there is
no phase transition. A modification of the y expansion,
stated in Ref. 1, avoids the obvious failure at the
van der Waals critical point, and a similar modifica-
tion for the Ising model® is known to be successful in
treating the critical region, i.e., the neighborhood of
the Weiss-Curie point, for the 2- and 3-dimensional
cases.

While these objections affect the results only near
the coexistence curve, another objection has been
raised by a previous author,? which, if it were true,
would cast doubt on the validity of the expansion
over the entire range of temperature and fugacity.
This is the objection that the approximation of the
2-particle distribution function for particles with
hard-core repulsion and long-range attraction does
not vanish when the centers of the two particles
approach each other closer than a hard-core diameter.
The calculation presented here yields directly an

expansion in which each diagram individually vanishes
in the hard-core region.

II. FUNCTIONAL DIFFERENTIATION OF THE
SERIES FOR THE PRESSURE WITH RESPECT
TO THE REPULSIVE PART OF THE
INTERACTION

In Paper I we obtained the pressure P(z) and number
density p(z) as functions of the fugacity z for a system
with a pair potential energy consisting of a strong,
short-range repulsion u(r) and a weak, long-range
attractive part —u(r) under the assumption that the
pressure P,(y) and number density p,(v) as well as all
distribution functions of a reference system with only
the repulsive potential u(r) are given as functions of its
fugacity y. The results for the pressure, number density,
and a corrected Maxwell rule were given in terms of a
correction function k(y) as follows:

BP(z) = BPy(y*) — 3Buep™(2) + h(Y™), (D)
%
p2) = 2 + 310, @
where g = (lcT)‘l, vy is the integral of v(r) over all

space, and y* is that root of the equation

oh
lw—mmwm—m@m+Jﬂ 3)

which maximizes the pressure P(z). Equation (3) is the
grand canonical form of the corrected Maxwell con-
struction as discussed in I.

The appearance of the two fugacities z and y is
perhaps most easily understood by analogy with the
Weiss theory of ferromagnetism, with In (ze}#"©®)
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and Iny corresponding to the impressed magnetic
field and the local field respectively; Iny* then
corresponds to the value of the local field obtained
by the Weiss construction. Without the correction
terms in Eqgs. (2) and (3), p,(») corresponds to the
magnetization of the paramagnet in the local field
and p(z) = p(y*) to the magnetization of the
ferromagnet.

One must note that A(y), in the above, is understood
as the thermodynamic limit of 4(y) given in Paper I.
[We denote the latter by A(y).] For finite separation
of the pair, only terms of order V in the partition
function will contribute to the pair distribution
function calculated from it. Terms of order V°,
however, will contribute to the fluctuation integral.
We therefore have to check that such terms do not
appear in our expansion. In Appendix A this has
been done explicitly for h(y) taken through order
»®=1 and in outline for terms of higher order in y.

The 2-particle distribution function p‘ﬁ’(rl,rzlz)
can be obtained by functional differentiation of the
logarithm of the grand canonical partition function,
In Q(z), with respect to the interaction potential. It
can also be obtained by differentiating with respect
to either the short-range part u(r) or the long-range
part —u(r), alone. We have chosen to differentiate
with respect to u(r) alone because differentiation with
respect to —o(r) will mix terms of different order in
reciprocal range. (See also Appendix C.)

With the abbreviation 1, 2, - - used for the co-
ordinate vectors r;, T,, - - -, we have then

0 In Q(z)

@) - _
PR, 2] 2) = 8pu(l, 2)

0 “w_ v
- 6/3u(1,2)(1n iy,

x (In y* — In ze #0002 4 Vh(y*)).
4)

Since for the reference system

g _

(@)
opu(l.2) pn (L, 2] ), &)

we have

i 5V
p¥01,2] 1) = (o702 9) ———(yl) '

8Bu(l, 2)

_ Oln y* 0 _ ¥
3pu(l, 2)[2 In y(ln 00)

2fv,
x (Iny — In ze ¥ 4 Vh(y))]
V"V‘

(6
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The last term vanishes because of Eq. (3). We there-
fore obtain

oVh(y*)
(2) 1,2 = 5@ 1,2 * _l: ]
po 2|2 = 2 [y - [T

= p®(1, 2| y*) + K1, 2| y%.  (7)

Clearly, p{?(1,2|y) vanishes when |r; — r,| is less
than a hard-core diameter if u(r) is taken to be a
hard-core potential. Paper I, in Appendix A, gives
the following for A(y):

Vh(y) = =} TrIn (1 — Bopy) + VAR (y).  (8)

The first term is in obvious operator notation with »
and u, considered as kernels of integral operators.
Here, u, is the second of the sequence of modified
Ursell functions u, (1,2, -, n | y) of the reference
system. hA(y) is a sum of connected diagrams with
hypervertices p,(1,2,-+-,n|y), n >3, and bonds
,(1, 2) defined in the same operator notation by

by = o/(1 — Bops). ©)

We note that v and u, commute as operators since
v(ry, Ty) and p,(ry, 1, | y) depend only on the vectorial
distance r; — r, under Born-von Karman boundary
conditions.

In order to perform the differentiation indicated in
Eq. (7), we need thus only the functions

6:“‘1:(1,9 2, ,n I y)
6[—pu(1, 2)]

}'n-t—z(l(, 21, Ty nll 19 2 IY) =

1

(10)
for n > 2. The modified Ursell functions are defined
by

6" In 0,({#} | y)} an
B9(1) -+ 8(n") g0’

where Q,({¢} | y) is the grand canonical partition
function of the reference system at fugacity y in the
presence of an impressed potential —S-14(r), i.e.,

Mn(l’,2’,--~,n’|y)5[

® N

0. |»=3 L

N=o N!
x [exp (= 183w — 1) + 3 900
x T] &', (12)

where v = number of dimensions. Therefore, with
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P2 (1, 2] {#} |y) denoting the pair distribution func-
tion of hard particles in a field ¢(r),

A (1,2, ' 1, 21y)
; _ [é"p:f’ (1,2 {¢} |y)} 13)
S(1') - - d(n') Jgoo

The relation of the A functions to the modified
Ursell functions and to the molecular distribution
functions, together with some of their properties of
interest in the present context, is given in Appendix
B. If u(r) is taken to be a hard-core potential, then,
clearly, 4,.,(1’,2,---,n'{ 1,2]y) vanishes when
|r, —r,| is less than a hard-core diameter since
P2 (1, 2| {¢}|y) vanishes for any ¢(r) in this case.

Taking the first term in Eq. (8), we have

6
8[—pu(l,2)]

=%Tr<

[—3Trin (1 — fuu,)]

Po{0us/01—Pu(l, 2)]})
1 — Bop,

=1Tr (1351 E[i%:]?)])

= %de“r3d”r4ﬁl(3, Hi,(3,411,21y). (14
This vanishes where it should. Next

OhV(y)
O[—pu(l, 2)]

is obtained by differentiating each hypervertex and
each bond of the diagram series for A'*(y). Differ-
entiating a hypervertex u,(1’,2’, -+, n’ | y) replaces
this u, by 4,..(1',2',---,n'| 1,2]y), which has
the proper behavior as a function of r; and r,.
Finally, differentiating a bond #,(1’, 2') gives

op5(1,2) _ 8 ( Bo )
o[—pu(1,2)]  O[—Bu(l, )]\l — Bous/ v o
- [l 2
a- Igvl"z)2 1,2
= f dryd'reB(1, 3')

X A (3,411, 21p)p0,(4, 2), (15)

where we use the operator notation for the intermedi-
ate steps. Again, Eq. (15) has the proper behavior.
Thus, when u(r) approaches a hard-core potential,
every term in the expansion of p®(1, 2| z) vanishes
for |r; — r,| less than a hard-core diameter. Note that
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no rearrangement of the original series is required to
achieve this result as it would be if the differentiation
had been carried out with respect to v(r) instead.

III. DIAGRAMMATIC SERIES FOR »(2(1,2] z)

The diagrammatic series for p®(1, 2| z) may now
be obtained by applying the rules for differentiation
to the diagrammatic series for the function A'V(y),
which was given in Paper I, and adding the result to
the term given by Eq. (14). For the convenience of the
reader, we repeat here the rules for the construction
of these diagrams. Draw S circles (S > 1) labeled
Cy,++,C;, -+, Cgq, each containing n; > 3 points
such that 3 n; is even. Connect these points by
lines such that each point is connected to one and
only one other point. (Lines connecting two points
in the same circle are permitted.) Disconnected
diagrams and diagrams which would become dis-
connected upon removal of one line are excluded.
With any diagram G, we associate an integral I, in
the following way. Label the points in circle C; by
Yj1, T2, ", Ty, . For each circle C; write a factor
[ FRTRERES JH |y). For a line connecting points
r; and r; ;. write a factor S#,(r; ; — r; ), where ¥;
is defined by Eq. (9). I is then the integral over all
coordinates of the product of these factors. With any
diagram G, we also associate a symmetry number
S¢. Let t;; be the number of lines connecting circles
C; and C; and let S, be the number of permutations
of the labels of the circles which leave all ¢;; invariant.
Then

Se =TT (t:;) TT 2%S. (16)
i<y [

We call two diagrams G and G’ equivalent if the
integrands of Iz and Iy are the same, except for
the labeling of the variables of integration. Divide the
class of diagrams described above into subclasses of
equivalent diagrams. Select one member from each
subclass to form the class §. Then

1 —1 1
oyy=v'y £

. 17)
Ge§ S¢ (
In Paper I we took the potential »(r) to be
v(r) = y"O(y |r)). (18)

We then showed that a diagram with B bonds and S
circles cannot contribute any power of y less than
»(B — S + 1). The diagrams contributing to A% (y)
in order y?* and order y*¥ are shown in Figs. I and 2,
respectively.
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(=0

(12)

Fic. 1. Diagrams
needed through order
y¥-1, The last of
these diagrams gives
a contribution of
zero. Symmetry num-
bers are shown in

(8)

@—@ parentheses.
(8)
The functional differentiation introduces new

hypervertices which represent the functions
]‘n+2 (I” 2,3 Tt n" I, 2 ]y)

These will be symbolized by circles with n points
(field points) and two open points (root points) labeled
1and 2,1.e.,

S o

T (152wl 1,21 = (G N D). (19)
n

o
Oy
l O
|

With this notation, Eqgs. (10), (14), and (15), e.g.,
become

(S 0o 0

—_— o] = ’

8(—pu(l, 2)) c’o o (107
——%—[TrIn (1 — fouy)] = (14)
8(—pu(1,2)) ’

| 2

and
g1, 2) )

8(—pu(1,2))  8(—pu(1,2))

XOo——0 = 9——§ : %——ﬂ .
0 2t L > (15/)
l 2

The general rule for functional differentiation of a
diagram series® then leads to the following result for
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the diagram series for p‘2’(1,2]z): Each diagram
contains one A,,, circle (for some n > 2); any
number (including zero) of u,, circles (m > 3); each
field point is connected to one other field point by a
p, bond. Disconnected diagrams and diagrams which
would become disconnected upon removal of one
bond are excluded because such diagrams do not
occur in the original diagrammatic series and cannot
be produced by differentiation. The integral over all
field points of the product of these factors is denoted
by I5(1,2|y). The symmetry number is calculated,
as explained, before Eq. (16). In computing S¢., it
must be remembered that a circle with two root points
is distinct from a circle without root points. The
subclass § is defined as before [text preceding Eq. (17)].
We then have

Io(1,21(y*
PP, 2| 2) = (L, 2] ¥ +2—G(———]y—-), (20)
Ge8 Sa

where y* is defined by Eq. (3).

If we use the same considerations as in Paper I to
determine the lowest order of y which a given diagram
may contribute, together with the properties of the
4 functions discussed in Appendix B, it is an easy
matter to show that each diagram of VA (y) retains

2o =0

(48) (48)

2 (12} Z C (i6) ::j

(8) (8)

(16) (24)

Fic. 2. Diagrams needed through order 4V-1. Symmetry numbers
are shown in parentheses.



3172

its order in y after it is differentiated. We thus obtain

pP(1,2]2) = p2(1,2| ¥ +

I
(2)

| 2
(4)

Here the term of O(y) is separated from the four
terms of O(y*") by square brackets. Symmetry numbers
are shown in parenthesis.

We note here that the fact that each diagram
retains its order in v after differentiation is a result of
our having chosen to differentiate with respect to the
function u(1, 2) (which does not contain 9) and the
form of our diagrams. On the other hand, differ-
entiating a diagram of VA (y), whose dominant order
is y™* with respect to v(1, 2), would lead to several
diagrams whose dominant orders can be »™-" or
y™. This, of course, would make the ordering of the
resulting p'¥ series more difficult.

We have carried through the calculation of
p2(1,2 | 2) to order y¥'~1 also by differentiation with
respect to v(l, 2). This requires terms to order y*'!
in the pressure. The result to this order is identical
with the result obtained by differentiation with
respect to u(l, 2), as it should be. The calculation is
given in detail in Appendix C, through order y*—1,

IV. CHANGE TO DENSITY AS INDEPENDENT
VARIABLE

Our expression (21) for the 2-particle distribution
function, though correct, must be supplemented by
Eq. (3) to determine the appropriate y* for a given z.
We may eliminate this step by writing p® in a 1-phase
region immediately as a function of density.

In such a region, y* and z may differ by a large
amount, but p(z) and p,(¥*) will differ only by
quantities of order yv. These observations follow from
Egs. (3) and (2), respectively, and the fact that h(y)
is of order . It is therefore convenient to change
from the variables z and y* to the variables p and p,
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' @ ' %
2 | 2 [ 2
(8) (4)

+ +0(y™.  (21)
| 2
(6) ]
by the following definitions:
p(z)=p, p(y*) = p,
h(y*) = h(y*[paD) = n(pn),
PP, 2] 2) = 5%(1, 2] p), »
A2 | = a2 e, D
oh(™) _ _
Ayt m(y™*) = fulps).
Using these, we obtain from (2)
p = p + Talpa)- (23)

Calling the right-hand side of (21) F(y*) and using
(22), we have

P, 2| p) = F(y*) = Fy*[p)) = Flpy). (24)
Using (23) in (24), we see
P 2] p) = 51,2 py + )
= (143 Z)eo, 2 )

k=1 n! 0Jp}
= [+ §(p)IF™ (1, 2| p) = Flp), (29

where the next to last equality defines the operator
4(ps). In the last equality we see that the variable p
has disappeared. Therefore, p, takes the status of
independent variable, and we can rename it p. Thus,
we find, finally,

[1 + 4(P1p®(1, 2| p) = Flp)

P21, 2] p) = [1 + 4(p)I*F(p).

(26)

and
(27)
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Here the inverse operator is defined by its power
series expansion. The right side of (27) contains only
functions pertaining to the hard-core system, evaluated
at the true density p.

To evaluate (27) explicitly, we expand both §(p)
and F(p) in orders of y. To evaluate 2! (that is, up
to but not including y%"), we obtain, in this way,

P(,2] p) = 321, 2] p)
+ 18 f d'rd’re Ay (1,211, 21p) (1, 2)

2 3;7;,2’(1, 2 I P)
— 1p°K,(p) ———L 2
1p Ki(p) ap

X fd“r -a-&gip—) #y(x).
op
Here K;(p) is the isothermal compressibility p,0p,/
9pP,, of a hard-core system at density p, and fix(r | p)
and 4, (1',2'] 1,2 |p) are the functions obtained by
evaluating

(28)

pa(r | %) = pole | y* (o)) = fnlr | o) (29)
and
A1, 211,2|y%) =40, 21 1, 2{y*(py))
= }'4 (1,’ zll 1’ 2 !Ph)’ (30)

at p, = p, in accordance with our above prescription.
For example,

Ar| p) = 301, 2] p) — p* + pé(r). (31

The function 1, may be obtained from Eq. (10).
Carrying through this differentiation and simplifying
the integrals in (28) as much as possible, we obtain

PP, 2] p) = 571 2] pIL + BB(L, 2]
+8 f a0, 1,2 )
x [5,(1, 1) + 5,2, 1)]
+ 38[aman i, 2,1,2] )
— 31,2 p)E (L, 2] )11, 2)

25y°(1,2| p)
- %pzmp)——"—a—'—
P
~(2)
* f ar a(——r 25w + 06, 62
p

Several features of this expression are worth
remarking on. First the expression is finite for " — co,
for, although

f d"rlld"rglﬁf)(l', X | P)ﬁl(l’, 2/)
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is proportional to the volume, this is compensated by
the integral over p(1',2’,1,2]| p). Secondly, the
value of #,(r) is never needed for |r| less than a hard-
core diameter since all the distribution functions
p{™ vanish identically in this region. This fact would
permit us to use a Coulomb potential for v(r) even

though its transform #,(r) is singular at the origin.

V. SUMMARY

The pair distribution function has been obtained
by functional differentiation of our diagrammatic
expansion for the pressure with respect the short-
range part of the pair potential. We have shown that
the function obtained in this way has the necessary
property of vanishing for [r; —r,] < a when the
potential contains a hard core of diameter a. We have
checked through order y*-! that this function is
identical to that obtained by functional differentiation
with respect to the long-range, attractive part of the
potential. There is little doubt that this is true to all
orders. In order to perform this latter differentiation,
it is necessary to relax a restriction on »(r) which had
been imposed in Paper I, namely, that v(r) considered
as a kernel of an integral equation be positive
definite. This restriction facilitated the estimation
of the diagrams in orders of y. It is not necessary,
however, for any of the formal expansions.

In view of the above remarks, our formalism can
now be applied to systems with Coulomb potentials.
We can take for v(r) the potential of a uniformly
charged sphere of the size of the hard core. Outside
the core, this is identical with the Coulomb potential.
However, because this potential is finite inside the
core, both v(0) and #,(0) are now finite. The expansion
in diagrams is now identical to that given in the text.
It should be noted, however, that the diagram series
will no longer be ordered in powers of p. Thus, the
proper estimation of the terms in this series requires
a separate analysis from that given here.

APPENDIX A

In this appendix we will describe a procedure for
showing that

In Q(z) = In Q,(y*) — (V/2v,)
X (In y* — In ze ) L Vh(y*%), (A1)

where terms which explicitly depend on V (V' — o)
less strongly than ¥° are neglected. We then carry out
this procedure explicitly through terms of order
y>~tin h(y).

The expression for the partition function which we
use is derived in Paper I by applying the saddle point
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method to

0) = f " deyexp [~k + 10 Q,(y) + VAG)) (A2)

where

Iny = In ze ¥ 4 ¢ (Bu,/V) (A3)

Paper I gives h(y), and it is identical to A(y), given in
the text, if #,(r) is replaced by

#(r) = #y(r) — fd”rﬁl(r) = §y(r) — l(

[
1 - 5“0/‘20)
(A4)

The result of the integration is

In Q(z) = In @,(z) — (V/2fvy)
X (In y* —In ze—*lf‘““”)2 + Vh(y*)
(1 ~ B a0 + h(y*)])
(AS)

where y* is the saddle point defined in the text. The
last term comes from expanding the exponent to
second order and performing the integration. The
problem, therefore, is to show that

h(y*) — h(y*)

=-—1—1n( ~ Bro e

* h *
= — B0 + O )])

1
= 2Vl:1n (1 — Boopis)

A
+1n (1 __ Bv Oy ))] (A6)
1 — Bugity 0 In y**

neglecting higher terms in VL

To show this through any order in y, one may
proceed as follows. Take each term (or diagram)
which contributes to A(y) and replace #(r) by the
right-hand side of (A4). Each term may then be divided
into parts which involve #;(r) and V= times its
integral. The part which is simply the replacement of
# by #, is just the corresponding term in A(y*); the
other parts may be ordered in powers of V1. One
then shows that the sum of all of the V™ parts (of
all the terms) is just an expansion of the right-hand
side of (A6) taken through an appropriate order in y.

For the y*~! approximation the sum of V=1 parts
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is easily shown to be
2

B
Buottao) a1 — Buofizn

1
— In(1 %o
2V
X j &ry - j (1, (1,2, 3, 4] y%)

/33

d’ d’ 1,4
4V21 —‘,BUo,uzof rye f rehi(1, 4)
X 512, Sps(1, 2, 3| y¥ua(4, 5,6 | %)

1
= ; In (1 — Bugpug,)
1 B 0* ( 1
Trin(1 —
Towvi— Bugua 0 In y**\2¥ rin( ‘vag))
(A7)
where we have used the relation
J‘dvrn+1“'fdvrm/"m(1 2, ...,mly)
am—n

= éT—mt—:un(l 2,--,n|y). (A8)

Comparing (A7) with (A6) shows the former to be
just the first two terms in an expansion of the latter,
with i(y*) approximated by —1/2V Tr ln (1 — Bous).
We have carried out this calculation for the y*-1
terms, but, since it is rather lengthy, we will not give
it here.

Using diagram analysis, we may give a rigorous
proof of (A6). This proof consists in showing that
more than doubly connected diagrams do not
contribute to h—h to order V-1 and that the
resummation of all doubly connected diagrams
contributes just the right-hand side of (A6).

APPENDIX B

If O{4} is the grand canonical partition function of a
system of particles in the presence of an impressed
potential —p-1¢(r), the modified Ursell functions u,
and molecular distribution functions p‘® are defined
by

9" In {4}

n 1, T > = B1
ol VIS gm0
and
p(n)(l, cee, n)

o . 6"Q{$}

= V... g 8(e® ) - - - 8™y .

We have suppressed the dependence on fugacity and
the dependence of p‘*, u,, and 1, on ¢ in the nota-
tion. The functions p'*, u,, and 4, when used in
the main body of the paper are understood to be



VAN DER WAALS

specialized to ¢ = 0. From (B1) it follows that

dun(l, - -, 1)
dé(n + 1)
and from (A2)
3p™(1, - - -, n)
d(n + 1)
— P(n+l)(1’ cen 1) — pm(n + l)p(”)(l, ceeun)

+ P(n)(l, Y n)gl 6(1‘; - l"n+1)'

The functions 4,,4(1', - - -, n' | 1, 2) are then given,
according to Eq. (13), in two equivalent forms by
Apia('y 0" [ 1,2)

_ 87 (1, 2)

A1)+ 0g(n")

_ 071, 2) 4+ p(Dp2) = (DO — 2))

Sp(1') -+ - S(n’)
and satisfy the recursion formula
Aol nyn’ +1]1,2)
O [ 1,2)
I L B
Using (B3)-(B6), we can successively generate the A

functions in terms of either the u, or the p!'®. For
example,

A1, 2) = ps(1, 2) + w1 (Dpa(2) — u,(1)6(1 — 2)
= p'¥(1, 2), (B7)
A1 1,2) = pa(1, 2, 1) + u(Dpa(2, 1)
+ m(Dus(1, 1) — pa(1, 1)0(1 — 2)
= {p®(1,2,1) — p!2(1, 2)p"(1")}
+ p2(1,2)[6(1 — 1) + 62 — 1],
(B8)

= ‘un+1(1, e,nn+ 1) (B3)

(B4)

» (BS)

(B6)

A,(1,2 I 1,2)

= puy(1,2,1,2) + a(Dua(2, 1, 2)
+ m@ps(l, 17, 2) + pa(1, 1)px(2, 2)
+ a1, 20022, 1) — pa(1, 1, 27)0(1 — 2)

= {PM)(ls 2, 1/’ 2’) - P(l)(z’)Pw)(l’ 2, ll)
—_ p(l)(l’)P(i‘))(l’ 2’ 2’) —_ p(2)(1, 2),0(2)(1,5 2')
+ 261, Dp(1)pM(2)}
+ {p®(1, 2, 1) — pP(1)p"¥(1, 2)}
x [0(1 — 2') + 62 — 2') + $8(1" — 2]
+ {691, 2,2) — pO@)p (1, 2))
x (1 = 1) + 62 = 1') + $6(1" — 2)]
+ p¥(1, 2)[0(1 — 2) + 6(2 — 2')]

X [6(1 — 1) + 62 — 1')]. (B9)
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We note in passing that these expressions exhibit a
transparent structure. The factors in braces as well as
p¥(1,2) are derived from the Ursell functions
F, ., (1,1,2,---, n') by replacing particle 1 by the
pair (1, 2) (Ref. 6).

For our purposes, the following two properties are
essential: (i) From the first line of Eq. (B5), it
follows that

ln+2(ll’ e ’nl | 1,2) =0 for Irl - r2| S a
(B10)

if the repulsive potential has a hard core of diameter a;
this is, of course, borne out by the explicit expressions;
(ii) the functions 4,.,(1',2',+ -+, n" | 1,2) are given,
by applying the recursion formula (B6) to Eq. (B7)
and using Eq. (B3), as

ln+2(n’ l 1’ 2) = lun+2(n” 1’ 2)

+ ,é {ua+1(a’9 1)/“n—a+1(§” 2)

= (1 = ppa(n’, 1), (B11)
where n’ is the set of # numbers (1',2’, - -+, n’) and
where a’ is a subset of n’ and @’ its complement in n’,
a the number of its elements, and the sum extends
over all subsets a’ of n’ (including the null set and n’).
Since the functions u, have an effective range’
independent of y, any u, with one root point can be
replaced in our diagrams by

’ ’ an L ’
iUy, 1)~ S2DTT o0, — ) (B12)
o(In y)"* 1

for the purpose of obtaining the dominant order in
y. For the same purpose, functions u, with two root
parts may be replaced, by the same argument, by
9"us(1, 2) - ,
P I i, .

Iun+2(1,’ Y n’a 11 2) ~ n
»* kil
(B13)

APPENDIX C

In this appendix we will show that the pair distribu-
tion function derived by functional differentiation of
In Q(z) with respect to the long range potential
—u(r) agrees with that given in Eq. (21) through
order y*~1. We begin from the expression

_4InQ(2)
T 8Bv(1,2)

Using Eq. (1) for In Q(z) and the stationary condition,
(3), we obtain

PP, 2] 2) = p(z) — p(2)8(1 — 2)

SVh(y)
" [«wv(l, 2)]1,:1,5 ()

p*(1,2] 2) (C1)
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Carrying out the functional differentiation of VA(y),
we obtain

= w1, 2] y%) + f f drod'ri(1,3 | y%)
X 5,3, a2, 4] y*)
+1 f f Pradrug(1,2,3, 4| y*)

X Bii(3,4) + O(y™). (€3)

The first two terms in this expression are obtained
from the first term on the right-hand side of Eq. (8).
The last term is the term of lowest order obtained
by differentiation of the second term in Eq. (8).
Thus, we see that in order to compute p'® through
order »*~1, we must take into account terms in the
pressure through order y*, p(z) is found, from Eqgs.
(2) and (B), to be

o@) = (™) + f f Prd'rie(1,2,3 ]| )
X B5r(2,3) + 0G™). (C4)

The integral is, of course, independent of r; and is
the lowest term obtained from (0A(y)/d[ny),_,..
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Combining all these results, we obtain
P(2)(1’ 2 I Z)
= p(1,2] y*) + %ffd”rad"r‘lﬂﬁl(l 4)

X {u4(1,2,3, 4| y*) + 2pu(y*)ua(1, 3, 4| y*)

+ 2u(1, 3 | yH)a(2, 4| y*)

— 01 = 2us(1, 3,4 | yM} + 0™).  (CH)
Using Eq. (B9), we see that Eq. (C5) can be written

P(2)(1, 2 | Z)
=p (1, 2]y + 1 f J d’ryd’r (3,411, 2)

X B5y(3,4) + O(¥™). (C6)
This is identical through order »2-1 to our Eq. (21).
We have checked the agreement also to order y*'~! by
the same procedure. Since this calculation is straight-
forward and laborious, we have not presented it here.
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We formulate and solve the probiem of determining a complete set of generalized functions for a wide
class of homogeneous spaces with compact stabilizers. This allows us to say precisely what unitary
irreducible representations can be realized on a given homogeneous space. The techniques are applied

to the n-dimensional orthogonal and unitary groups.

L. INTRODUCTION
In physics, we frequently encounter homogeneous
spaces. Two well-known examples are the 3-dimen-
sional sphere S; = SO(2)\SO(3) in angular momentum
theory and Minkowski space M = ISO(3, 1)/SO(3, 1)
in Wigner’s classification® of the unitary irreducible
representations (UIR’s) of the Poincaré group. With

the relatively recent interest in higher-symmetry
groups, homogeneous spaces have also been used,
e.g., by Bég and Ruegg®? to study SU(3) and by
Holland® to investigate some of the UIR’s of SU(n).
Raczka et al. have studied the most degenerate
representations of SO(p,q),* SU(p,q),® and Sp(n).®
Further, Lurgat,” Nilsson and Kihlberg? and others®-1!
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We formulate and solve the probiem of determining a complete set of generalized functions for a wide
class of homogeneous spaces with compact stabilizers. This allows us to say precisely what unitary
irreducible representations can be realized on a given homogeneous space. The techniques are applied

to the n-dimensional orthogonal and unitary groups.

L. INTRODUCTION
In physics, we frequently encounter homogeneous
spaces. Two well-known examples are the 3-dimen-
sional sphere S; = SO(2)\SO(3) in angular momentum
theory and Minkowski space M = ISO(3, 1)/SO(3, 1)
in Wigner’s classification® of the unitary irreducible
representations (UIR’s) of the Poincaré group. With

the relatively recent interest in higher-symmetry
groups, homogeneous spaces have also been used,
e.g., by Bég and Ruegg®? to study SU(3) and by
Holland® to investigate some of the UIR’s of SU(n).
Raczka et al. have studied the most degenerate
representations of SO(p,q),* SU(p,q),® and Sp(n).®
Further, Lurgat,” Nilsson and Kihlberg? and others®-1!
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have used some of the homogeneous spaces of the
Poincaré group in order to build field theories which
may provide a description in which mass and spin are
treated on an equal footing.

These examples illustrate an important and well-
known use of homogeneous spaces in mathematics
and physics: namely, that, if there exists a right G-
invariant measure on a homogeneous space X =
G,\G (G, is called the right stabilizer of the homo-
geneous space), then, by using the action of G on X,
one can realize a unitary (in general, reducible)
representation U, of G, the Hilbert space L,(X) of
square-integrable functions on X serving as a carrier
space.

The central mathematical question is the decom-
position (as a direct sum or integral) of L,(X) into
minimal U -invariant subspaces, i.e., the decomposi-
tion of the regular representation U, into irreducible
representations. The elements of these minimal U,-
invariant spaces are called spherical functions.

We know, from the work of Raczka,'? the connec-
tion between the completeness of the set of matrix
elements of UIR’s for the space L,(G) for locally
compact, semisimple Lie groups and nuclear spectral
theory: namely, that the UIR matrix elements are the
generalized eigenfunctions of a complete set of
operators built from the right and left universal
enveloping Lie algebras. In fact, we obtain not only
the spherical functions but their decomposition into 1-
dimensional subspaces and, furthermore, the complete
classification of all possible UIR’s that appear in the
regular representation of G along with their multi-
plicities.

Our purpose is to exploit this fact and obtain
analogous results for the homogeneous spaces of the
form G4\G, where G is an arbitrary locally compact
unimodular Lie group with a complete set of UIR
matrix elements. In this paper we shall discuss in
detail the case when G, = K is any (closed) compact
subgroup of G.

The formalism is set up in Sec. II, where the
central question “What constitutes a complete set of
functions on the homogeneous space X = K\G?” is
answered. This leads immediately to the solution of
the related problem in Sec. III: “What UIR’s can be
realized on a given homogeneous space?”

The solution is given explicitly for the orthogonal
groups in Sec. IV: SO(n) is treated in detail, and the
extensions to SO(n — 1, 1) and ISO(n) are indicated.
In Sec. V we treat the unitary groups U(r) and SU(n).
The parametrization of these groups and of the
homogeneous space manifolds is essential for our
purposes: The concrete and detailed statement of the
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results is simplified by the use of the Gel'fand-Tsetlin
patterns.

We hope to discuss, in a future publication, homo-
geneous spaces where the stabilizer groups are non-
compact (but locally compact).

II. COMPLETE SETS OF GENERALIZED
FUNCTIONS

Let G be a locally compact Lie group and K any
closed subgroup of G. We can construct the space of
right (left) cosets, the homogeneous space X = K\G
(G/K) whose points x € X are the sets Kg(gK), where
g € G and the topology in X is the one induced by the
topology of G. The homogeneous space X is itself a
group only when K is a normal subgroup of G.
However, we are interested in X as a transitive mani-
fold for G; i.e., (a) the coset Kg is mapped into the
coset Kgg' under right multiplication by g’ € G (gK
is mapped into g'gK under left multiplication by
g' €G), and (b) given any two cosets, there exists a
g € G which maps one into the other. For the purposes
of economy, we shall confine our discussion to spaces
of right cosets X = K\G.

Let F(G) be the set of functions defined on the
group manifold of G. Functions on the homogeneous
space X = K\G are defined as functions which are
constant on right cosets, i.e.,

F(X)={feF(G)|f(kg)

=f(g), for geGandallkeK} (1)

We want to point out the fact that, if fe L,(X) and
if the stabilizer X is compact, then f e L,(G), while,
if K is noncompact, f¢ L,(G). It is precisely because
of this that we restrict ourselves in this paper to the
case with compact stabilizers.

Since we are interested in unitary representations,
we must have a right G-invariant measure on X, and
we can use the following general theorem!® to insure
its existence:

Theorem: If G is a locally compact unimodular Lie
group and K a subgroup of G, then there exists an
invariant measure dm(x) on the homogeneous space
K\G provided that

|det Adg(k)| = |det Ady (k)| forall keK.

This measure dm(x) is unique up to a constant factor,
and

[ @ dute) - f an() | _fkg) duthy
a K\@¢ K
for every f € Cy(G).
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We know that Cy(G), the space of all continuous
functions on G with compact support, is dense in
L,(G). Since all continuous functions with compact
support which are constants on cosets with respect to
a compact subgroup K belong to Cy(G) and are dense
in Ly(X), the theorem is applicable to our case and
covers a “sufficiently” large class of elements of
Ly(X).

We now restrict ourselves further to locally com-
pact unimodular Lie groups, such that the UIR
matrix elements or some subset of them constitute a
complete set of generalized eigenfunctions as described
by Raczka, i.., such that they are the generalized
eigenfunctions (in the sense of nuclear spectral theory)
of a complete set of strongly commuting operators
built from the right and left universal enveloping Lie
algebras. We shall henceforth call this “the complete-
ness requirement.”’

Presently, there is no general, mathematically
rigorous statement characterizing all groups which
satisfy the completeness requirement. The compact Lie
groups are, of course, rigorously known to satisfy it
by virtue of the Peter-Weyl-von Neumann theory.'*
The theory has also been developed for some of the
noncompact groups, specifically SL(2, C),* 10(2),'
and SO(2, 1).1” The work of Raczka'? represents a
generalization of the Peter-Weyl-von Neumann theo-
rem to noncompact, semisimple Lie groups.

For groups which satisfy this completeness require-
ment, we can associate, with each function f(g)e
L,(G), one matrix function F(1) whose domain is the
space of a complete set of UIR’s of the group, which
we denote by G. The points of this space are char-
acterized by the eigenvalues A of a complete set of
Casimir operators'® of the group. For every 4, the
rows and columns of this matrix are labeled in the
same fashion as the UIR matrices D*(g) themselves
(as will be detailed below), which become the trans-
formation kernels which relate the two functions'1?;
Le.,

Foud) = Ldu(g)f(g)Diq(g), (22)

f(g) = | dé) X Fou(D Dp(g™),  (2b)
(¢} P,q

where dji(1) is the Plancherel measure on G. For

compact groups G, the space G is a set of isolated

points, and the integration in (2b) becomes a sum

[ diy >3 aim @ viG)

G AEQ}
where dim (4) is the dimension of the UIR labeled by
A and V(G) is the volume of the group.
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The norms of the two functions in (2a) and (2b) can
be related by the Parseval identity

[ 1100 = [ i 3 1F, i
Q Q

D,q

Let G2G,2G,,2-"-2 G, be a chain of
subgroups which includes the compact subgroup
K = G, for some k, whose UIR labels can be used to
classify completely the components of the UIR basis
vectors [as, e.g., the canonical chains SO(n) >
SO(n —1)>---2 80(Q2) and Um) > U(n—1)>
«++ > U(l) for the orthogonal and unitary groups,
giving rise to the Gel'fand-Tsetlin kets; see Secs. IV
and V).

It will prove convenient to regard the index labeling
the rows (columns) of the representation matrices
D, (g), as standing for the sets {p,,p,.;, ", p1}
(9,.9.-1, " '+, q1}), where p; (g,) is the collective label
which denotes the eigenvalues of a complete set'® of
Casimir operators of the subgroup G; along the chain.
For convenience, we define p; = {p;, p;,_1, """, p1}
(9, =1{g;.9;-1, " " * » q1}), i.e., the row (column)-index
for the UIR matrices of G,,,, and

Df;q(k()) = D;:—lak—l(k()) Hk 67’:‘«11‘ (3)
j=

for k, € K, where the Kronecker ¢ in the collective
labels p; and g; is to be regarded as a product of the
Kronecker d’s in the individual indices.

Let us first examine the pair of functions (2) when
f(g) has the property (1) (i.e., when it is a function on
X = K\G), in order to determine the subset of
{D}, (g7} which constitutes a complete set in X: We
find that only those D’s which satisfy

Di(g™") = D}((kg)™") forall keK and geG

4
appear in the expansion of a fe L,(X). We have
employed the following reasoning here: {D} (g7)} is
a complete set for L,(G) and, since f'€ Ly(X) implies
f€ Ly(G), {D,,(g™)} is also a complete set for Ly(X);
f€ Ly(X) means f(kg) = f(g) for all k € K, and thus
we find that the subset of {D,(g~")} which satisfies
condition (4) is a complete set on X.

We can integrate (4) over k€ K in both sides:
The left-hand side, independent of k, will be multiplied
by the volume V(K) of the subgroup. The right-hand
side can be written as », D} (g ") D (k™?), and the
integration performed only over the last factor, where
(3) can be used.

Furthermore, since the scalar representation

DO (k) = 1
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(which is a constant function on K) is a member of
the complete set of UIR matrices for K, we have

deu(k) DE o (k) = 8 b oB5(de 0), (5)

where the last factor is such that

L?dﬁ(q)A(q)éfg(q, q4o) = A(qy)

for any “well-behaved” function 4(g) on the space K.
For compact groups, it can be written as

02(9: Go) = 0,4,V (K)/dim (go). (6)

As before, dim (g) is the dimension of the UIR of K
labeled by ¢, and dim (0) = 1. Hence, from (3), (5),
and (6) it can be seen that those D’s which satisfy (4)
must also satisfy

D3(g7) = D8 050 M
and, hence, the complete set of functions on X =
K\G is the set {D? .. (g™}, where

»,9lk
Q(k) = {qr’qr—la T 3qk+1, 0, DI 0}

It is important to understand that g(k) restricts the
allowed values of 1 to those UIR’s which contain the
scalar representation of K. This, in turn, restricts
the allowed values of p. Concrete cases will be pre-
sented in Secs. IV and V.

There is another point of interest: namely, that we
know that, since G is a locally compact unimodular
Lie group, the right and left regular representations
are simultaneously defined on the group and that they
commute, since there exists a left and right G-invariant
measure on the group manifold. The question arises
as to what happens, e.g., with the action of the group
(from the left) TF for the right quasiregular repre-
sentation on X. The answer is seen by acting with T
on (2b) where the D’s are restricted by (7). One finds
that under T} all elements of a given right coset are
mapped into another right coset with respect to the
subgroup g~'Kg, so that functions constant on the
right coset space K\G are mapped into functions con-
stant on the right coset space g*Kg\G.

HI. DECOMPOSITION OF THE QUASIREGULAR
REPRESENTATION

An important consequence of our knowledge of a
complete set of generalized functions on X, as a
subset of the UIR matrix elements of the group G, is
that we automatically obtain a decomposition of the
unitary quasiregular right representation into its
UIR’s, along with their multiplicities. Recall that the
quasiregular right representation T® of a locally
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compact Lie group G on L,(X) is defined as

Tof(x) = f(xg), (8)
where fe Ly(X), x€ X, and g€ G. It is well known
that, if there exists a right G-invariant measure on X,
then T® is a unitary representation.

In fact, any f € L,(X) can be decomposed as

dﬂ(l) Z Fq(k),n(l)D:;,q(k)(g_l)’ (9)

p,a(k)

=,

G (restricted)
where g(k) was defined above. But T¥ acting on (9)
transforms all D} ., (g™*) with a fixed value of g(k)
among themselves. Hence, for each fixed value of
g(k) there exists one UIR in the direct-integral de-
composition of Ly(X), and thus the multiplicity is
exactly the number of different values of g(k) con-
strained by a fixed (allowable) 12 and g, = 0. This
number may, or may not, be denumerable.

1IV. APPLICATION: THE
ORTHOGONAL GROUP

We shall give first a brief description of the group
and representation spaces of the orthogonal groups
SO(n). The group manifold of SO(n) can be param-
etrized inductively by “Euler” angles (enclosing
collective variables in curly brackets) as

Rn({ﬁ}(n)) = Rn_l({ﬁ}(n-—l))Sn({,ﬁ(n)})’
Sn({ﬁ(")}) = rn—l,n(ﬁ:'tn—)l,n

X X rg(988) X rip(943), (10)

where R, € SO(k) and r,,(9) is a rotation by ¥ in the
(a, b) plane. The ranges of the variables are 0 <
P <2mand 0 <Py, <7, k=2,4,-+ ,n Thus,
the SO(n) manifold is the product of the SO(n — 1)
manifold and the n-dimensional unit sphere: the
homogeneous space SO(n — 1)\SO(n), parametrized
by the n — 1 angles {$™}.

Notice that, for SO(3), Ry(«, 8, ) = ri(o)re(f) X
ris(y). This differs from the more general usage® in
that the second rotation is made around the 1-axis
rather than the 2-axis. This will cause no difficulty,
however.

The Haar measure on SO(n) can be split according
to the parametrization (10) as du(R,) = du(R,_;) dS,,,
where

dS, = sin"20,_; , dd, 11 - sinday Ay ddy (11)

is the measure on the space SO(n — 1)\SO(n). The
volume of the group can be seen to be given by
V(SO(n)) = V(SO — 1)A4, [and V(SO(2)) = 2n],
where A, = 2#¥"/['(4n) is the surface of the n-
dimensional sphere.
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The homogeneous space SO(k)\SO(n) is thus the
set of points S, ,({#*1})---S,({9"™}) and is a
[3n(n — 1) — $k(k — 1)}-dimensional manifold with
Haar measure dS,, * -+ dS,,.

From the work of Gel'fand and Tsetlin?-32 we
know that the bases for UIR’s of SO(n) classified by
the canonical chain SO(n — 1) > +-+ > SO(2) can
be labeled as

Joa a7 S hn1
Joc1a Jpre 00 Jn—l,'}[(n—l)]
, (12
Jia Jio
Jaa
Jo1

where [$k] is the largest integer less than or equal to
k. This ket transforms as the J;, = (Ju1, Jiz, * * * Jygay)
UIR of SO(k). The J,, are either all integer or all half-
integer and are constrained by the inequalities

Jorr1,i 2 Jors 2 Joeia i1
Jj=1 k7
k=1, [}n—1),
Jors 2 Joe-1,5 2 Jon,irs

j=1-, k-1, 13)
k=1, [#n],

12k+1.k 2 IJ2k,kl’ k= 1’ Y ['%(n - 1)]’

S k1 >0, n odd,

J’Il—lu[%n]——l Z |Jn'[«}n],, n even.
The number of labels in the ket (12) is

L(n) = 3 [im] = ¥(n* — 1), n odd,
m=2
= }nz,
and the number of UIR, row, and column labels of
the Dj—"_l 7 (B2 (by using the notation of Sec. 2,
namely, J, = {/;,Jp1, ", o)) is thus [4n] +
2L%n — 1) = in(n — 1), i.e., the same as the number
of parameters of the group.

The scalar representation of SO(k) is J, = (0, 0,
+++,0) = 0. Notice, then, that, if we have zeros in
the J, row, k > 2, of (12), the inequalities (13) imply
that the J,,, row must consist of zeros, except for
Jii1.1, Which is only constrained to be integer. In the
Jor2 TOW, all except J,.,» ; and J;,, , must be zero, etc.

Thus we can see that only the ‘“most symmetric”
J,0,---,0) UIR’S of SO(n), n > 3, can be realized

n even,,
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on the homogeneous space SO(n — 1)\SO(n), a result
familiar from the theory of spherical functions.

For SO(2)\SO(3), J;; = 0 implies only that J3, must
be integer and thus the functions on the 3-dimen-
sional sphere®® can realize all—but only—the single-
valued representations of the group SO(3).

For SO(k)\SO(n), the ket (12) will have J, = 0.
These zeros will “propagate” upwards under a
diagonal to the right (see Fig. 1), and there will be
[3(2k — n)] zeros in the row of the UIR labels. Thus,
if k <4+ 1) (n odd) or k < in (n even), it will be
possible to realize all the single-valued UIR’s of SO(n)
in this space.

It is not difficult to see that the number of indices
Jorsq > k + 1, which are forced to be zero is L°(k —
1), so that there are [3k] 4 2L%(k — 1) = }k(k — 1)
zeros in the pattern (12), and the number of remaining
free labels is 4n(n — 1) — 3k(k — 1), equal to the
number of parameters of the space SO(k)\SO(n).

On the other hand, if some of the UIR labels are
forced to be zero, these zeros may propagate into the
row (p) indices as well, downwards along a vertical
line (see Fig. 1). There will thus be 2L%k — 1) +
[$k] — L°(2k — n) zeros in the column (g) pattern
(12), [3(2k — n)] in the UIR labels, and L2k — n —
1) in the row (p) pattern (12). The number of remain-
ing free labels is again equal to the number of param-
eters of the homogeneous space.

As far as the SO(n — 1, 1) group is concerned, the
same procedure can be applied to the chain of sub-
groups SO(n—1,1)> SO(m —1)> -+ - > SOQ).
The only differences lie in (10), where r,,_; ,.(£) is now
a boost in the (n — 1) direction so that 0 < { < oo.

A= [ RLET

y

Fi1G. 1. Graphical representations of the zeros (shaded areas)
in the UIR, row, and column labels of D3 (R~ for the orthog-
onal group.
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The homogeneous space SO(n — H\SO(n — 1, 1)
is an n-dimensional revolution hyperboloid with a
measure (11), where the trigonometric function in
#,_1.1 must be replaced by a hyperbolic one in {. As
shown by Chakrabarti,?* the ket (12) replaces its
discrete J, ; index by a continuous one, which is not
subject to the restrictions (13). Our knowledge of
these groups® is still unsatisfactory regarding the
UIR matrix elements themselves?®; however, the
statements made regarding the complete set of func-
tions on the homogeneous spaces considered above
do not depend on their detailed knowledge.

The inhomogeneous orthogonal group ISO(n) is
the semidirect product of the n-dimensional transla-
tion group T'(n) and SO(n). Its elements are the points
g=(x,R), xeT(n), ReSO(m), with the product
(2, Ro)(x1, Ry) = (xg + Roxy, RyRy).

The ISO(n) manifold is thus the direct product of
the T(n) and SO(n) manifolds, its Haar measure
being d”x du(R). Kets similar to (12) which classify
the components of the UIR vectors using the chain
ISO(n) > SO(n) = - - - @ SO(2) have been set up by
Chakrabarti.** The more common (and physically
relevant) classification of the UIR’s of ISO(n) [and of
ISO(n — 1, 1)] is the one which follows Wigner’s
“little group” method.! Harmonic analysis on these
groups, with their UIR’s classified by the mass-M
spin-J pair of labels (/ is a collective index for n > 5),
has been carried out,1%** and the case of functions on
the space of cosets of the type ISO(n)/SO(k) developed
in Ref. 11. This does not fall, however, within the
bounds of our formalism, which so far requires the
use of the “canonical” chain. This subject, then,
requires further investigation.

V. APPLICATION: THE UNITARY
GROUP

We shall present one parametrization of the U(n)
group manifold which we consider convenient because
of its inductive definition, which makes it similar to
the “Euler” angle parametrization of the orthogonal
groups seen in the previous section.? It can be
conveniently used to parametrize the homogeneous
space SUK)\SU(n).

Enclosing collective labels in curly brackets, we
define

U.({g, 3}'™) = U,a({p, 8} )C,({¢™, 9,
C({g™, 87} = O (@) o, (B
X+ X Do)y o(357) X Oi@f™), (14)
where U, e Uk); @, (¢) is a diagonal matrix with

elements el*e/(™®1 in the (q,q) positions, g = 1, 2,
<+, k — 1, " in the (k, k) position, and 1 in the
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remaining places on the diagonal. It is unimodular
fork > 2.

As in the previous section, r,(¢#) is a matrix with
cos ¥ in the (a, a) and (b, b) positions, 1 elsewhere on
the diagonal, —sin# and sin ¥ in the (a, b) and (b, @)
positions, and 0 in the remaining places.

The number of parameters of C, is 2n — 1, so that
the parameters of U(n) are n% The condition of
unimodularity implies

< (k)
2o =0,
. k=l
since

det [Ci({¢™, %] = exp (igh"),

and this restricts by one the number of parameters.
The ranges of the “‘rotation’ angles are 0 < #¥ < i,
j=2,+-,k, and of the “phases” 0 < ¢{¥ < 2m,
j =1, , k. The Haar measure on U(n) decomposes
as for the orthogonal group: du(U,) = du(U,_,) dC,,.

We can see that C;1({¢!™,d™}) acting on the n-
dimensional complex vector (0, ---,0, 1) generates
(21, -+, z,), the surface of the n-dimensional complex
unit sphere. The surface element of this can be found
by using the fact that, for each coordinate,

d?z = d Re (2) d Im (z) = r dr dy,

where r = mod (z) and y = arg (z). The modulus is
thus only a function of the ¢ variables, the argument
only of the ¢ variables, and

dCy = (ry- - r,)dry - - dr,)dy, - - - dy,).

The first term is sin®14, cosd, - - - sind, cosd,,
the second one is (11), the measure on the n-dimen-
sional real sphere, and the third one is just dg, - - - dg,
since the Jacobian is unity.

The measure on the n-dimensional complex sphere
is therefore

dC, = sin® 29" cos 9 d¥(™ de'™
X+ 0 % sin 9 cos B d9Y dpiV x doli™

= de\"si 2 ds, x o+ x deis, dsy x de{™,

(15)
where s, = sin{®; thus, this is the measure on the
homogeneous space SU(n — 1)\§U(n). Correspond-
ingly, the space SU(k)\SU(n) is parametrized by

Cora {49, 901} - C, (g, By,

has n? — k® parameters, and its measure is dCy,, - - -
dC, . The volume of the group is V(U(n)) = V(U(n —
1)B, [and V(UQ1)) = 27], where B, = 27*/T'(n) =
As, , the surface of the n-dimensional complex sphere.
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Using again the work of Gel'fand and Tsetlin,?
we can write the bases for UIR’s of U(n), classified by

the canonical chain* U(n) > Un — 1) @ --- > U(1),
as
Kn,l K’n,2 ‘Kn,3 Kn,n
Kn—l.l Kn—1,2 Kn-—l.n—l
(16)
K2,1 K2,2
Ky

This ket transforms as the K, = (K, Kie, -,
K,,) UIR of U(k), and these labels are constrained by
the inequalities

K 2 Keay 2 Kk,j+1,

j=1, k=1,
k=2,--,n

The number of labels in (16) is

17

L¥(n) = i m = n(n + 1),

and the number of UIR, row, and column labels of
Dﬁ:_lﬁ’ﬂ_l((/) (again, K, ={Ky, Ky, -, K}) is
thus »n + 2L%(n — 1) = n?, i.e., the same as the
number of parameters of the group U(n).

The representations of SU(n) have the same labeling

as those of U(n), except that

(K Kn,2 ’ T Kn,n)

n,1°
=(K,.+KK,,+K,---,K,,+ K)

for any K, so that we can take K = —K,, ,, and thus
restrict the last UIR label to zero, having thus #% — 1
UIR, row, and column labels for the (n%* — 1)-
parameter group SU(n).

The scalar representation of SU(k) is K, = (0, - - -,
0), but this is equivalent to (K, - - - , K) in the pattern
(16), forcing through the inequalities (17), all the rows
below the K, row to be (K, - - -, K) as well (see Fig.
2). This takes the place of the UIR ‘O’ in the case of
the orthogonal groups (Sec. 1V).

If the scalar representation of SU(k) is to be
present in (16), the inequalities (17) imply that all
but two of the labels of the K, row must be equal:
Kiyo=+"=K,,, =K., and, in the row above
thatone, Ko ="+ = Kppop = Kypa0 = K, etc.
Thus, we can see that only the (J, K, - - - , K, 0) UIR’s
of SU(n) can be realized on the homogeneous space
SU@m — D\SU(n). In particular, this places no
restriction on the SU(3) UIR’s which can be realized
on SU(2)\SU(3) homogeneous space,?? as can be seen
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FiG. 2. Graphical representation of the regions of constant
values (shaded areas) in the UIR, row, and column labels of
D? (U™ for the unitary group.

also noting that every UIR of SU(3) contains the
scalar representation®® of SU(2).

In general, all UIR’s of SU(n) can be realized on
SU(K)\SU(n) when k < {(n + 1). The equality of the
2Ltk — 1)+ k—1=4k*—1 UIR labels of a
scalar representation of SU(k) and the triangle above
it (Fig. 2) leaves n* — k* free parameters, i.e., the
number of parameters of the space SU(k)\SU(n).

If k> i(n + 1), only the UIR’s of SU(n) with
K=Ky pirro ==K, are to be realized
on SU(k)\SU(n). The number of free parameters can
be seen (Fig. 2) to be again equal to n* — k2

There seems to be no fundamental difficulty in
carrying out this program for the SU(®n — I, 1)
groups? classified by the canonical chain SU(n — 1,
D2Urp—1)>---> U(l) nor for the inhomo-
geneous unitary group ISU(n), whose elements are
g = (x, U), where x € T(2n) and U € SU(n). The kets
in the Wigner “little group” chain can be constructed
using the T(2n) subgroup, and its representations,
labeled by an n-dimensional complex vector. Again,
our formalism requires that we follow a procedure
parallel to Chakrabarti’s,? in considering the ““canon-
ical” chain ISU(n) > Um) > Un — 1) > - - - > U(1).
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Models of 2-dimensional hydrogen bonded crystals obeying the ice rule, which previously have been
solved exactly, are generalized by removing the ice rule. Many of the peculiar and unique properties of
the solutions for the constrained models are now explained by showing that these models, above critical
temperature, are equivalent to new unconstrained models at critical temperature. In addition to locating
the critical temperature for the general but unsolved models, we locate the singularities of the ground

state energy of a related ring of interacting spins.

INTRODUCTION

Much progress has been made recently in solving
exactly models for hydrogen bonded crystals in 2
dimensions.!~* These models are constrained by the
“ice rule.”” The essential point for the exact solution
is Lieb’s observation for 2-dimensional ice! that the
transfer matrix has the same eigenvectors as a solvable
l-dimensional quantum many-body problem, the
Heisenberg-Ising ring of interacting spins.

However, the properties of the models, when
determined, are surprising, and totally unlike the
Ising problem. One can blame this, of course, on the
ice rule constraint. However, this remark really does
not clarify matters.It is the purpose of this paper to
point out the qualitative relationship between con-
straint and behavior.

1. THE GENERAL EIGHT-SITE LATTICE
PROBLEM

Consider a square lattice of N2 vertices and thus
2N? edges. We assume periodic boundary conditions
in both directions. Place 2N? arrows one to an edge,
and assign an energy to each configuration of the four
arrows about a vertex. In general, therefore, there
will be 2¢ = 16 possible energy assignments,

A large class of solvable models resuits when the
possible vertex configurations obey the “ice rule”;
that is, all configurations have infinite energy except
the six with two arrows in, two arrows out of a vertex.
This general six-site configuration is exactly soluble.?
The allowed sites are the first six in Fig. 1, with a
possible parametrization in the language of ferro-
electrics shown below. In this notation, the arrows



COMPLETE SETS OF FUNCTIONS ON HOMOGENEOUS SPACES

4J. Fischer, J. Niederle, and R. Raczka, J. Math. Phys. 7, 816
(1966); R. Raczka, N. Limi¢, and J. Niederle, ibid., 1861 (1966);
B. Limi¢, J. Niederle, and R. Raczka, ibid. 7, 2026 (1966); 8, 1079
(1967).

® J. Fischer and R. Raczka, Commun. Math. Phys. 3, 233 (1966);
4, 8 (1967).

¢ P. Pajas and R. Raczka, J. Math. Phys. 9, 1188 (1968); P. Pajas,
ibid. 10, 1777 (1969).

? F. Lurgat, Physics 1, 95 (1964).

8 J. Nilsson and A. Beskow, Arkiv Fysik 34, 307 (1967); J. Nilsson
and A. Kihlberg, Report 68-15, Institute of Theoretical Physics,
Goteborg, 1968; H. Bacry and A. Kihlberg, J. Math. Phys. 10,
2132 (1969).

? G. Fuchs, Ph.D. thesis, Faculté des Sciences d'Orsay, University
of Paris, 1969.

19N. X. Hai, Commun. Math. Phys. 12, 331 (1969).

11 K. B. Wolf, Ph.D. thesis, Dept. of Physics and Astronomy,
Tel-Aviv University, 1969; Tel-Aviv University Preprint 112-69,
1969.

12 R. Raczka, “Operator Distributions in Group Representation
Theory andTheir Applications,” Lecture Notes, Institute of Theoret-
ical Physics, Goteborg, 1969.

13 K. Maurin, General Eigenfunction Expansions and Unitary
Representations of Topological Groups (Polish Scientific Publishers,
Warsaw, 1968), p. 143.

14 Reference 13, p. 157.

s M. A. Naimark, Linear Representations of the Lorentz Group
(Pergamon, London, 1964). S. Strom, Arkiv Fysik 29, 467 (1965);
33, 465 (1967); 34, 215 (1967); A. Sciarrino and M. Toller, J. Math.
Phys. 8, 1252 (1967).

3183

18W. T. Sharp, Atomic Energy of Canada Ltd., Chalk River,
Ontario, Report CRT-935, 1960.

17 Y. Bargmann, Ann. Math. 48, 568 (1947); M. Andrews and
J. Gunson, J. Math. Phys. 5, 1391 (1964).

181, C. Biedenharn, J. Math. Phys. 4, 436 (1963); G. E. Baird
and L. C. Biedenharn, ibid., 1449 (1963); A. M. Perelemov and
V. S. Popov, Yad. Fiz. 3, 924 (1966) [Sov. J. Nucl. Phys. 3, 676
(1966)].

1% G. Mackey, Bull. Am. Math. Soc. 56, 385 (1950).

20 A, R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton U.P., Princeton, N.J., 1957), p. 6.

211, M. Gel’fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71,
840 (1950).

22§ C. Pang and K. T. Hecht, J. Math. Phys. 8, 1233 (1967);
M. K. F. Wong, ibid., 1899 (1967).

23 Reference 20, Chap. 4.

24 A. Chakrabarti, J. Math. Phys. 9, 2087 (1968).

28 UJ. Qttoson, Commun. Math. Phys. 8, 228 (1968).

26 Qur parametrization is the one used in Refs. 2 and 3 and in the
work currently done on the representation matrices by Ottoson.
Other parametrizations are used in F. D. Murnaghan [The Unitary
and Rotation Groups (Spartan, New York, 1962)] and L. K. Hua
[Harmonic Analysis of Functions of Several Complex Variables in the
Classical Domains (American Mathematical Society, Providence,
R.I1., 1963), Translations of Mathematical Monographs, Vol. 6.]

27, M. Gel’'fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71,
825 (1950), and Ref. 18.

28 D. L. Pursey, Proc. Roy. Soc. (London) A275, 284 (1963).

29 U. Ottoson, Commun. Math. Phys. 10, 114 (1968).

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 11 NOVEMBER 1970

Two-Dimensional Hydrogen Bonded Crystals without the Ice Rule*

BILL SUTHERLAND
Physics Department, University of California, Berkeley, California 94720

(Received 13 April 1970)

Models of 2-dimensional hydrogen bonded crystals obeying the ice rule, which previously have been
solved exactly, are generalized by removing the ice rule. Many of the peculiar and unique properties of
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the critical temperature for the general but unsolved models, we locate the singularities of the ground
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INTRODUCTION

Much progress has been made recently in solving
exactly models for hydrogen bonded crystals in 2
dimensions.!~* These models are constrained by the
“ice rule.”” The essential point for the exact solution
is Lieb’s observation for 2-dimensional ice! that the
transfer matrix has the same eigenvectors as a solvable
l-dimensional quantum many-body problem, the
Heisenberg-Ising ring of interacting spins.

However, the properties of the models, when
determined, are surprising, and totally unlike the
Ising problem. One can blame this, of course, on the
ice rule constraint. However, this remark really does
not clarify matters.It is the purpose of this paper to
point out the qualitative relationship between con-
straint and behavior.

1. THE GENERAL EIGHT-SITE LATTICE
PROBLEM

Consider a square lattice of N2 vertices and thus
2N? edges. We assume periodic boundary conditions
in both directions. Place 2N? arrows one to an edge,
and assign an energy to each configuration of the four
arrows about a vertex. In general, therefore, there
will be 2¢ = 16 possible energy assignments,

A large class of solvable models resuits when the
possible vertex configurations obey the “ice rule”;
that is, all configurations have infinite energy except
the six with two arrows in, two arrows out of a vertex.
This general six-site configuration is exactly soluble.?
The allowed sites are the first six in Fig. 1, with a
possible parametrization in the language of ferro-
electrics shown below. In this notation, the arrows
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Fic. 1. Allowed configurations of arrows about a vertex, with
energy assignments in the language of ferroelectrics, and the
corresponding statistical weights. Here 5 = 9/, £ = e2¢/7, H =
eI, ¥V = ¢iT, and § = e2/7.

are taken to be electric dipoles, and v and 4 are electric
fields in the wvertical and horizontal directions,
respectively.

There are several peculiar properties of these models,
usually blamed in a vague way on the rigid ice rule.
Implicit in this criticism is the belief that the Ising
model has in some way “normal” behavior. A partial
list of peculiar properties: At the critical temperature
all derivatives of the free energy for antiferroelectrics
are continuous, while ferroelectrics have a latent heat;
ferroelectrics are completely ordered below the
critical temperature; above the critical temperature,
correlation functions fall off slower than exponen-
tially.4®

To understand qualitatively the effect of the ice
rule, we wish to violate it by adding two new vertex
configurations, 7 and 8 in Fig. 1, and study these
more general models. This new problem is completely
unconstrained, as it is equivalent to an Ising model
with many-body potentials. The general eight-site
problem, assigning an arbitrary energy to each of the
eight vertices, is equivalent to the ferroelectric
parametrization of Fig. 1. This is easily seen if one
realizes that vertices 7 and 8, and 1 and 2, must each
occur in pairs in the crystal; thus there is no generality
gained by giving them different energy. We shall, in
this article, consider the problem in zero electric field,
v=h=0.

We treat such a lattice statistical problem by the
transfer matrix method.” Briefly, we construct a
2% x 2% matrix 4 with matrix elements between two
successive rows of vertical arrows in the lattice. For
two given configurations of vertical arrows ¢ and ¢,
there are always two ways to place the intervening row
of horizontal arrows. Then the matrix element of 4
is given by

Ag, ¢') = exp [—Ey(p, ¢)/T]
+ exp [—Ey(g, ¢)/T],

where E, and E, are the energies of the N intervening
vertex configurations for the two choices of horizontal
arrows. Then the partition function for the lattice is

Z = Tr (4AY) = AV,

where 4 is the maximum eigenvalue of 4.

BILL SUTHERLAND

2. THE XYZ HAMILTONIAN

Progress was made on solving the six-site ice rule
problem, when it was realized that the eigenvectors of
A were the same as the eigenvectors of a soluble
Hamiltonian for a ring of spins with nearest-neighbor
interactions. We shall proceed by making a similar
observation—the transfer matrix for our eight-site
problem has the same eigenvectors as a new Hamil-
tonian—which we call the XYZ model.

Consider N spins (S = $) on a ring interacting with
nearest neighbors by the X' YZ Hamiltonian:

=- Z (Jacazo';: + ngﬂo'; + ngza;)' (1)
n.n,

The o’s are the Pauli spin matrices, given in a suitable
basis by

5 (0 1) " (0 —i) (1 0)
= . = . o, = .
1o/ 7 \+i 0 N0 -1
This Hamiltonian may be exactly solved (at least

for the ground state) in the following cases:

(a) Any two coefficients equal, say 4 = B, gives
the Heisenberg-Ising lattice.>

(b) Any coefficient zero, say C = 0, gives the XY
model.®

Rewriting the Hamiltonian as
XAT)= -, +J) D [0,0 + a0,
+ (0,6}, + 0_0") + }A0,0,], (2)
I — (Jx — .Iy) _ 2J,
J,+J,) J,+J,’
we see that JC is exactly soluble as shown in Fig. 2.

Al

F1G. 2. 3(A, T) may be solved exactly on all lines, solid and
dashed. Singularities, and hence critical points, occur on the dashed
lines. Knowing the behavior in the shaded triangle is sufficient to
determine the behavior in the entire (A, I') plane.
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3. EIGENVECTORS OF THE TRANSFER MATRIX AND THE XYZ HAMILTONIAN

We show A4 and J€ have the same eigenvectors by showing that 4 and J commute (with, of course, a
relationship between the parameters of each). We briefly outline the proof that [4, X] = 0.° 4 may be
written as Tr (JTY . A(i)), where each A(7) is a2 x 2 matrix with operator elements acting on the vertical
arrow (or spin) at site i. The trace indicated is only over the 2 X 2 product matrix, not over the operator
elements. The different choices for matrix elements simply indicate the different ways of arranging the

horizontal arrows.!® For our eight-site case, we have

A () Am(i))

) = (An(i) Aua(i)

where the o matrices refer to the ith site. More general
cases will be treated in a later paper.

J is a sum of 2-body operators & =3, ¥, ; ;.
Thus, when we take the commutator with 4, we have

[4,%€] = Tr (z [+ AG — D{[AG), e, 14, ]AG + 1)

+ AGIAG + 1), 5, JAG +2) - -]). @

A typical commutator in the expression of Eq. (4) will
again be a 2 x 2 matrix with operator elements of
the form
([All(i)’ Jei,i+1] [A12(i)5 Jei,i+1]) .
[A1(), i ia]  [A22(0), K004

It happens that, if we choose

A=+t — & -0,
I = (&0},

(5a)
(5b)

then the quantity in parenthesis reduces to

ANQGE+ 1) — 0W)AG + 1),

where Q(i) is a 2 x 2 matrix with operator elements
acting only on site /. Thus, when we sum over i, the
commutator is seen to vanish.

4. SOLUBLE CASES

We know that 4 and J have the same eigenvectors,
but what does this tell us about either problem since
neither, in general, is soluble ? First, we can expect the
lattice problem to be soluble whenever the corre-
sponding spin problem is. In particular, for the six-site
problems, 6 = 0 and I' = 0, and we see that it is the
Heisenberg-Ising chain, as previously known. On the
other hand, theline I' = 1, equivalent to an XY model
with A = 0, can easily be shown to correspond to an
Ising model in two dimensions and zero magnetic
field.!*12 This correspondence was previously un-
known, although the methods of solution were
similar for the two problems.

_ (%[n% + 7t + o (gt — o h)
gto_ + 6o,

g, + Olo_ ) )

Hnt + 9t — o,(t — yd)]

5. DETERMINATION OF SINGULARITIES

But a much more interesting application of this
correspondence makes use of the spin Hamiltonian to
clearly exhibit symmetries hidden in the lattice
statistical problem. Combining this observation with
very plausible assumptions enables one to make exact
statements about the models, although they cannot
be solved.

The idea behind our reasoning is contained in
Kramers and Wannier’s early treatment of the Ising
problem,” where they determined the critical tempera-
ture T, before Onsager’s exact solution.!® T, was
determined using only an exact symmetry between
high and low temperatures, with the reasonable
assumption of one and only one critical temperature.

In our case, we make two assumptions, both extrem-
ely plausible. The first is that singularities in the lattice
problem and in the Hamiltonian problem occur for
the same values of A and I'. This is very reasonable,
for singularities are believed to occur at the onset of
long-range order. Although the eigenvalues are not
the same, and hence free energy and ground state
energy are not equal, long-range order is a property
of the eigenvector, and hence will be the same.
Probably the qualitative nature of the singularities
in energy will also be the same; this is borne out by all
soluble cases, but has not been shown in general.

Secondly, we make the same assumption as Kramers
and Wannier of the existence and uniqueness of the
critical temperature 7.

We now argue as follows: If we fix d, €, and y for a
particular unconstrained lattice model and then vary
T, Eq. (5) generates a curve C in the (A, I') plane.
These curves are always in the I' > 0 half-plane; they
begin at A= 0, ' =1 for T'= oo and move to in-
finity. Further, one can cover the I' > 0 half-plane by
varying d, e, and y; each curve passes once through
either A=1"+ 1 or A = —(I' + 1). By our second
assumption, there is one singular point at the critical
temperature for each curve.

If we consider these singular points as a function of
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d, €, and y, they lie on a curve D in the I' > 0 half-
plane. By our first assumption, this is also a curve of
singularities of the Hamiltonian problem. We now
rotate each spin 4w about the y axis; this is a unitary
transformation generating a new curve of singulari-
ties D,. Likewise, if we rotate spins on even or odd
sites by 4w, respectively, about the y axis, this
generates a curve D, of singularities. But by our first
assumption, D; and D, will, in general, produce new
singularities and hence new critical temperatures where
they intersect the curves C. This, however, would con-
tradict our second assumption, and so D, and D, must
coincide with D for I' > 0. Thus, we see that D is the
curve A = +(I" + 1), I' > 0. The curve D and its
images under all unitary transformations of the
Hamiltonian we denote by D’ and indicate by dashed
lines in Fig. 2.

For the spin Hamiltonian (A4, B, C), we are led
to propose that the ground state energy as a function
of A, B, C has singularities only on the planes (4| =
|B| > |C| and the lines |4| = |B| = 0, and permuta-
tions of these. (The singularity at the Ising limit is not
forbidden by our previous reasoning, for these points
correspond to T =0 or T = o0.) We notice that, if
we were to consider a ring of classical spins in the
ground state, then they would change their orienta-
tion upon crossing one of the singular planes.

For the lattice problems, we divide the models into
two types according to the nature of their order:
ferroelectrics whose lowest-energy site is of type 3, 4,
5, or 6 and antiferroelectrics whose lowest-energy
siteis of type 1,2, 7, or 8. Then the critical temperature
is determined for ferroelectrics by

A=T+1 (6a)
or
n+nt—E—0=201+(0) ()
and for antiferroelectrics by
A=—T+1 (6b)
or
nA ot — &~ 0==2[1+ ({0} (Tb)

These relations, of course, check for all known cases.

BILL SUTHERLAND

But we notice the surprising fact that the solvable
six-site models, constrained by the ice rule, lie entirely
on the line of singularities when they are above their
critical temperature |A| =1, I' = 0. Thus, ice rule
models above T, behave like unconstrained models at
the critical point. This explains, for instance, the non-
exponential decrease of the correlation function.! It
is in this sense that we may say the ice rule forces the
system to be permanently at a critical point. One
expects the general unconstrained models to behave
like the Ising model near critical point, although this
,has not been shown.
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We discuss here in detail the validity of the branching-law method suggested in a previous paper
[M. K. F. Wong, J. Math. Phys. 11, 1489 (1970)] for the calculation of the inner multiplicity of weights in an
irreducible representation of a classical group. It is found that the method works for all the irreducible
representations of SU(n) and SO(2r + 1), but that in the case of SO(2n) and Sp(2n) the method does
not always give complete solutions except in some simple cases. 1t is then suggested that Racah’s recur-
rence relation be used in these cases so that complete solutions may be obtained. It is also noted that
Racah’s recurrence relation alone is sufficient to obtain the inner multiplicity of all weights. This fact is
utilized in the calculation of inner multiplicities in another paper [B. Gruber, J. Math. Phys. 11, 3077
(1970)]. The method suggested in this paper is illustrated through the calculation of some typical examples
of the inner multiplicity of weights in the two classical groups SO(2#) and Sp(2n).

INTRODUCTION

In a previous paper,' a method was suggested where-
by the inner muitiplicity of weights in an irreducible
representation of a Lie group can be calculated by a
formula independently derived by Straumann,® Kly-
myk,® and Delaney and Gruber? together with the
branching laws of Weyl® (unitary), Boerner® (orthog-
onal), and Hegerfeldt” (symplectic). We stated there
that this method, called the branching-law method,
works for all the irreducible representations of SU(n)
and SO(2n + 1), but does not give complete solutions
for SO(2n) and Sp(2n) except in some simple cases.
We did not give any proofs of why this is so. It is the
purpose of this paper to discuss in detail the validity
of the branching-law method, i.e., under what condi-
tions do we have complete solutions. It is then sug-
gested that, in those cases of SO(2n) and Sp(2r) where
complete solutions are not forthcoming from the
branching-law method alone, Racah’s recurrence
relation® for the inner multiplicities be used so as to
give complete solutions. It is also noted that Racah’s
recurrence relation alone is sufficient to obtain the
inner multiplicity of all weights in all the irreducible
representations of the classical groups. This fact was
pointed out by Racah himself, but does not seem to
have received enough attention. However, in another
paper by Gruber,® Racah’s recurrence relation has
been used to obtain the inner multiplicities in all cases.

This paper is divided into two sections and two
appendices. In Sec. 1, the validity of the branching-
law method is discussed in detail. In Sec. 2, Racah’s
recurrence relation for the inner multiplicities is dis-

cussed. In the Appendix, we calculate the inner
multiplicity of weights in an irreducible representation
of the two classical groups SO(2n) and Sp(2n), by
means of the branching-law method, supplemented by
Racah’s recurrence relation.

1. VALIDITY OF THE BRANCHING-LAW
METHOD
The main question we wish to ask in this section is:
Does the branching-law method give us complete
solutions? In other words, are there always enough
independent equations for the number of unknowns?
The answer is “yes” for the SU(n) and SO(2n 4 1)
groups, but “no” for SO(2n) and Sp(2n). Let us
start by considering SO(2n + 1).

A. S0(2n + 1)

For SO(2n + 1) the mapping Lm = m, = m onto
weights m, of its subgroup SO(2n) is nonsingular, i.e.,
one-to-one. Moreover, it can easily be verified that
dominant weights of the group are mapped onto
dominant weights of the subgroup.

Let D(M) denote an irreducible representation of
SO(2n + 1). An ordering in the set of d-weights of
D(M) is introduced:

Let

m=M+k1.B1+.”+knﬂ'n

be a dominant weight of D(M) and
m' =M+ kify + o+ Ko,
k;, k; nonnegative integers,
B the simple negative roots of SO(2n + 1),
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another dominant weight of D(M). We say that the
weight m is earlier than the weight m’, if

kn= k;n kn—1= k;:—l" o

s ki = ko,
but

k, < ki,
for some value u =n, n — 1,---, 1. Thus, M is the
first weight in the ordered set of d.w.’s of D(M).
Going from the first weight, namely M, successively to
the following dominant weights of D(M), we obtain
through the mapping Lm a succession of weights
M., M, M.,---, M, of the subgroup. Again, in
the same order, the set of linear equations is written
down (the suffix r referring to the subgroup):

MY)= 3 3 s yM(m¥rm rtrr-s,B.
SyeWys meD(M)
MY =
My ="

In this system of linear equations there are as many
unknowns as there are equations. Moreover, the
determinant of the system is nonzero. Thus, a unique
solution exists for the unknown y™(m) for given
values §(M,), - -, #(M,").

Proof: Consider an arbitrary equation, for instance,
the second equation. In this equation the dominant
weight L-1(M,) will appear (on the right side of the
equation). The only other weights that can appear
(but do not necessarily) are the dominant weight
L(M,) and the weights SL-Y(M,), S € W, equivalent
to L-Y(M,). Thus, L~Y(M,) is the last d.w. that
appears. This follows from the fact that in

R, — SR, = klﬂl + 0+ knﬂna
B; simple negative roots of SO(2n + 1),

the k, are negative integers or zero and k; = 0,7 =1,
««+, n only for S, = 1. From this it follows immedi-
ately that only the weights L7(M,), LX(M,), and
SL-1(M,) can contribute. [If dominant weights fol-
lowing L~Y(M]) are excluded, then more weights are
equivalent to them. The dominant weight M’ of a set
of equivalent weights is the highest weight of the set,
and from this highest weight M’ any other member
of the set can be reached by M’ + kify + - +
k.B,, k, integers > 0.]

Since the above consideration holds for any one
of the equations, it follows that the matrix of this
system is triangular and, moreover, that the elements
in the diagonal are 1. Thus, the determinant is 1. This
completes the proof.
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B. SO2n)

The case of SO(2n) is, unfortunately, not so simple.
Let the irreducible representation of SO(2n) be (M,
M,, -, M,). Now, in the decomposition of SO(2n) =
SO(2n — 1), there are only n — 1 numbers (M;,
M,, -+, M, ) representing the irreducible repre-
sentations of SO(2n — 1) since

L(ml) ot

On the other hand, the dominant weights are repre-
sented by #n numbers (m,, m,, - * -, m,). The question
arises as to whether there are more unknowns than
equations. The answer, in general, is “yes.”” To see
this, one notes that, if two dominant weights can be
written  in the form (my,m,, --,m,_,,m,) and
(my,my, -+, m,_,,m), where the first n — 1 num-
bers are the same but the last numbers m,, and m, are
different mod 2, then it is impossible to distinguish
between them in the mapping L(m), and the inner
multiplicities of these two weights will occur in the
same equation. But such a case is certainly possible.
For example, in the irreducible representation (4, 4, 0)
of SO(6) we have two dominant weights (4, 3, 1) and
(4,3, —1); three dominant weights (4, 2,2), (4,2,
—2), and (4, 2, 0), etc. The result is that the branching-
law method alone is unable to give unique solutions to
these weights in particular. We suggest that, in these
cases, Racah’s recurrence relation be used in addition
to the branching formula in order to give complete
solutions.

However, even in the case of SO(2#n) the branching-
law method is not as bad as it seems. Inthe first place,
there are simple irreducible representations where the
above case does not arise. In the second place, in cases
where

.9m'n—1’m'n)= (ml,'."mln—- .

y(mg) + y(my) = 2,
it is possible to conclude that
ymy) =1 and y(m)=1
because both y(m,) and y(m,) are positive nonzero

integers. In fact, such cases occur quite often. For a
numerical example, see Appendix A.

C. Sp(2n)

What was said about SO(2n) is also true in the case
of Sp(2n). For example, in the irreducible representa-
tion (4, 4, 1) of Sp(6), there are two dominant weights
(3,3,3)and (3,3, 1), or (3, 2, 2) and (3, 2, 0), which
cannot be distinguished by the branching-law method
alone. For a numerical example, see Appendix B.

D. SU(@#n)

The proof for SU(n + 1) is the same as for
SO(2n + 1) once the mapping Lm has been shown
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to be nonsingular and, moreover, to map d.w.’s of
SU(n + 1) onto d.w.’s of the subgroup. This is, how-
ever, the case if the branching of SU(n + 1) with
respect to its subgroup U(n) is considered.

2. RACAH’S RECURRENCE RELATION

Since the branching-law method does not give
complete solutions to certain type of weights in SO(2n)
and Sp(2n), we have to look elsewhere for other
equations that will furnish us with a complete set of
solutions. Among the known equations for the inner
multiplicity of a weight, we find Racah’s recurrence
relation to be the simplest. Racah has given the deri-
vation of his recurrence relation, and has also stated
that this equation alone is sufficient to determine all the
inner multiplicities of weights. This point has been
utilized by Gruber to calculate the inner multiplicity
of weights in another paper.®

It is easy to show why Racah’s recurrence relation is
sufficient by itself. To see this, we write Racah’s re-
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currence relation as
y(m) = =3 dgp(m + R — SR).
§21

Again, we arrange the weights in a definite order:
from higher to lower. Then we note that R — SR is
always a positive root or sum of positive roots. There-
fore, any dominant weight is always related to other
weights higher than itself. Now, starting with the
multiplicity of the highest weight, which by Cartan’s
theorem is equal to unity, we can obtain the inner
multiplicities of all the dominant weights one by one
by means of Racah’s recurrence relation.

In the appendices, we calculate numerically the
inner multiplicity of weights in the two classical groups
SO(2n) and Sp(2n). It is noted that, in the first case

. [50(6), with irreducible representation (4, 4, 0)], we

only need to use Racah’s recurrence relation twice, and,
in the second case [Sp(6), with irreducible representa-
tion (4, 4, 0)], we only need to use Racah’s recurrence
relation three times.

APPENDIX A: BRANCHING-LAW METHOD PLUS RACAH’S METHOD: $0(6); IRREDUCIBLE
REPRESENTATION (4, 4, 0); DIMENSION 925

For SO(6) @ SO(5):

J@4.4) =j4,3)=74,2) =j4,1)=74,0) =1, (A1)
7(4,4) =y(4,4,0) =1, (A2)
7(4,3) = y(4,3,1) + y(4,3, —1) — y(4,4,0) = 1,
Soy(4,3,1) = y4,3, ~1) (A3)
=1, (Ad)
J(4,2) = y(4,2,2) + y(4,2, =2) + y(4,2,0) — y(4,3,1) — y(4,3, —=1) = 1,
5.y(4,2,2) =y4,2, ~2) (A5)
=4,2,0) (A6)
=1, (A7)
J@, ) =y@4 1, 1)+ y4 1, =1) — y(4,2,2) — y(4,2, =2) — y(4,2,0) + p(4, 1, 3) + y(@4, 1, —3)
=1,
Sy@4 LD =y4,1, ~1) (A8)
=1, (A9)

- y4,1,3) — y(4,1, =3) =1,
.. y4,0,0) =1,

(A10)

—5(4,2,0) = 0.
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From Racah’s recurrence relation:

$(3,3,2) = (3,4, 1) + y(4,2,2) — y(4,4,0) = 1, (A1)
3,3, -2)=y3,3,2) =1, (A12)
o ¥(3,3,0) =3, (A13)

73,2 =532, +y3,2, -D+2(3,2,3) - (4. 1,3) - y@4, 1, 1) + y(4,4,0)
—2y(3,3,2) — y(3,3,0) =0,

53,2, 1) = (3,2, —1) (Al4)
=3, (A15)

FB, ) =y(3,1,0) +2y3,1,4) + 2y(3, 1,2) — 2y(3,2, 3) — 2y(3,2, 1) — 2y(4, 0, 4) — 2y(4, 0, 2)
— y(4,0,0) + 2y(4,3,1) = 0,
Soy(3,1,0) =3, (A16)

J2,2) =y2,2,2) + y2,2, =2) + y2,2,0) — 2y(3, 1, 4) — 2y(3, 1, 2) — y(3, 1, 0) + 2y(3, 4, 1)
+20(4, 1,3) + 2p(4, 1, 1) — p(4,4,0) — 2p(2,3,3) — 292, 3, 1) = 0.

From Racah’s recurrence relation:

y2,2,2)=y(2,3,1) - y(2,4,2) + y(2,3,3) + y3,1,2) — y3,3,0) — y4,1,1) — y(4, 1, 3)

+y(4,2,0) + y(4,4,0) = 3, (A17)
72,2, -2 =y2,2,2) =3, (A18)
5p(2,2,0) =6, (A19)

+ 29(4,0,4) + 24, 0,2) + y(4,0,0) — 2y(4, 3, 1) — 292, 2, 4) — 292, 2, 2) — $(2,2, 0)
=0,
L2, ) =21, ) (A20)

=6, (A21)

7(2,0) = 2(2, 0,4) + 2y(2, 0, 2) + y(2,0,0) — 2y(3, —1,4) — 2y(3, —1,2) — (3, —1,0)
+29(3,2,3) + 23,2, 1) + 294, —1,3) + 294, —1, 1) — 29(4,2,2) — (4,2, 0)
—29(2,1,3) — 2y(2,1,1) = 0,

5. @2,0,0) =6, (A22)

$, 1) = 2p(1, 1, 4) + 2p(1, 1,2) + y(1, 1, 0) — 2p(2, 0,4) — 2y(2, 0, 2) — (2, 0, 0) + 2y(2, 3, 3)
+29(2,3, 1) + 293, 0, 3) + 2y(3,0, 1) — 2y(3, 3, 2) — (3, 3,0) — 2y(4, 1, 3)
— 2p(4,1,1) — 29(1,2,3) — 2y(1, 2, 1) + 2p(4, 2, 2) + y(4,2,0) = 0,
5oy(1,1,0) = 10, (A23)

7(0, 0) = (0, 0, 0) + 25(0, 0, 4) + 2y(0, 0,2) + 2p(1, 2, 3) + 2y(1, 2, 1) — 2p(1, =1, 4)
—2p(1, =1,2) — p(1, =1,0) + 2y(2, —1,3) + 2p(2, =1, 1) — 292, 2, 4) — 2¥(2,2, 2)
— 3(2,2,0) — 293, 0,3) — 29(3,0, 1) — 2y(0, 1, 3) — 2y(0, 1, 1) + 2)(3, 1, 4)
+2y3,1,2) + y3,1,0) =0,
. y(0,0,0) = 15. (A24)
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APPENDIX B:  BRANCHING-LAW METHOD PLUS RACAH’S METHOD: Sp (6);
IRREDUCIBLE REPRESENTATION (4, 4, 0); DIMENSION 1274
From Sp(6) > Sp(4), we have:
j4. =1, §4,3)=2, §4,2)=3, j4 1) =4,
§@4,00=5, 73,3)=1, 53,2)=2, §3,1) =3,
73,00=4, 72,2)=1, 72,1)=2, #2,0)=3,

FA, ) =1, 51,00=2, #0,0)=1, (B1)
7(4,4) = y(4,4,0) =1, (B2)
54,3) = y(4,3,1) + y(4,3, —=1) =2,

Sy@,3, 1) =1, (B3)

7(4,2) =2y(4,2,2) + y(4,2,0) - y(4,4,0) = 3.

From Racah’s recurrence relation:

y(4,2,2) = y(4,3,1) =1, (B4)
Soy(4,2,0) =2, (B5)
(4, 1) = 2p(4,1,3) + 2y(4, 1, 1) — 2y(4,3, 1) = 4,
Sy, 1,1) =2, (B6)
7(4,0) = 2y(4,0,4) + 2y(4,0,2) + y(4,0,0) — 2y(4,2,2) — y(4,2,0) = 5,
. y(4,0,0) =3, (B7)

73,3) =2y(3,3,2) — 29(4,2,2) — y(4,2,0) + y(3,3,0) = 1.

From Racah’s recurrence relation:

¥3,3,2) = y(3,4,1) + y(4,2,2) — p(4,4,0) = 1, (B8)
5 9(3,3,0) = 3, (B9)

73,2) =2(3,2,3) + 253, 2, 1) — 2y(4, 1,3) — 2p(4, 1, 1) — 2p(3,4, 1) = 2,
5¥3,2,1) =4, (B10)

73, 1) =2y(3,1,4) + 2y(3,1,2) + y3,1,0) — 253, 3,2) — ¥(3, 3, 0) — 2p(4, 0, 4) — 2y(4, 0, 2)
— 3(4,0,0) + y(4,4,0) = 3,
- ¥(3,1,0)=6, (B11)
73,0) = 2y(3,0,3) + 23,0, 1) — 2y(3, 2, 3) — 2y(3,2, 1) — 2p(4, —1, 3) — 2y(4, —1, 1)
+2y(4,3,1) = 4 =20 — 16,
72,2) = 2p(2,2,4) + 20(2,2,2) + y(2,2,0) — 2p(2,4,2) — (2, 4,0) — 29(3, 1,4) — 2y(3, 1,2)
—(3,1,0) = 1.

From Racah’s recurrence relation:

y2,2,2)y =y(2,2,4 + y(2,3, 1) + y(3,1,2) — y(3,1,4) — ¥(3,3,0) — y(4, 1, 1) + y(4,2,0)

=5, (B12)
S9(2,2,00 =09, (B13)

F2, 1) = 2p(2,1,3) + 292, 1, 1) — 20(2, 3, 3) — 2p(2, 3, 1) — 2y(3, 0, 3) — 2y(3, 0, 1) + 2y(3, 4, 1)
=2,

Sy, 1,1) = 10, (B14)
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¥2,0) = 2y(2,0,4) + 2y(2,0,2) + y(2,0,0) ~ 2y(2,2,4) — 2(2,2,2) — y(2,2,0) — 2y(3, —1,4)
— 253, —1,2) — y(3, —1,0) + 2y(3, 3, 2) + »@3,3,0) = 3,

5 ¥2,0,0) = 13,

(B15)

F(1, 1) =2p(1, 1,4) + 2p(1, 1,2) 4+ y(1, 1,0) — 2y(1, 3,4) — 2y(1, 3,2) — ¥(1, 3,0) — 2y(2, 0, 4)
— 2§(2,0,2) — (2,0,0) + 2y(4,0,4) + 2y(4,0,2) + (4,0, 0) + 2y(2, 4,2) + (2, 4, 0)

—'}’(4, 4, 0) = 19
Sy, 1, 0) = 16,

(B16)

7(0, 0) = 2p(0, 0, 4) + 2y(0, 0, 2) + (0, 0, 0) — 2y(4, 0, 4) — 2y(4, 0, 2) — y(4, 0, 0) — 2y(0, 2, 4)
—2y(0, 2, 2) — y(0,2,0) + 2y(4,2,2) + y(4,2,0) — 2p(1, —1,4) — 2y(1, —1,2)
-y, —=1,0 4+ 2y3, =1,4) + 2y(3, —1,2) + y(3, —1,0) + 2y(1, 3,4) + 2¢(1, 3, 2)
+ y(1,3,0) - 2y(3,3,2) — (3,3,0) = 1,

<. (0,0, 0) = 22.
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A general expression for the coefficients connecting the Stark (parabolic coordinates) and field-free
(spherical coordinates) wavefunctions for hydrogen is obtained. The result, which involves a generalized
hypergeometric function, has been numerically evaluated through principal quantum number 2 = 10.

I. INTRODUCTION

Consider a field-free region of space with a density
N,.m of hydrogen atoms in the state with quantum
numbers #, /, and m and wavefunction @, in spheri-
cal coordinates. If at some instant a strong electric field
is switched on,! the appropriate representation of the
states is in terms of the quantum numbers n, n,, n,,
and m (with n = n, + n, + m + 1) and the “Stark”
wavefunctions u,, ..., expressed in parabolic co-
ordinates. This transition is described by

— ni,ng
<I)nlm = Z Anlm Un(nyingm)
ny,ng

6

and the density of atoms in the state u

n{ning)m 18

n—1

Nn(mmm) =l-z IAZ;::P anm . (2)

The purpose of this paper is to obtain a closed
expression for the coefficients A2,

ni
II. CALCULATION OF THE COEFFICIENTS
A. The General Case

Before beginning the calculation, it is convenient to
define the generalized hypergeometric function

oy, 2 (o) - (o), X"
qu[1 _ 5 st (9y), X7

Lo X7 _ . G
ﬂl’ e ,ﬂq; ] n=0(ﬁ1)n t '(ﬂa)nn! ( )
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¥2,0) = 2y(2,0,4) + 2y(2,0,2) + y(2,0,0) ~ 2y(2,2,4) — 2(2,2,2) — y(2,2,0) — 2y(3, —1,4)
— 253, —1,2) — y(3, —1,0) + 2y(3, 3, 2) + »@3,3,0) = 3,

5 ¥2,0,0) = 13,

(B15)

F(1, 1) =2p(1, 1,4) + 2p(1, 1,2) 4+ y(1, 1,0) — 2y(1, 3,4) — 2y(1, 3,2) — ¥(1, 3,0) — 2y(2, 0, 4)
— 2§(2,0,2) — (2,0,0) + 2y(4,0,4) + 2y(4,0,2) + (4,0, 0) + 2y(2, 4,2) + (2, 4, 0)

—'}’(4, 4, 0) = 19
Sy, 1, 0) = 16,

(B16)

7(0, 0) = 2p(0, 0, 4) + 2y(0, 0, 2) + (0, 0, 0) — 2y(4, 0, 4) — 2y(4, 0, 2) — y(4, 0, 0) — 2y(0, 2, 4)
—2y(0, 2, 2) — y(0,2,0) + 2y(4,2,2) + y(4,2,0) — 2p(1, —1,4) — 2y(1, —1,2)
-y, —=1,0 4+ 2y3, =1,4) + 2y(3, —1,2) + y(3, —1,0) + 2y(1, 3,4) + 2¢(1, 3, 2)
+ y(1,3,0) - 2y(3,3,2) — (3,3,0) = 1,

<. (0,0, 0) = 22.
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A general expression for the coefficients connecting the Stark (parabolic coordinates) and field-free
(spherical coordinates) wavefunctions for hydrogen is obtained. The result, which involves a generalized
hypergeometric function, has been numerically evaluated through principal quantum number 2 = 10.

I. INTRODUCTION

Consider a field-free region of space with a density
N,.m of hydrogen atoms in the state with quantum
numbers #, /, and m and wavefunction @, in spheri-
cal coordinates. If at some instant a strong electric field
is switched on,! the appropriate representation of the
states is in terms of the quantum numbers n, n,, n,,
and m (with n = n, + n, + m + 1) and the “Stark”
wavefunctions u,, ..., expressed in parabolic co-
ordinates. This transition is described by

— ni,ng
<I)nlm = Z Anlm Un(nyingm)
ny,ng

6

and the density of atoms in the state u

n{ning)m 18

n—1

Nn(mmm) =l-z IAZ;::P anm . (2)

The purpose of this paper is to obtain a closed
expression for the coefficients A2,

ni
II. CALCULATION OF THE COEFFICIENTS
A. The General Case

Before beginning the calculation, it is convenient to
define the generalized hypergeometric function

oy, 2 (o) - (o), X"
qu[1 _ 5 st (9y), X7

Lo X7 _ . G
ﬂl’ e ,ﬂq; ] n=0(ﬁ1)n t '(ﬂa)nn! ( )
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where
(@ =1}y =ala+ 1) - (x+n—1).

The series terminates if one of the «; is a negative
integer. In the above notation the confluent hypergeo-
metric function is written as ,F;[*;#] and the ordinary
hypergeometric function becomes ,F;[*§* #]. Addi-
tional properties of these functions are given
elsewhere.>3

The expansion coefficients defined in (1) may be
written as

AZ%ZE =J-u:(n1nzm)¢nlm dr. (4)

The hydrogen atom wavefunctions expressed in
spherical and parabolic coordinates, respectively, are?

2 ( (n + I )*e_f"_'j
nQl+ D\ =1 =1 =

¢nlm =

m

1
X P;"(cos 0) (21‘ ) ern
n

—(n—1-1);2r/n
8 IFI[ 21 + 2; ] ©

UE iy = %(_1_)2(("1 + m)! (ny + m)g)%(r)m

n“\m! ny! ny! n

gimd
x em T (sin™ 6)
ko
y 1Fl[—nl; r(1 + cos 6)/n}
m+ 1;

—ny; H(1 — cos 6)/n
X 1F1[ m+1,; jl ©

The associate Legendre polynomial may be expressed
in terms of the ordinary hypergeometric function?:

P["(cos 6)
_ ((1 +m)! 2l + 1))* 1 sin™
a (1 — m)! 2" m!
N 2F1[m +1+1;—(—m);(1 — cos 0)/2]-
m+1;

M
After performing the ¢ integration and making the
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substitutions y = r/2n and x = 4(1 — cos 6), we have

g L(L)“’ @+t
" am\mY) 21 4+ 1)
y ((n+l)!(l+m)!(n1+m)!(n2+m)!)’}1 ,

(n—I—-D1I=m)!n;'ny!

3
where
w 1
Izu =f f ym+l+2xm(l — x)me—ﬂ
0 0
N F[m+l+1,—(l-—m);x:|
2l m+ 1
X F [—(n —1- 1);y}
! 20 + 2;
[ —ms (1= X)y} [—ng;xy]
X F 1 F dx dy.
1 1|: m+ 1 1y m+1; y
)]

Each of the above hypergeometric functions may be
expressed as a finite series:

1F1[—(" - 1= 1);y]
21+ 2

T == 1= D)y IFI[—nl; a- x)Y}

TS @+ 2! m+ 1;

_Jd = — x)*
& (m+ D!

, (10a)

k=0

—Hhg; Xy
lFl[m + 1;]
_ B (=nyxyt F [m +14+1; = —=m);x
=10 ) m+1; :I
= =mm + 1+ D
_r=zo (m + 1),r! '

The x and y integrals are now elementary, and we have

(10b)

I =f1xm+r+t(1 — x)m-Hc
0

_Dm+r+t+DPm+k+1)

, (@t
rGm+r+t+k+2) (1n
Iv =fwyl+m+k+t+s+2e—u
0
=Im+1+k+t+s+3) (12)

Thus,

I B(=md(=ndl—(n = 1 = DL[-( = m)}( + m+ 1), T(m + 1)
Loy —rgo go kgo go kUl st rl (m + D(m + 1),2] + 2),

Tm4+r4+t+DIk+t+s+m+143)
TQm +r+t+k+2) '

(13)
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Since the sums in r and s are uncoupled, it is con-
venient to evaluate these first:

n—i—1
[—(n =1 — D]
ek eSS I+ k+t 3
2 s@ra, [mAltkdrdstd)
=Im+1+k+1t+3)
l:—(n—l—l),m+l+k+t+3;1:|
X oF,;
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by Vandermonde’s theorem,? and

A+ m+ DI -m)ITm+r+t+41)
r=0 m+DICm+r+t+k+2)
_ _Im+t+ 1
TTQm+k+t+2)

21 + 2; ><FI:——(l—m),m+l+1,m+t+1;1:|
_Dm+Il+k+14+30Q1+2) B m+1,2m 4+ k4142 '
mn+14+1) (15)
Xx(l=m—k—t—1),,., (14) Cancelling out several terms, we are left with
_ D + DITQI+ )3 E(=ndl=m)lm+ 1+ k+t+3)(—m—k—t—1),,,
o I'n+141) S0 k' t!'TQm 4+ k +t + 2)

% 3F2|:—(l—m),m+l+1,m+t-}- 1;1]. (16)

m+1,2m + k -+t + 2;

The term (/| — m — k — t — 1),,_,, is nonzero only
if k+t<l—m—1 or k+t>2n—m—2=
ny, + ny — 1. Also, utilizing a transformation? of the
3F2 ’
|: a,a’,—N;1 ]
o ¢, 1 — N —c¢;
’ _ ! — . 1
— (C + a)NaFvZ[:a’ c a, N? }’ (17)
(©)w ¢,c+a;
one can show that our ;F, is zero unless k + ¢ >
b — ¢. Combining these three inequalities, we see that
it is evident that only the three terms with k£ + ¢ >
ny + ny — 1 contribute. After algebra, we have
_ (=D)™m")YQl+ D!(n— 1 —1)!
(n + m)!
X {(n + 14+ 1)n — 1) gFx(ny, n) — (n + m)
X [ny 3Fy(ny — 1, ny) + ny aFs(ny, ny — 1)]},
(18)

I

XY

where
3F2(k’ t)
1, —( —m);1
=3F2|:rn+t+1,m+l+ , —( — m); ] (19)
m+1,2m+k+1t+ 2;
After applying the transformation (17), with ¢’ =

m + 1 and &’ = m + n, + 1, and noting the relation
of Rainville,?

(0, — B2 + 1 3Fz[a1’ %2> %3 1}

ﬂl’ﬂ2;

o +1,a2,a3;1]
= Fl: 1
e /31,52;
01
_ _1 F: 0(190('2,“35 J’ 20
G = DR 5 ] 0

we finally have
- mlQ2L 4+ D12nn —m — DI(=D"™
(n + !
CR[PEIED 0 m o) g
m+1,—-(n—m-—1);

Combining this with (8), we have that our final
expression for the coefficients becomes

I

xy

AmMne (_l)l—m (n —m- 1)'

nim m!
y ((21 + DA + m)! (n, + m)! (ny + m)!)*
(m+ D11 —m) g ny! (n—1— 1)
N an[m + 141, - — m), —ny; I:I'
ma+1,—(n—m—1);

(22)
B. Special Properties

Utilizing Eq. (17) with N=/—m, ¢= —I,
=—m—-—m—1)=—n—n,, a=m+1+1,
and a' = —n,, one has

F[m+l+1,-—(l—m),—n2;1:|
3t 2

m+15_(n—m_1);

_ (_1),_m3F2|:m +14+1, - —m), —ny; l:l,
m+ls_(n_m_1);
(23)
which yields the symmetry relation
A= (=D7TATE (24)

Thus, for example, if n, =n, and / — m is odd,
Anr = 0.

In some cases the formula (8) is reducible, viz., the
hypergeometric function may be summed explicitly

in terms of gamma functions. For the case / = m one
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may easily show that

no+ N\ (n, + l) :
e
Aniin” = n+!
(21 + 1)
Using Vandermonde’s theorem,® we have that the
case / = n — 1 may be reduced to

n—m-—1 (n+m—1)
( hy ) n+m
2n—2
(n—])

In Egs. (25) and (26) the binomial coefficients are
defined as usual by

(25)

$

1
= (= 1y

(26)

(i) B ,T(f'__,; - (27

III. TABULATION OF THE COEFFICIENTS

In Table I, the coefficients 471,72 are tabulated for
n < 3. A more extensive tabulation through n = 10
is given elsewhere.® The accuracy of these tables has
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TasLE I, The expansion coefficients 4}},"2 for n < 3.

("9 l: m, nly n2) A:};tne (n’ I, m; ny, "2) A:ll;nnz
(1,0,0;0,0) 1.000 (3,1,0;1,1) 0.000
2,0,0;0,1) 0.707 (3,1,0;2,0) -0.707
2,0,0;1,0) 0.707 3,1,1;0, 1) 0.707
2,1,0;0,1) 0.707 3,1,1;1,0) 0.707
2,1,0;1,0) —0.707 (3,2,0;0,2) 0.408
2,1,1;0,0) 1.000 3,2,0;1,1) —0.816
(3,0,0;0,2) 0.577 (3,2,0,2,0) 0.408
(3,0,0;1,1) 0.577 3,2,1;0, 1) 0.707
(3,0,0;2,0) 0.577 (3,2,1;1,0) -0.707
3,1,0;0,2) 0.707 (3,2,2:0,0) 1.000

been checked using the relations
n—1 . .
St =3 mer =1 Q)
l=m ni,ne

* Work performed under the auspices of the U.S. Atomic Energy
Commission.

! Alternatively, if the atom is moving, a magnetic field will
generate an effective Lorentz electric field. The original motivation
for the calculation was an experimental situation in which an ener-
getic beam of hydrogen atoms moved from a field-free region into
one in which there was a strong magnetic field (see Ref. 6).

® W. N. Bailey, Generalized Hypergeometric Series (Cambridge
Tracts No. 32, Cambridge, 1935). :

3 A. Erdélyi et al., Higher Transcendental Functions (McGraw-
Hill, New York, 1953), Vol. I.

4 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One
and Two Electron Atoms (Academic, New York, 1957).

5 E. D. Rainville, Bull. Am. Math. Soc. 22, 370 (1945).

¢ C. B. Tarter, Lawrence Radiation Laboratory Rept. UCRL-
7493, 1963. Additional information and applications of the present
work are also given in this unpublished report.
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The proper vibrations of homogeneous and isotropic space are examined on the basis of the equations
of the de Broglie wave field (field equations). The time-dependent part of the wavefunction, which is a
solution of the Klein-Gordon equation, satisfies the differential equation which coincides with the
differential equation derived from field equations for the time-dependent part of the Robertson~Walker

metric.

1. INTRODUCTION

The wave processes in homogeneous and isotropic
closed space are studied in Refs. 1-6. In the case when
the space is closed, D’Alembert’s, Maxwell’s, Klein—
Gordon’s, and Dirac’s equations provide eigenvalue
problems. Our analysis here seems to point toward a
possibility which differs considerably from the ones
mentioned above. We are considering a possibility of
proper vibration of the homogeneous and isotropic
space itself. In the case when the space is closed, its

proper vibration might be discontinuous and thus
provide an adequate description of the observed
atomicity of matter and light.

We now give a brief review of the conclusions
reached in this paper. We start from field equations’
which are a system of simultaneous second-order
nonlinear  partial-differential equations for the
components of metric tensor g,,. They have real char-
acteristic surfaces,® which are identical with the 3-
dimensional wavesurfaces of the de Broglie waves.”*?
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closed space are studied in Refs. 1-6. In the case when
the space is closed, D’Alembert’s, Maxwell’s, Klein—
Gordon’s, and Dirac’s equations provide eigenvalue
problems. Our analysis here seems to point toward a
possibility which differs considerably from the ones
mentioned above. We are considering a possibility of
proper vibration of the homogeneous and isotropic
space itself. In the case when the space is closed, its

proper vibration might be discontinuous and thus
provide an adequate description of the observed
atomicity of matter and light.

We now give a brief review of the conclusions
reached in this paper. We start from field equations’
which are a system of simultaneous second-order
nonlinear  partial-differential equations for the
components of metric tensor g,,. They have real char-
acteristic surfaces,® which are identical with the 3-
dimensional wavesurfaces of the de Broglie waves.”*?
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Under the assumption that the space x° = const
is homogeneous and isotropic, we can solve the field
equations using the Robertson-Walker metric. The
Robertson-Walker metric is a relatively simple
metric which can be associated with the particle
at rest in the customary comoving coordinate system.

The field equations yield a single differential equa-
tion for the scalar factor which describes the time
development of the metric of space. This differential
equation coincides with the differential equation for
the time-dependent part of the wavefunction, which
is the solution of Klein-Gordon equation for the
Robertson-Walker metric.*

It is a property of the Robertson~Walker metric
that the distance of two points in space is proportional
to the scalar factor and thus it is a function of time.
The time dependence of distance is determined by the
nonlinear differential equation which represents an
autonomous (not explicitly containing the independent
variable), conservative (not containing a first deriva-
tive) oscillation.

The volume of the space shares the common
oscillation. The function which describes the time
dependence of the volume is a solution of a nonlinear
differential equation which also represents an autono-
mous, conservative oscillation.

The equation for the distance oscillation and the
equation for the volume oscillation are coupled. The
nonlinear term in the equation of the distance oscilla-
tion is proportional to the conserved energy of volume
oscillator, and the nonlinear term in the equation of
the volume oscillator is proportional to the conserved
energy of the distance oscillator.

The conserved energy of the distance oscillator is
identical, within the sign, to the constant curvature of
space. This means that in the case of Euclidean space
the distance oscillator has zero energy. When the
space is pseudospherical or spherical (the spherical
space is closed), the energy of the distance oscillator
is positive or negative, respectively.

Generally, the frequency of the distance oscillation
and the frequency of the volume oscillation vary with
the time. For a sufficiently large volume both fre-
quencies are constant and the distance oscillation
frequency is one-third of the volume-oscillator
freqeuncy.

2. FIELD EQUATIONS

The field equations’ are
2

X
Rab - %Rgab - 71; Sy

= -—(R + 4%;)(%&:, — X%y, (1)

J. KULHANEK

where g,, = g,,, K? is the rest mass,' & is Planck’s
constant and the Xx* are components of the unit
normal 4-vector to the 3-surface of the de Broglie
wave. On the left-hand side of (1) is a well-known
tensor whose covariant divergence vanishes. Thus,
from (1) we have the conservation equations

bl R+4£2(~1- — XX =0 2
g h2 2gab xaxb) | — Y. ( )
14
Because of
g, = 1, 3

we have from (2) that
0 3 Jerd
—i (- R+4—=})xi*] =0.
ax“[( ® ( * hz)x]

For any given set of four functions x*(x¥), sufficiently
smooth (for simplicity let us suppose them to be of
class C2) for which (3) is valid, the system (1) is a set
of 10 nonlinear partial-differential equations to be
satisfied by 10 unknowns g,,. The four conservation
equations (2) are a consequence of (1) and imply no
restrictions on the chosen X%(x*) since they contain
the unknowns g,, not only in the coefficients but also in
the derivatives. Since the given x*(x*) do not uniquely
determine the coordinate system we have to add
coordinate conditions. There are only three of these
because of (3) which represents the fourth coordinate
condition.

The Egs. (1) do not contain sources; hence, we are
dealing with continuous and nondualistic field theory.
There is no reason to distinguish between exterior
and interior solutions of Egs. (1).

4

3. THE PARTICLE AT REST IN 3-SPACE

For the particle at rest in 3-space we will assume
that the components of the unit 4-vector x°(x*) are
(0,0,0, 1). Since the 4-vector x* is unitary, we have
from (3) that

gu=1 (5)

This equation is one coordinate condition. To solve
the field equations, we need add any further three
coordinate conditions.

Let us assume as these coordinate conditions

ga4=0, oG = 192, 33 (6)

and hence we use the Gauss normal coordinates.
Since the particle is at rest in the observer’s 3-space,
we will further assume that we have no reason to
prefer any direction in 3-space. Consequently, we
will consider that the geometry of space~time admits
coordinates in which the first metric form is

ds? = (dx°)® — U%(x") dw?, @)
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where U(x®) is an arbitrary function and
do® = hy(x', x%, x*) dx* dx* (8)

defines the 3-space of constant curvature k in which
dw* > 0 for any two neighboring points. Since the
signature of (7) is —2, we will put J¢* = ¥? and con-
sider it as the rest mass of the particle.® From the
field equations we now have
Je2
Raﬂ + F 8up = 0,
2

~R-3 % =0,

d % 362%
L - R+4=) =0,
dﬂ(w( + W)

Ry ®

where
(10)
For the Ricci tensor and the scalar curvature R of
space-time we get!!

Ry = —(UU + 2k + ZUz)ha,,,

.R44 = 3UU_1,

R=6(UU+ U+ kU

Substituting from (11) into (9) we find that the first

two Eqgs. (9) are identical and we obtain the following
equation:

gaﬂ = — Uzhap .

(11)

2
UU+2U2+% U 42k=0.  (12)

From the last of Egs. (9) we get

3 K

Thus, for the function U we have two simultaneous
equations

. J€2 %‘
c;‘i—c,(s)*Uz(UIH g 2 ey k) =0. (13)

. . Je?
UU+2U2+EU2+2k=0,

. 2 Je?

U‘(UU + U + A U® + k) =36 (14)
where f is a constant of integration. The compacti-
bility condition of these equations is

1 %2 18
U+-=U=-L,
3 h? 308
The nonlinear differential equation (15) represents an
autonomous (not explicitly containing the independent
variable), conservative (not containing a first deriva-
tive) oscillation. Hence, simultaneous solutions of
Eqs. (14) are all solutions of equation

(15)

af e 15 o 102
U U+5FU + k) = —4p% (16)
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For further considerations the constant §2 is no
longer convenient. We will write §2 = —4W where
W is a constant, the meaning of which will be dis-
cussed later.

4. TIME-DEPENDENT DISTANCE AND
VOLUME OF SPACE

From the line element (7) it follows that the distance
of two points in space is proportional to U and the
volume of space is proportional to U3, Let us denote
V = U3. Then, we can transcribe Eq. (16) as

. Je?
w3y Lt ow

17
T (17
Differentiation of (17) gives
., ¥
V+3EV+61<V*=0. (18)

Equation (18) describes the volume oscillations. The
constant W, introduced in connection with the integra-
tion of the conservation law (4) which, in our special
case, is given by the last Eq. (9), is the energy of the
oscillator described by Eq. (18). Now, if we rewrite
Eq. (16) in the form

1 x?

%02_‘-6}12 Uz—g—l;i:—%k (19)
and differentiate it, we get
oo 132 4 W
U+§;£U 55‘5=0. (20)

From Eq. (19), we see that the quantity — 4k, where
k is a constant curvature of space, is the energy of
distance oscillator described by Eq. (20). Equation
(18), which describes the volume oscillation, and
Eq. (10), which describes the distance oscillations,
are coupled. The nonlinear term in (18) depends on
the curvature k, which essentially gives the energy
— 1k of the distance oscillator (20). On the other hand,
the nonlinear term in (20) depends on W, which is
the energy volume oscillator (18).

The time varying frequency of the oscillator (18) is

3 (e 2kt
=——|— += 21
’ (2\/3)7r(h2 V%) @D
and the oscillator (20) has varying frequency
1 (x2  4w
b= — = +-—]). 22
g (2\/3)17(112 3 V2) 22)

In Eqgs. (21) and (22), as before, V = U®. When the
volume V is very large, we learn from (22) and (21)
that

7= Ly (23)
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The frequency of the distance oscillator is one-third
the frequency of the volume oscillator. There are three
cases when Eq. (16) can be integrated immediately by
means of elementary functions.

As a first case let us consider k = W = 0. The
energy of the distance and volume oscillator is zero
and the space is Euclidean (k = 0). However, there
is no real solution for U as a function of x® This
violates our basic assumption that U is a real function
of the time x% Let us remark that the frequency
relation (23) is exactly valid in this case.

In the second case let us consider ¥ = G and W # 0.
The energy —4k of the distance oscillator is zero and
the space is Euclidean (k = 0). The energy W of a
volume oscillator is a constant. For the time depend-
ence of volume V, we obtain from Eq. (18)

oy J
V = Asin (\/3-’;-x°+B), (24)
where 4 and B are constants of integration. We can
write W = 34%(%?%h?). The frequency (21) of the
volume oscillator is a constant but the frequency of
the distance oscillator varies with time.

The third case, £ # 0 and W = 0. The energy W
of the volume oscillator is zero. The energy —ik of
the distance oscillator is positive for £ < 0 (pseudo-
spherical space). In this case, we have

U = Asin (—l;ﬁx°+3), (25)
J3h
where 4 and B are integrating constants. One easily
verifies that
1 x%?

Sgr= k.

6 i (26)

Thus, for real U, we have necessarily k¥ < 0 (pseudo-
spherical space) and the energy —ik of distance
oscillator is positive. The frequency (21) of the volume
oscillations varies with time and the frequency (22)
of the distance oscillations is constant.

We observe that, under the cases introduced above,
the space with positive curvature k, i.e., spherical
space which is finite,does not appear.

To obtain the solution of Eq. (16) for k 0 and

W # 0, the variable x° is no longer convenient. Using
new independent variable dr = U~ dx® and writing
U? = y, we obtain from (16), after differentiation,
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d’y : 2
— 4 4k 2—y“ =0,
d1'2+ y + hzy

The foregoing equation has general solution given by
Jacobi elliptic function.

J. KULHANEK

S. KLEIN-GORDON EQUATION

Schrodinger® solved the familiar wave equation of
the second order,

1 0/ ., —0yp
— — (g g+ 1y =0, 27
\/—gax“(g V gax,,) wry @7
where y is the wavefunction and u = 2am/h (m is rest
mass and A is Planck’s constant) for the line element
(7). For the time-dependent part f(x?) of the wave-
function v, Schrtidinger obtained the equation

+ [m(m + 2)U* + LU f=0. (28)

d 2

(The symbol U is used for the scale-factor function

and not R as was used by Schrddinger.)

Here

dr = U=3dx° 29

and m is a nonnegative integer, and m(m + 2) is a

constant of separation. Equation (16) can be rewritten,
with the help of (29), as

dU 13 s
) =-~2 — kU +2WU? (30
(df) 30t +s (30)
and hence,
d*U R 4 3e*
a4 3kUt 4 2 UG) U=0. (31
a ( +3kUt+ @31

Now, if we put in (31),

4 x?
W =0, 3k=m(m+2), T =u?, (32
then from (31) and (28) we have that
a*f a*u
—— U —-—f=0. 33
dr? dr? f (33)
The relation
f df 2 f2 = const (34)

holds for any two solutions f; and f, of Eq. (28)
and thus, because of (33), U is a solution of (28). In
this way we arrived at the result that if the scalar factor
function U is given as a solution of Eq. (30) then, by
replacing the constants therein and with the help of
relations (32), we directly obtain the time- dependent
part of the wavefunction .

CONCLUSION

It is well known that the 3-space, with k > 0 is an
analog of the surface of an ordinary sphere. The



THE PROPER VIBRATION OF THE SPACE

vibrations of a spherical surface!® are characterized
by discrete eigenfrequencies. The discreteness is a
consequence of the fitting of wavelengths into a finite
span.

The vibrations of 3-space with k > 0, which are
considered in this paper, are similar to a pulsating
sphere. This particular motion of a spherical surface
is characterized by eigenfrequency which is zero.'?
The assumed isotropy of 3-space ruled out the higher
eigenfrequencies. However, it is possible that the
eigenfrequencies of nonisotropic and finite 3-space
might provide an adequate description of the observed
atomicity of matter and light.
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The equations of the de Broglie wave field (field equations) [J. Kulhanek, Nuovo Cimento Supp. 4,
172 (1966) ] under special conditions require a very particular geometry together with a specific inter-
pretation of the curvature scalar. The purpose of the present paper is to show that the same condition
turns the conservation law (which is a consequence of the field equations) into an identity and that the
Rainich [Nature 115, 498 (1925)] decomposition of Riemann’scurvature tensor gives only one component.

A SPECIAL CASE OF THE FIELD EQUATIONS
The general form of the field equations' is

2

5
R,y — $Rga — F 8ab

J€2
= —(R+435) G — 550, O
where g,, = g,,, K? is the rest mass, 4 is Planck’s
constant, and the x° are components of the unit 4-
vector normal to the 3-wavesurface of the de Broglie
wave. On the left-hand side of (1) is a well-known
tensor, whose covariant divergence vanishes. Thus,
from (1) we have the conservation equations,
J€2
& (R+ 435 )G — 2] =0 @
It

It is well known that the quantity R, &'&* is the
scalar curvature of a 3-dimensional space which is
perpendicular to &% If we put & = x“, then from (1)
it follows that

R, X" = R + 3 (3% h?) . 3)

Thus quantity R + 3(JC2/A%)represents scalar curvature
of the 3-wavesurface of the de Broglie wave.
In the case when we assume that

R+ 4k =0, @

then the conservation law (2) is trivial and Egs. (1)
are reduced to
'Rab - iRgab = 0. (5)

From Egs. (3) and (4) we have that

Rpx" = — (3] h*) (6)

@)

The scalar curvature of the 3-wavesurface of the de
Broglie wave is given as —JC*(A? or {R.

Rainich? showed that Riemann’s curvature tensor
R,, ... in the 4-dimensional space can be decomposed
into two parts which have different properties of
symmetry. Considering the Riemannian curvature in
the 2-direction defined by the unit bivector V** and

or
b 1
R,,xx” = 1R.
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the Riemannian curvature in the perpendicular 2-
direction defined by the unit bivector ¥, we can
then write?

Rik m = Six m + A im - (3

For the 2-directions V* and F** the component
S 1 defines the same sign curvature while A, ,,,
defines curvature of the opposite sign. We can write
that

Sit 1nVEVI™ = Sy i VP ®)
and

Ay szilem = —Ay lmVilem' (10)

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 11

J. KULHANEK

Now, in Ref. 2 it is shown that
A 1m = 3(8:Kiem + &xmKit — ZimKiy — guKim), (11)
where we denote

Klm = le - %Rglm‘ (12)
From (11), (12), and (5) it follows that
Aik m = 0. (13)

We see from (11) that (13) and (5) are equivalent.
The field equations (1) with condition (2) imply that
Riemann’s tensor is equal to the component Sy ;,,
of the Rainich decomposition (8).

1 J. Kulhinek, Nuovo Cimento Suppl. 4, 172 (1966).
2 C. Y. Rainich, Nature 115, 498 (1925).
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In this paper we use the “smoothing method’’ to calculate the correlation functions of the solutions

of the equation

d*u
Zz T Al + aN@u =0,

satisfying nonstochastic initial conditions, where N(z) is a real, wide-sense stationary stochastic process
with zero mean and §, and 7 « 1 are positive constants, It is shown that an appropriate application of
the smoothing method leads to the exact results in the case when N(z) is the random telegraph process.
Moreover, under appropriate conditions on the general process N(z), approximate expressions are
obtained for the correlation functions in terms of the first- and second-order moments of the solutions,
and approximate expressions are given for these momeats.

1. INTRODUCTION AND SUMMARY

In a previous paper! we used the ‘“smoothing
method” to calculate approximately the first- and
second-order moments of the solutions of the stochas-
tic differential equation (1.2). Our interest was in
the propagation of an electromagnetic wave through
a randomly stratified dielectric slab, but Eq. (1.2),
in which the stochastic process N(z) satisfies (1.1), also
corresponds to a harmonic oscillator with a random
spring and arises in many other contexts. In this
paper we apply the smoothing method to calculate
approximately the correlation functions of the solu-
tions of (1.2). We also show that the results are in
fact exact in the particular case in which N(z) is the
random telegraph process 7(z), defined in Sec. 3.
We derived the exact results in this case in an earlier

paper.?

The smoothing method® for calculating the ex-
pected value of the solution of a linear stochastic
equation has been developed extensively by Keller+10
and Bourret.!~1¢ In Sec. 2 we give an outline of the
method in a form which is appropriate for our
purposes, and is close to that given by Keller. How-
ever, our application of the smoothing approxima-
tion to the calculation of the correlation functions of
the solutions of Eq. (1.2) differs considerably from
that proposed by Keller.®=1° In our approach it is
necessary to solve only ordinary differential and
integro-differential equations, whereas the scheme
proposed by Keller leads to partial differential and
integro-differential equations.

Let N(z) be a real, wide-sense stationary stochastic
process with

(N@)) =0, (NO)N@)=T(y—2), (LD
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where ( ) denotes the ensemble average. Each
sample function N(z) defines two real functions
u,(z), m=1, 2, on 0 <z < oo which are the
linearly independent solutions of

du, s
P Boll + nN(2)]uy = 0, (1.2)
satisfying the initial conditions
uy(0) = 1 = u3(0), u3(0) =0 = uy(0), (1.3)

where B, and 7 <« 1 are positive constants. The
ensemble of functions {u,(z)}, m =1, 2, forms two
real random processes. We assume that almost all
the sample functions N(z) are smooth enough so
that the solutions u,,(z) of (1.2) exist. Throughout
the paper we adopt the notation

(@)= 2, m=1,2 (14)
dz
We introduce the matrix of solutions
(2) “2(2)}
F(z) = [ ! , 1.5
@ 0,(2) vy(2) (1.3)
with initial conditions, from (1.3),
1 0
F(0) = =1 1.6
© [0 l:l I (1.6)

The procedure we adopt is to write down the equation
satisfied by the Kronecker product”

Wi H)=Fz+)xF@2), (>0, (L7)

regarded as a function of {. [A x B= (a;;) x B=
(a;;B).] The initial condition is

W(z,0) = F(z) x F(z), (1.8)

and hence is stochastic for z > 0. Thus, in the appli-
cation of the smoothing method to the equation for
W(z, {), a knowledge of the incoherent part of
W(z,0) is required. But, by application of the
smoothing approximation to the equation satisfied
by W(z, 0), this quantity may be represented as an
integral involving (F(z) x F(z)), which we have al-
ready calculated by the smoothing method.!

The equation obtained for (W(z, {)) is solved by
means of Laplace transforms, and the case in which
I'(z) = exp (—2b |z]) is considered in detail in Sec. 3.
It is shown that the results are exact in the case
N(z) = T(z), where T(z) is the random telegraph
process, so that # is not restricted to be small in this
particular case. In showing this, more explicit ex-
pressions than those which we gave previously? are
obtained for the Laplace transforms of some of the

3201

quantities that arise. We previously! showed that,
when N(z) = T(z), the smoothing method gives the
exact results for the first- and second-order moments
of the solutions of (1.2), thus verifying the indirect
proof given by Bourret.!5:1¢ However, it is not clear
that Bourret’s proof can be extended to the correla-
tion functions. In fact, in Sec. 5 we consider another
application of the smoothing method to the calcula-
tion of the correlation functions which does not ap-
pear to give the exact result in the random telegraph
case.

In Sec. 4 the general case is considered. It is assumed
that y(o), the Laplace transform of I'({), as defined
by (3.5) and (4.7), is analytic for Re (¢) > —a, where
a > 0 is independent of 7. Then, it is shown that

(F(z + {) x F(2)) ~ [(F())) x I(F(2) x F(z)), (1.9)

on the intervals 0 < #26,{ < E and 0 < #*fz < Z,
where E and Z are O(1). Moreover, from the expres-
sions for the Laplace transforms of the first- and
second-order moments, which we obtained previously’
by the smoothing method, we derive approximate
expressions for the quantities on the right-hand side
of (1.9) [see (4.8)-(4.17)]. These expressions are shown
in Appendix D to be consistent with those derived
from the results of Papanicolaou and Keller,*® who
applied a 2-variable method to calculate the first-
and second-order moments of the solutions of (1.2).
The approximations to the first- and second-order
moments, and the approximation (1.9) to the corre-
lation functions, may also be derived from earlier
results of Khas’'minskii'® and Stratonovich,?® as we
will show in another paper.

2. FORMULATION AND APPLICATION OF
THE SMOOTHING METHOD

We first give a formulation of the smoothing
method, in the context in which it is needed here.
Thus, consider a linear stochastic equation for the
matrix U,

(Lo + 7L)U = 0, @

where L, is a nonstochastic matrix differential opera-
tor, but L, is a stochastic one, and % is a small

positive parameter. It is supposed that the stochastic
average of L, is zero, that is,

(Ly) = 0. (2.2)
We define the incoherent part of U as
cUo =U~— (U), (2.3)

so that

(CUD) = 0. (2.4)
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If we substitute for U from (2.3) into (2.1) and
take the stochastic average, we obtain
Ly(U) 4+ »(L,cUD) = 0.
We next subtract (2.5) from (2.1) and obtain

L,cUD + 7L(U) + 5[L,cUD — (L,CcUD)] = 0.
(2.6)
So far no approximations have been made. However,

neglecting terms of order %% in (2.6), we obtain the
smoothing approximation

L,CUD = —yL,(U).

(2.5)

2.7)

If the inverse operator L;* is applied to this equation
and the resulting expression for CUD is substituted
into (2.5), the equation for (U) as given by Keller®
is obtained, with terms of order %3 and higher being
neglected. However, the above form is more conven-
ient for our purposes.

We proceed to derive an equation for the quantity
W(z, {) defined in (1.7). We first obtain an equation
for F(z) from (1.2), (1.4), and (1.5). Let

s=ln o o= il

g— + [A + 1BEN(z)CIF(z) = .

1t follows from (2.9) that, for { > 0,

(2.8)
Then,

(2.9)

a—C F(z + 0) + [A + 76N(z + DCIF(z + {) = 0.

(2.10)
We now take the Kronecker product of the expression
in (2.10) with F(z) and obtain, from (1.7),

W L (A + nBING + 0C] x Wz 0 = 0,

o¢
>0 (211

The initial value W(z, 0) is given by (1.8).
The equation for W has the form of the equation
for U in (2.1), with

0 _ p2
L, (I5Z + A) x I, L, = BN(z + {XC x I).
(2.12)

Note that (2.2) is satisfied by virtue of (1.1). Thus, in
the smoothing approximation, from (2.7), and from

(1.8),
L, CWD = ~ 5L (W),

cW(z, 00D = CF(z) x F(2)D. (2.13)

J. A. MORRISON

Also, from (2.5) and (1.8),

Ly(W) = —n(L,cWD), (W(z,0)) = (F(z) x F(2)).

(2.19)
Now let
1 .
po=| P 5P s
| —Bosin Bl cos Bol
It may be verified, using (2.8), that

dP

i + AP =0, PO)=1, (2.16)

so that P is a fundamental matrix. Thus, with L,
given by (2.12),

L[P()xI]=0, PO)xI=IxL
Hence, from (2.12) and (2.13),
cW(z, {)o
= [P({) x I]cF(z) x F(z)>
- nﬁﬁf[P(é = xIIN@z + §H(C xI)
x (W(z, &)) d&. (2.18)

Before writing down an equation for (W), we turn to
the calculation of CF(z) x F(z)D.
Now, from (2.9) it follows that

di’z[F(z) x F@)] + [(A x T) + (I x A)][F(z) x F(2)]
+ nBENGIC x 1) + (I x O)J[F(2) x F(z)] = 0.
(2.19)

But previously! we analyzed this equation by the
smoothing method and derived an expression for
the Laplace transform of (F(z) x F(z)). Let

¥(z) = [P(z) x P(2)][(C x ) + (I x C)].

Then, from the equation corresponding to (2.7),
since CF(0) x F(0)D = 0 from (1.6), we obtain, from
(2.16) and (2.19),

cF(z) x F(z)o
= _ﬁﬁgf‘l’(z — E)N(EXF(&) x F(&))d&. (2.21)

Thus, from (1.1), (2.12), (2.14), (2.18), and (2.21),
we have

W)
a¢
=nfs fo (¢ — &{[CP({ — &)C] x IHW(z, £)) d&

+ P BA{ICP(D)] x I}sz(z + - ¥z -5
x (F(&) x ¥(&)) d&. (2.22)

@.17)

(2.20)

+ (A x D(W(z, §))
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The initial condition is as in (2.14). We consider the
solution of Eq. (2.22) in the next two sections.

3. PROCESS WITH AN EXPONENTIAL
CORRELATION FUNCTION
In this section we consider the particular case in
which
[(z) = ™I, (3.1)
In an earlier paper® we obtained exact solutions for the
first- and second-order moments, and the correlation
functions, of the solutions of (1.2), in the case in which
N(z) = T(z), where T(z) is the random telegraph
process, defined in the following way.* A given
function of the ensemble {T(z)} can assume only the
values +1, and as a function of z it makes independent
random traversals from one value to the other. For
fixed z, a sample function chosen at random will
equal 1 or —1 with probability 1/2. The probability
that a given sample function makes » traversals in an
interval of length z is given by the Poisson distribution

bz)n —bz

e
n!

p(n,z)=( , n=0,1,2,---, (3.2)
where b is the average number of traversals per unit

length. A straightforward calculation yields*

(T@) =0, (T(NT(z)) =™ (33)

(i g1 - 2

and

A(él(—l)"él@ | 0>]-k) = %(;:U:Zzbb)) i)

(3.8)
We remark that?

FO) =13 (@D |0,

j=1

(3.9)

Expressions were also given for the Laplace trans-
forms of the elements of (F(z) x F(z)), and we
remark that?

2

32 (F(z) x F(2)), = (F(2) x F(2)).

k=1

(3.10)

We define
£(G) = f " G(2) dz. (3.11)
Let
A = A(s) = {s(s + 2b)(s* + 4BD)((s + 2b)* + 4p2]
— 16784 + b}, (.12)

ol(o + 2b)* + B
—Ba{l(o + 2b) + B3] — n°B3} ol(o + 2b)* + Bi]
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We showed! that the smoothing method leads to
the exact resuits for the first- and second-order
moments of the solutions of (1.2), subject to (1.3),
when N(z) = T(z). Here we show that the smoothing
method, as outlined in the previous section, leads to
the exact results also for the correlation functions,
in this case. We relegate the details to Appendix A,
but give the results in this section in a more explicit
form than we gave earlier. Previously? we obtained, in
the case N(z) = T(z), the exact resuit

(F(z + {) x F(2))

2
=13 (Z@O10. x1)F@) x Fe)]. 6.9
The reader is referred to Ref. 2 for the meanings of
the functions occurring in (3.4).

Expressions were given for the Laplace transform
of (®(0) | 0);.. We define

A(H) = f " T H(Y) dL.

0

(3.5)
Let

d(o) = {(¢® + Bp)l(c + 2b)* + B3] — n*B3}. (3.6)
Then

(o + 26)* + B3] ) 37

Then?
(D) = (/D) {(s + 2b)(s* + 26D[(s + 2b)* + 4p3]
— 81°f5(s + b)}, (3.13)
E((oD) = (2/8)Ba(s + 2b){[(s + 2b)* + 43]

+ 7*[s(s + 2b) — 482}, (3.14)
and

L(u3) = (2/A)(s + 2b)[(s + 2b)° + 485]. (3.15)
The remaining elements of £((F x F)) are given by

£((v3)) = £((uD), (3.16)
L)) = L((ugvg)) = sL((u3)),  (3.17)
L(uor)) = £((vyvp) = $sC()) — 1] (3.18)
and
£((uyve) + (ogus)) = $5°C((u3)),
£(uyve) — (vyuy) = 1/s. (3.19)

Finally, expressions were given? for the Laplace
transforms of the elements of (F(z) x F(2)),, but
these involved the products and inverses of certain
2 x 2 matrices. The evaluation of these expressions
is somewhat tedious, and only some of the details
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are given in Appendix B. It is found that

AL((uD)e ~ (uph) = 4nfels’(s + 2b) + 465b], (3.20)

AL(uyvy)s — (Ugvy)y)
= 2B%(s + 2b)[s%s + 2b) + 48%], (3.21)

AL, — (uD)

= —8nf5(s + b)[s(s + 2b) + 2(1 — ")), (3.22)
AL((ud), — (u3)y) = 169B3(s + b),  (3.23)
AL((uga)s — (Us0s)y) = 8nBY(s + b)(s + 2b), (3.24)
AL((v3)s — (vB))) = 4nfils(s + 2b)" — 4fgb], (3.25)
AL((uytin)y, — {Uytiz))) = 8nPas(s + b), (3.26)

AL((v109), — (0102)1) = 277.335[5(3 + 2b)* — 45(2)17],

(3.27)
and

AL((uyvg)y — (Uy0p)y) = 477ﬁ<2)5(5 + b)(s + 2b)
= AL((vytig)g — (VyUs))-

With the aid of the above results, we establish
in Appendix A that, when I'(2) is given by (3.1), the
smoothing method leads to the expression given in
(3.4) for (F(z + {) x F(2)), so that the results are
exact in the case N(z) = T(z). Now, Egs. (3.13)-
(3.19), together with (3.20)-(3.28), determine the
elements of L((F x F)),, k = 1,2, in view of (3.10).
Denote the roots of the equation A(s) = 0, as given
by (3.12), by s,, p=1,- -, 6, and let 5o = 0. Then,
inverting the Laplace transforms, we obtain

(3.28)

6
(F(z) x F(2)), =D C, "% k=12, (3.29)
p=0

where the C,, are constant 4 X 4 matrices, which
are calculated from the residues at s =ys,. It is
remarked that for small % one of the roots of A(s) = 0
has a positive real part. Similarly, the elements of
A2, (® | 0),,) are given by (3.7) and (3.8). Denote
the roots of the equation d(o) = 0, as given by (3.6),
by o,, r=1,---,4. Then, inverting the Laplace
transforms, we have

§<¢(€) | 0>7‘k = éBr,kearC’ k = 15 2’ (330)
j=1 r=1

where the B, , are constant 2 X 2 matrices. It can be
shown that Re (6,) < 0 for r =1, 2, 3, 4, as long as
5 < 1. Combining (3.4), (3.29), and (3.30), we have

4 6

Fe+)xF@)=143 3

ari+s
(B, , X I)C, e+,
k=1 r=1 p=0

(3.31)
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4. THE GENERAL PROCESS

We return now to the general case, and consider
first the calculation of the first-order moments by
the smoothing method. We did this previously! in
scalar form, but it is desirable here to have the
results in matrix form. Applying the smoothing
method to Eq. (2.9), with the variable z replaced by
{, and solving the equation corresponding to (2.7),
using (1.6) and (2.16), we obtain

CFO= = -—nﬂﬁfP(C — ONE)CE(E) dE. (4.1)

Then, from (1.1) and the equation corresponding to
(2.5),

&(F) -
i + A(F(0))

= 7Bt L T = OCPL ~ HCEE) dE, (4.2)

with initial condition, from (1.6), (F(0)) = I. Taking
Laplace transforms, as in (3.5), we obtain

[0 + A — n®8A(TCPO)A(F) =1 (4.3)

An explicit formula for A((F)) is given in Appendix
C, but for the moment (4.3) suffices. Note, from (1.1),
(3.3), (3.9), (A3), and (AS), that (4.3) is exact in the
case N(z) = T(2).

We now consider Eq. (2.22) for (W(z, {)). Taking
Laplace transforms with respect to { and using the
initial condition in (2.14), we obtain

(10T + A — 7*BATCPC)] x TA(W))
— (F(z) x F(2))
= nzﬂéA({[CP(C)] x T} f TG+ — 5%~ &

\

x (F(£) x F(£)) df). (4.4)
But, from (4.3),
{lo] + A — 7*BsA(I'CPC)] x I}
=A(F) x I =A(F) x ). (4.5)

Hence, from (1.7), (4.4), and (4.5), solving for
A((W)) and inverting the Laplace transforms, we get

(F(z + ) x F(2)) — [(F(O) x T(F(z) x F(z))
4
= 764 f {[(F(C — 6))CP(H)] x L}

x sz(z + 0 — E¥(z — EXF(E) x F(£)) dé db,
(4.6)
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for { > 0. It follows from the results of the previous
section that (4.6) is exact in the case N(z) = T(2).

Now, we previously* applied the smoothing method
to determine the first- and second-order moments of
F, and expressions were obtained for the Laplace
transforms of these quantities. It is shown in Appendix
C that the expression for A((F)) obtained from (4.3)
is consistent with our previous results. Let

(o) = A(D).

The expression for A((F)) is inverted approximately
in Appendix C, under the assumption that y(o) is
analytic for Re (¢) > —a, where @ > 0 is independent
of #. This condition implies that I'({) is exponentially
small for large {. It is found that, for sufficiently small
7 and *8,{ < O(1),

4.7

W0)) = (0(D)) ~ e + &%) (4.8)
and
(0(0)) ~ }iBy(e®t — e°b),
(D)) ~ 5‘—’ (¢ — o), (4.9)
where ’

oy = of ~ ify + I°Bily(2ie) — ¥(0)]. (4.10)

Now consider the second-order moments, the

Laplace transforms of which we obtained previously!

and now give in Appendix C. The transforms are

inverted approximately, under the above assumption

on (o). The expression in (C7) has simple poles at
§1, 82, and 'sg where

5~ %’72%[7(2’.60) + ¥(—2ifo)] (4.11)

and
sy = 53 & 2ify + IBoly(2iBy) — 27(0)]. (4.12)

As noted previously,! the expression on the right-hand
side of Eq. (4.11) is nonnegative, a consequence of the
fact that I'(z) is the correlation functioh of a real
process. It is found that, for sufficiently small #, and

772/902 S 0(1)5
Wi(2)) = k() ~ He™ + 2677 4 ), (4.13)
(Vi(2)) ~ —1B(e™ — 2™ + %) & f(ui(2)),
(4.14)

(un(2usl2)) = (un(2)on(2)) ~ — (e — (4.15)

4B,
(u(2)04(2)) = ((2)e(2)) ~ 1iBo(e™ —

and

),

), (4.16)
(uy(2)vo2)) ~ }(e™* + 2 + %),
(0(2)ux(2)) ~ }(e™* — 2 + ). (4.17)

We remark that Papanicolaou and Keller'® investi-
gated the solution of (1.2), in the case of m = 1, by
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means of a 2-variable expansion procedure. The
above approximations to the first- and second-order
moments may be obtained from their results, and we
give a few of the details in Appendix D.

Let us now return to (4.6), and consider the double
integral therein. From (2.15) and (2.20), P(f) and
¥(z — &) are bounded. From the above approxima-
tions, for 7% « 1, to the elements of (F) and (F x F),
these quantities are bounded on fixed intervals
0 < 9?66 < E and 0 < 928,z < Z, where E and Z
are O(1). Moreover,

2 ¢z
[ [ire+o0-orasao =[[ire + oy ae a0

0 Jo 0 Jo

(4.18)

is clearly bounded for { > 0 and z > 0, under our
assumption on y(c), which implies that I'({) is
exponentially small for large {. It follows that the
right-hand side of (4.6) is O(?) for 0 < 2Bl < E
and 0 < 7?6,z < Z, so that (1.9) holds.

5. ANOTHER APPLICATION OF THE
SMOOTHING METHOD

In conclusion, we consider another application of
the smoothing method to the calculation of the
expectation of the matrix W(z, {) defined in (1.7). In
Sec. 2 we derived an equation for W regarded as a
function of {, but here we derive one for W regarded
as a function of z. Thus, from (2.9),

a%F(z + 0+ [A + nBING + DCIFGz + 1) = 0.
(5.1

We now take the Kronecker product of the expression
in (5.1) with F(z) and of F(z + () with the expression
in (2.9), and add, to obtain

W L IA x D) + (I x AW, )

0z
+ 7f3N(z 4+ 0)(C x T)
+ NI x O)IW(z,)=0. (5.2)
From (1.6) and (1.7), the initial condition is
W, ) =F() x L

Note that, if { = 0, then (5.2) reduces to (2.19).

Applying the smoothing method to Eq. (5.2) and
solving the equation corresponding to (2.7), using
(2.16) and (5.3), we obtain

CcW(z, {)D
= [P(z) x P(2)][CF())D x 1]
- nﬂgj;z[f’(z —Hx Pz = HINE+DHCxT)
+ N(&A x COY)KW(, 0)) dé. (5.4)

5.3)
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But, in the smoothing approximation, CF({)> is
given by (4.1), in terms of (F), which has already
been determined. From (5.2) and the equation
corresponding to (2.5), it follows that

W)

z

+ (A x D) + (I x A)KW(z, {))

= —nBy(IN(z + {(C x T)

+ N(z)I x C)]cW(z, {)2). (5.5)
Combining Egs. (4.1), (54), and (5.5) and using
(1.1), we obtain an equation for (W), which we re-
frain from writing down. From (5.3), the initial
condition is

(W0, 0)) = (F({)) x L

The equation for (W) may be solved by means of
Laplace transforms. However, it appears that the
exact result is not obtained in the case N(z) = T(z),
whereas it is obtained from Eq. (2.22) in this case.
This could be explained by the occurrence of both
N(z + {) and N(z) in (5.2), whereas only the process
N(z + {) occurs in (2.11).

(5.6)

APPENDIX A

We here consider the solution of Eq. (2.22),
subject to the initial condition given in (2.14), in the
particular case in which the correlation function of
the process N(z) is given by (3.1). Thus, in (2.22) we

have
[(¢—¢& =2 0<ELY, (A1)

and
Pz4+7—8 =28 (>0, 0<&<L 2
(A2)

We will take Laplace transforms with respect to , as
in (3.5). Note, from (2.16), that

A(P) = (o1 + A) ! = i) (A3)

Ca 41- /33)(—733

from (2.8), which is consistent with (2.15). Then,

Bo* sin 2B,z
¥() = cos 26,z
cos 20,z

—fg 8in 25,z

Bo7 sin® B,z
(2B0) ' sin 285z (2B,)7" sin 28,z
(2Bo) 7 sin 2Byz  (28,)7" sin 262

cos® Byz

J. A. MORRISON

from (2.22), using (2.14) and (A1)-(A3), we obtain

({oI + A — 7*B5Cl(0 + 2b)I + AT'C} x DA(W))
— (F(2) x F(z))
="A({Cl(c + 2b)I + AT} x I)

X ﬁ ze‘z”("f"l’(z — EXF(&) x F(&))dE. (Ad)

Now, from (2.8), (3.6), (3.7), and (A3), it is found,
in a straightforward manner, that

{oT + A — 9*BiC[(c + 2b)I + A]"'C)™

— 1A ( 3 3@ o>,.,c), (AS)
and, from (3.8), that

nB3{ol + A — n*B5Cl(c + 2b)I + A]'C}
X Cl(c + 2b)I + A

= W (S-3@|0x). @0

Hence, solving (A4) for A((W)) and inverting the
Laplace transforms with the help of (A5) and (A6),
we obtain

W 0 = 1 3] (2@ |0 1] &), @

k=1
where

0,(2) = (F(2) x F(z))
T (= 1) f g _ g

x (F(§) x F(§)) dé. (A8)
We will show that
0,(2) = (F(2) x F(2)),, (A9)

whence, from (1.7) and (3.4), the smoothing method
leading to Eq. (2.22) gives the correct result for the
random telegraph process TY(z). )

Now, taking Laplace transforms with respect to z,
as in (3.11), and using the convolution theorem, it
follows from (A8) that

80y = {I x D) + (= D)'nfsLle ™" F(2)]}L(F x F)).
(A10)
But, from (2.8), (2.15), and (2.20), it is found that

Bo? sin® oz

(A1)

(=R =Nl -]

cos? Boz
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Thus,
2(s + 2b) 2 2 0
(s + 2b)2 (s + 2b) (s 4+ 2b) 0
2 4 ‘Z)Q ~2bz\P —
(s + 2b)I(s + 2b)* + 421 [e ¥ (2)] (s + 25y (s + 2b) s 4 2b) o
—26%s + 2b) (s + 2b)2 + 2631 [(s + 2b)* + 282 ©

Now, in view of (1.5), the elements of L((F x F))
are given by (3.13)-(3.19). Then the elements of
£(0,) may be calculated from (A10) and (Al12). But,
the elements of £((F x F),), as we show in Appendix
B, are given by (3.20)-(3.28), in conjunction with
(3.10) and the expressions for the elements of
£((F x F)). It may be verified that

£O,) =CL{FxF)), k=1,2,
so that (A9) holds, as we wanted to show.

(A13)

APPENDIX B

We here simplify the expressions we obtained
previously®? for the elements of L((F x F},). First,
form =1, 2, let

Xm — £[<u2n>l:l’ Ym — £[<umvm>1]’
(W2 (U2

<UZ h
Z =L ™ B1
" [:(U?r)z:] (BD
Define
S = [(s + b) —b :I,
—b (s+b)

hﬁg[(lgm (1377)]’ E=[ﬂ 2

Then, it was found that
X, = (BS + SB + 1S$>7Y(B + {SHE,
X, = (BS + SB + 1S*7'E,
Y, =¥8X,—-E), Y,= 18X,

(B3)
(B4)
and

Z, = [(B + 389X, — iSE], Z, = (B + }5)X,.

(B5)

Now introduce the row vector
D'=[-1 1] (B6)

Note, from (B2), the relationship
DE =0, D'S=(s+ 25D (B7)

Hence, from (B4),
DY, = #(s + 20)D’X,, DY, = i(s + 2b)D'X,,

(B8)

(A12)

and, from (BS),
D'Z, =D'B + $S»X,, D'Z, =D'(B + 1S9X,.
(B9)
But, from (B2) and (B7),
D'(B + 1S%) = 3{(s + 2b)* + 243D’ — nBiE"
(B10)
However, we previously? calculated E'X,, and in
fact, from (3.10) and (BI),

EX, =), m=12 (B11)

Hence it suffices to calculate D’X,, and then to use
(3.13), (3.15), and (B8)-(Bl1). After some tedious
calculations, the details of which we omit, it is found
from (B3) that

D'X, = 4nf3[s°(s + 2b) + 485b1/A,
D'X, = 16765(s + b)/A, (B12)
where

A = det [2(BS + SB) + S3), (B13)

and is given explicitly by (3.12). We thus obtain
(3.20)-(3.25).
Secondly, let

G = £[<“1u2>1], H= £|:<u11’2>1j|, (B14)

(Uyttg)s (UyDs)s
<”1u2>1J l:<”102>1:l
J= ﬁ[ , K=¢£ . B15
(ytd)e (0109)2 (BL3)
Then, it was found that?

G = {(BS + SB + 1S%)'SE, K = —S"1BSG,

(B16)
and

H+J=SG, (H-J)=S"E=s"E. (Bl7)
But, since SE = sE, from (B3) and (B16) we have
G =5X,, D'G = LsD'X,. (B18)
Also, from (B3), (B5), and (B16)-(B18),
$sZ, — K = LsS71(BS + SB + 1S%)X,

= 1sS-IE = 3E. (B19)
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Hence, since D’E = 0,

DK = 4sD'Z,.
Finally, from (B7) and (B17),
DH+J)= (s +26)D'G, D'H—-J)=0. (B2])
Equations (3.26)-(3.28) follow from (Bl18), (B20),
and (B21).

(B20)

APPENDIX C

We consider here the approximate inversion of the
Laplace transforms of the first- and second-order
moments. We first consider the expression for
A((F)) obtained from (4.3). Now, from (2.8) and
(2.15),

0 0
POC= (pagupg of
Hence, from (4.7),
0 0
n*BeA(T'CPC) = ((5 o)’ (C2)
where
5 = 'f f " sin BoLT(0) dL
- %’f— (o — ife) — ¥(o + i)l (C3)

Thus, from (2.8),
[o] + A — 5?8 A(T'CPC)] = (
Then, from (4.3),

A((F)) = [o1 + A — 9°BA(I'CPC)]™!

1 o 1
. S— , (CS
(62+/3§—5)[(6—ﬂ§) a] ()

which is consistent with our previous results.t
Now, according to the complex inversion formula, 2

G -1
. (C4
8 — 8) a) ©4

1 c+io0
(F) =— e*A((F)) do,
2 ;

l Je—~fw

(Co)

for sufficiently large c. We assume that y(c) is analytic
for Re (¢) > —a, where a > 0 is independent of 1.
Then, for sufficiently small n, A({F)) has simple poles
in the neighborhood of ¢ = +iff,, which we denote
by o, and o, = o¥. The approximate values of o,
and o,, using (C3), are given by (4.10). Moreover,
for sufficiently small #, the remaining singularities
of A((F)) lie in Re (¢) < —}a. Accordingly, we shift
the contour of integration in (C6) to the line Re (¢) =
—34a, and include the contributions from the poles
at ¢ =0, and o = o,. But, the integral along
Re (¢) = —3a vanishes for 5 = 0. Hence, for small
n, the main contributions to (F({)) arise from the
poles at o = o, and ¢ = ¢;. Thus, from (C5), we
obtain the approximations given in (4.8) and (4.9).

J. A, MORRISON

Consider next the second-order moments. We
found previously* that
() = Q
= {s(s* + 465) — ¥n°B3[25%(s)
— (s + 2ifo)*y(s — 2ify)
— (s = 2ife)*y(s + 211, (CD)

L((ud) = Q{(s* + 283
— 37°B312sy(s) — (s + 2iBo)y(s — 2iBy)

— (s = 2iBe)y(s + 2ify)]}, (C8)
and

E(WD) = QB2 + n*l(s + 2iBo)y(s — 2if,)
+ (s = 2iBo)y(s + 2ify)]
+ 77253{27’(5 — 2iBo)y(s + 2ify)
— y(®Iy(s — 2iBo) + ¥(s + 2if)1}). (C9)

The remaining elements of L((F x F)) are given by
(3.16)—(3.19). Under the above assumptions on y(o)
it follows that, for sufficiently small #, the expression
for Q has simple poles in the neighborhood of s = 0
and s = 4:2if,, which wedenote by s, , 5,,and s; = s3.
Their approximate values are given by (4.11) and
(4.12). Proceeding as above, it follows that the main
contributions to (u3(z)), (v}(z)), and (u2(z)) arise
from these three poles, and from (3.16) and (C7)-
(C9) we obtain the approximations given in (4.13)
and (4.14). The approximations in (4.15)-(4.17) may
be obtained by inverting the relationships in (3.17)-
(3.19), with the help of the initial conditions

(F(0) x F(0)) =1 x I,

and using (4.13), (4.14),and the zero-order approxima-
tions to sy, s, and s5.

APPENDIX D

We give here some details of the calculation of the
first- and second-order moments of the solutions of
(1.2) from the results of Papanicolaou and Keller.1®
With some changes in notation and generalization
to the matrix solution in (1.5), the first-order mo-
ments are given by

(F(0)) ~ Rel@HTMIIR-1 (D1)
where
ify 0 1 1
= N R = 5 D2
Q (0 —fﬂo) (fﬂo "iﬂo,) ®2)
and
2 ([Y(2ify) — v(0)] 0
M, =1 .
h ﬂ“( 0 [P(—2iBy) — y(on)

(D3)
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Hence, from (4.10),
a1
(Q + 772M1) ~ (Gl 0)’ e(O—f—'lel)C A (8 ! 0;)’ (D4)
0 0'2 0 edz
for 28,0 < O(1). Equations (4.8) and (4.9) follow, after some further straightforward algebra.
The second-order moments are given by'®
(F(z) x F(z)) ~ (R x R)exp {[(Q x I) + (I x Q) + #*N,)z}(R x R)™, (D5)
where
(y(2ifs) — 2y(0)] 0 0 0
0 Re [y(—2i Re [p(—2i 0
N = 132 A=2if0) Rely(~2ifo)] )
0 Re [y(—2ify)] Re [y(—2ify)] 0
0 0 0 [(—2if,) — 2p(0)]

Hence, from (4.11), (4.12), (D2), and (D6),

So O 0 0
(QxD+AxQ+ N~ | Pt ¥ 0
0 ¥s; 35, O
0 O 0 s
®7)

Equations (4.13)-(4.17) follow after some further
straightforward calculations.
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Mixed-basis D functions are introduced as a tool for deriving Clebsch-Gordan coefficients of induced
representations of semisimple groups. The Clebsch~Gordan coefficients of SU(1, 1) and SL(2, C) are

computed as examples.

1. INTRODUCTION

In previous papers' Mackey’s induced representa-
tion theory? has been used to compute Clebsch—~
Gordan coefficients for those noncompact groups
which can be written as semidirect product groups.
In these papers it was conjectured that it might be
possible to use similar techniques for the semisimple
noncompact groups. The point of this paper is to show
that mixed-basis D functions, obtained from integrals
over D functions of certain subgroups, provide a tool
by which the Clebsch-Gordan coefficients for some
representations of the semisimple groups can be
computed.

The motivation for computing Clebsch—Gordan
coefficients of induced representations of semisimple
groups arises from a model in which the energy
dependence of reduced amplitudes of 2-body reactions
is given in terms of such Clebsch—Gordan coefficients.?
But even aside from such a physical motivation, there
is the interesting mathematical question of the
functional form and analytic behavior of Clebsch—
Gordan coefficients of noncompact groups.

Two semisimple groups of current interest in high-
energy physics are SU(1, 1) and SL(2, C)*; the tensor
product reduction for both of these groups is given in
the mathematical literature.® The Clebsch-Gordan
coefficients of SU(1, 1) have been computed in various
degrees of generality by a number of authors®;
recently, the Clebsch-Gordan coefficients for the
principal series of SL(2, C) were also computed.” Now
the techniques to be presented in Sec. 2 for computing
Clebsch~Gordan coefficients are different from any
of those used in Refs. 6 and 7; hence, after the Clebsch~
Gordan coefficients of SU(1, 1) and SL(2, C) are
computed in Secs. 3 and 4, a comparison between
the methods will be given in the conclusion.

2. GENERAL ANALYSIS OF D FUNCTIONS
AND CLEBSCH-GORDAN COEFFICIENTS
D functions are usually defined in terms of the
action of the unitary operator U(g) of a group
element ge G acting on an (in general improper)

vector |[x]x):

U@l =3 [Pr@ ). @b
&®

[x] denotes the set of labels specifying a unitary
irreducible representation of the group G. x denotes a
set of “eigenvalues’ arising from a complete set of
commuting elements of the Lie algebra of G; the sum
and integral sign in (2.1) indicates that x may have
both discrete and continuous parts.

The vectors {[x]x) are generally not elements of the
Hilbert space on which the unitary operators U(g)
act; rather, they are generalized functions on a
suitably defined rigged Hilbert space.® In this work
the complication of treating the vectors |[x]x) (or for
that matter the D functions or Clebsch-Gordan
coefficients®) as generalized functions will not be
considered.

However, it should be pointed out that, when
dealing with the orthogonality and completeness
properties of the D functions, the fact that the D
functions are generalized functions becomes impor-
tant. In contrast, for compact groups, where the
D functions are finite dimensional, the orthogonality
and completeness relations are readily obtained.!®
Only the invariance of Haar measure and Schur’s
lemma are needed.

Equation (2.1) can be transformed into a more
useful form by taking the matrix elements of the
operator U(g):

(xIx't U(e) l{xIx) = D%.(g).

For those representations of G which can be written
as induced representations,.? the D functions are
readily computed. To see this, we denote by H the
subgroup of G which induces irreducible representa-
tions of G. Let L be a 1-dimensional! representation
of H acting on the vector space JE(L) and f(g) a
function from G to JE(L) satisfying f(hg) = L(h)f(g);
the class of such functions, suitably restricted, forms
a Hilbert space denoted by J(UL) on which the

(2.2)
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induced representation acts:

U(g)/(g) = Im(g, ) (gg"), &' €G, fed(U™).
(2.3)

m(g’, g) is a multiplier, so chosen as to make U(g)
unitary.

Before showing how m(g’, g) is calculated, note
that the natural framework for induced representations
is in terms of vector bundles over the homogeneous
space G/H.'? However, this setting is rather awkward
when defining the mixed-basis D function, and for
that reason it is not used here.

Rather, f(g) will be considered as a function over

cosets f(g,) [since f(g) = L(h)f(g.)], where {g.;} is a
set of elements of G labeling the right cosets:

G = LCJ Hg,, g=hggl2. (2.4)

Then

UR)f(g.) = [m(h(g.2)*f(g.8)
= [m(n(2.2NPL(h(2.2) f(2.(2.2)), (2.5)
where h(g,g) and g,(g,g) are defined by

gcg = h(gcg)gc’(gcg)

and Eq. (2.4).
The multiplier m(h) is given by
adj :
m(hy = St Hh) (2.6)
det *VG(h)

where “IG(h) is the adjoint representation of G
defined in matrix form by

“G(g)(X) = hX;h ™ =3 (VG(h)uX;, (27)
with {X;} a basis in the Lie algebra of G.

With the multiplier given by (2.6), it can be shown
that U(g) is a unitary operator:

UGS = f dg, |U(2)f (2P
G/H
- f dg.mh(z.8) |/ (g2
G/H
_ 98,
—J‘G/Hdgc’ 1 og,
=f dg. 1/(g.)P
O/ H
= | f1? (2.8)

where the multiplier—by definition—has been so
chosen as to cancel the Jacobian resulting in the
change of variable from g, to g,..

Consider now, as (in general improper) realizations
of the functions f(g,), D functions arising from a

m(h(g:8)) | f (g
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subgroup of G whose elements include {g}. It will be
shown how the D functions of G can be built from
those D functions of appropriate subgroups of G.
The D functions of the subgroups of G, when restricted
to the coset labels g,, can be thought of as “unit”
vectors spanning the representation space of G
labeled by x. We follow the mathematical literature
in denoting such vectors as e,(g,); although defined
in general only for coset labels g,, it is possible to
extend e,(g,) to all elements g in G by setting

e,(g) = L(Me,(g.), 2.9)

just as f(g) = L(h)f(g.) [L(h) is the (1-dimensional)
representation of the inducing subgroup H]. D func-
tions over G are then

Difw(g)=f dg.ef(g)U(gle(g)], (2.10)
G/H

which is seen to be a concrete realization of the
defining Eq. (2.2) for D functions.

By defining an operator which translates g to the
right, it can further be seen that D%, (g) is a concrete
realization of |[4)x) for x' held fixed:

O(go) D% ,(g) = D% ,(g80)

= Z’ fDé’z”(g)Di"m(gO)

=3 [Pz, @10

It will prove necessary in the following development
to broaden the definition of D functions. In Eq.
(2.10) the “eigenvalues” x’ and x both came from
the same complete set of commuting elements of the
Lie algebra of G. Consider, however, the possibility
of allowing the two sets of “eigenvalues” to arise
from two different complete sets of commuting
observables of the Lie algebra of G.

In order to obtain Clebsch~Gordan coefficients, the
left set of “eigenvalues” of such “mixed-basis” D
functions must arise out of a special set of commuting
elements of the Lie algebra of G. In the following
paragraphs attention will be focused on how to choose
this set for the principal series of representations of the
semisimple group G, although the ideas probably
generalize to the discrete and exceptional series.

For the principal series of unitary irreducible
representations of G, the inducing subgroup H is
obtained from the Iwasawa decomposition to be
NAM, where N is nilpotent, 4 is Abelian, and M
is the centralizer of 4 in G.* We choose the set of
“eigenvalues’” y—the left index in the mixed-basis D
function—to include the eigenvalues of 4 and M,
and then extend this set to be a complete set by
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choosing any other convenient elements from the
Lie algebra of G. This special complete set will
generate D functions and, hence, vectors denoted by
e,(g.), which, as before, can be extended to

e,(g) = L(h)e,(g.)-

The mixed-basis D functions are then

Di(g) = L/Hdgcengc)[U(g)eaxgc)]. (2.12)

Such a D function has the virtue that under the opera-
tor O(g,), defined in Eq. (2.11), it transforms to the
right as a vector |[x]x), while to the left, in the y
variable, it transforms like an induced representation
element f(§,), where g, € G and H are defined below:

O(go) D3 (£.) = D}.(£.80)
= Diz(h(gogo)gc(gcgo))
= L(h(£.80) D} A& .(&:80)).

The mixed-basis D functions are thus seen to play a
dual role, serving, on the one hand, as concrete
realizations of |[x]x) and as (improper) functions
transforming properly as required by induced repre-
sentation theory.

It is precisely this dual role which is exploited in
computing Clebsch-Gordan coefficients, for Mackey
has shown how the tensor product of two (or more)
induced representations can be decomposed into a
direct integral over double cosets of induced repre-
sentations. Such a decomposition does not, in general,
lead to irreducible representations, but this problem
is readily handled when computing Clebsch-Gordan
coefficients. It is merely necessary to know the in-
ducing subgroups appearing in the double coset
decomposition. If these subgroups are denoted by A,
the Clebsch-Gordan coefficients, as shown in Ref. 1,
can be written as

(2.13)

Mdxs m | Dadxas Dealxe)

= N(Xxlxz)fa/ﬂdgcD;/'(:(gc)Dz:zl(gD1gc)D5:m2(gng~c),
(2.14)

where {g,} is a set of coset representatives of G relative
to H. gp, and gp, are elements of G labeling the
double cosets of the outer product group {(g, g")}, g,
g’ € G, relative to the outer product inducing sub-
groups (H,, H,)and the diagonal subgroup {(g, g)} =
G. H, as shown in Ref. 1, is

(gp.gp,) "(H, H)gp,gpn,) N (G, G),
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while N(yx,x.) is a normalization factor depending
only on the irreducible representation labels. The
left indices y, and y, are chosen so that Dx and
Dz transform properly to the left relative to the
irreducible representations y, and y,. The j appearing
on DZ_is chosen to transform to the left like the tensor
product of x; and yx,. Finally, # refers to a set of
degeneracy parameters (having to do with multi-
plicity) arising from both the labels y,, y, and 7, and

the double coset labels g, and gy, .

3. CLEBSCH-GORDAN COEFFICIENTS
OF SU(1, 1)

The classic analysis of a semisimple noncompact
group was carried out by Bargmann®® on SU(1, 1).
The tensor product decomposition of various classes
of irreducible representations of SU(1, 1) has been
carried out by Pukanszky® In this section, as an
example of the formalism developed in Sec. 2, the
Clebsch—-Gordan coefficients arising from the tensor
product decomposition of the principal series will
be computed, for comparison with the results of
Ref. 6.

A general element g of SU(1, 1) can be written

(o 2 s
Its Iwasawa decomposition is g = sk with

i@ y
keK = (e 0. ),
0 e
SES=(COS?6+m lsmh6+n); (.1)
—isinh® +n coshf — in

K is the maximal compact subgroup of SU(l,1),
while S, the solvable subgroup, has an Abelian part
A, obtained by setting n = 0 in (3.1), and a nilpotent
part N, obtained by setting 6 = 0; thus, a(f) =
sO0,n=0),n=s(0=0,n).

The principal series of SU(1, 1) is induced from
the subgroup S = NA, with representations

s€S— I/(6) = €*° preal. (3.2)

The function space on which the induced repre-
sentation acts is generally chosen to contain functions
over K, so that the Hilbert space J&(U*) has norm

e = (277)‘1f0 "dtp f@F <o (33

To compute the action of an arbitrary element of
SU(1, 1) on f(g¢), it is necessary to see how group
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elements of SU(1, 1) move coset labels [viz., (2.4)]:

(oc ﬂ)_(cosh6+in isinh0+n)
g* a* —isinh® 4+ n coshf — in

(o o)

X o)

0 ¢

« = e*(cosh 6 + in),
B = e (i sinh 6 + n),

@(o, B): € = (a — if*)|le — if*,
O, f): € =la—if*
n(e, B) is not needed since, as can be seen from (3.2),

it gets sent into the identity.

The multiplier m(s), according to (2.6), is

det [*YS(s)]/det [*USU(1, 1)(s)].

Since SU(1, 1) is semisimple, det [*4SU(1, 1)(s)] = 1.
Using the definitions of adi§(s) given in (2.7), we
readily see that det [*3S(s)] = e2°.

Hence, the principal series of representations of
SU(1, 1), labeled by p, can be written as

Ulag, Bo)f(g) = &0 =0boet?t@ tobolf(gr)
= [e700 0P I=ing (1)
= Juge™ — if*e I f(9")  (3.5)
with ¢'(gp, g, B,) given by
b e — ifFe'® ‘
loge™ — e ™|
To obtain D functions for SU(1, 1), we choose

e,(g.) [Eq. (2.9)] to be the D functions of K, namely
e™?_ 50 that e,(g) = e#%*™?. Then

D% (0, Bo) = f dg. ™ U, Bu)e™]

SUG11/H

= @2m) f "dpe Uy, o)™,
3.7

where the action of (o, §,) on ¢ is given in Eq. (3.6).
The D functions [Eq. (3.7)] were first obtained by
Bargmann.®

However, as was pointed out in Sec. 2, in order to
calculate the Clebsch-Gordan coefficients of SU(1, 1),
it is necessary to compute mixed-basis D functions.
For the group SU(1, 1) it is sufficient to choose, as
a complete set containing the Lie algebra element
of A, just this element itself. Then the S-4 double
cosets must be computed. This is done in the Appen-
dix; the basis vector e,(g,) is chosen to be e*® and
extended to

3.4

(3.6)

e, (g) = L(h)e,(g.)

ip91(a)eip'02(a).

(3.8)

=€
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Then the mixed-basis D functions are
D2(g) = L o e (U (EenE)
= (Qm)~ L " |(sin 272
X |tan @[ [U(g)e™]. (3.9)

As will be seen below, only D¢, (nk(¢)) and
D?. (gpnk(p)) are actually needed in computing
Clebsch—-Gordan coefficients. Thus,

D}..(gpnk(p)) = Db, (gpn)e™,
and letting z,.(n, ¢) = (1 + in)e*® £ ine=** gives

(3.10)

Y4

D2, (n) = @m) j dge () |27 (IT:,)m’

Dy n(en) = 0™ [dpestp) 20l 17 (22 el
2]

(3.11)

To compute the Clebsch~Gordan coefficients for
the principal series of SU(1, 1), it is necessary to
compute the double cosets arising in the SU(1, 1)
outer product group. It is not difficult to see that this
is equivalent to computing the S-S double cosets.
The Appendix shows [Eq. (A6)] that the double
coset S(¢: °)S is dense in SU(1, 1) and, further, the

0 —i
inducing subgroup for the diagonal group is

1.7=(i 0 —1S(z' °)ﬂS

0 —i 0 —i

= A. (3.12)

Hence the Clebsch-Gordan coefficients will be given
by an integral over SU(1, 1)/4:

(LpIm | [pidmy; [pe)ma)

= N(PP1P2) dchgpﬁ-pgm(gc)
SU@,1)/4

X Dﬁblml(gc)Dﬁi)gmz(ngc)
= N(ppsps) J.Vdn 2! f dy

x ([p] = p1 + pol Un) |[pIm)* e

x {[p] = pud U(n) [p1Imy)

X €™ ([py] — psl U(gpn) |[palmy) €™
= 0 myt meN(PP1P2)

x fvdn {p] — o1 + pol U(n) [[pJm)*

X {{p1] = pul U(n) llp1Imyd

X ([pal — pal U(gpn) [plma;  (3.13)
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the matrix elements are given in Eq. (3.11). The factors
—p1+ ps, —py, and —p, appearing as the left
indices on the three D functions are so chosen that
the D functions will transform properly to the left.
gp is the double coset representative (¢} °).

4. D FUNCTIONS AND CLEBSCH-GORDAN
COEFFICIENTS FOR SL(2, O)

Both the D functions and Clebsch—Gordan coefti-
cients of SL(2, C) have been previously derived,”
using techniques different than those given in Sec. 2.
For that reason the resuits for SL(2, C) will only be
sketched.

A general element of SL(2,C) can be written
(@ %), ap — py = 1; the inducing subgroup for the
principal series of unitary irreducible representations
of SL(2,C)is

-7

4.
0 1 (4.1)

with representations
heH— L™ = |A" (AflA)™, p real,
m an integer or half integer.* (4.2)

As far as applications to physics are concerned, the
representations of SL(2, C) are of most interest in a
spherical basis. The D functions and Clebsch~Gordan
coefficients will also be computed in this basis. Hence
we choose, as right coset representatives, elements
of SL(2, C) over the sphere:

1 —eo 0 gin 1
( cos 10, e "?sin 20) e SL(2, C)
¢ sin 10, cos 30
gives
(oc ﬂ) _ (l“l ,u)( cosif, —esin %6)
y 4 0 A/ \e"sin 40, cos 30
g = hg,,

0 = Acosil, y = 1e“sin 30,
f=7"tcos 36 — pe sin }6, tan 46'= |y/d],
=argy —argd, A" =" + 10,

arg A = arg é. (4.3)
Then
U(g)f (0, ¢) = 140, , DI"*
x [0, @, /| AI"f (O, ), (44)

where f(0, @) has norm

12 = (477)—1fdQ 1f(6, P)I* < co. (4.5)
The coset labels (6, ¢) are moved to (0, ¢") under the
action of g € SL(2, C), where (6, ¢") are defined by
2.8, ¥)g = hg(6', ¢'), which can be solved using
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(4.3). The term [A[~? in Eq. (4.4) is the multiplier,
making U(g) unitary in the Hilbert space of functions
[Eq. (4.5)).

Now we choose as functions f (8, ¢) the D functions
of SU(2), namely D70, ¢), J > |m|, and extend
D7 (8, @) to all elements g € SL(2, C) by writing

esu(8) = A" IAR)/IA1"D55(0(8), #(g)). (4.6)
The usual D functions of SL(2, C) in a spherical
basis are then given by

D?’/JM’JM(g)

- f dg.c (8 )U(E)es a(se)]
SI(2,C)/H

= (4m)? f dQet 1,0, PLURes (6, D). (47)

However, it is more to the point to find the
mixed-basis D functions in order to calculate the
Clebsch-Gordan coefficients of SL(2, C). To obtain
the mixed-basis D functions, it is necessary to know
the H-AM double cosets, where AM consists of
matrices of the form

(5 3)
0 A

These double cosets are found in the Appendix
[Eq. (A8)]. The relevant basis vector is e, ,(g),
which is of the form

ey (8) = 1@ [a@){1211™ 12(g)I”" [l g)/1 221",

4.3
with the dependence of 4, and 4, on g given in Eq.
(A9).

Then the mixed-basis D function is
DZFP’JM(g)

= ([mp]m’p'} U(g) |lmplI M)

- f dg.et (8IU(2e ai(g0)]
SL(2,CYVH
- <4w>‘lf dpd(e0s 8)et, 0, U D0, )

= (477)‘1f depd(cos 0) |4 sin 8] |cot 46|72
sphere

X PG (g) D (6, )] (4.9)

Actually, as will be seen, only D™ ;. (gpuld),
where gp = (8 1), # = (} %), and Q a point on the
unit sphere, need be computed. Thus,

D;rzpp'JM(gDﬂQ)
= %1(470—1 j dod(cos )eX, (0, )U(gp)U(H)
X D0, @)Dip (). (4.10)
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With the help of the H-H double cosets [Eq.
(A10)], the inducing subgroup occurring in the tensor
product decomposition of two irreducible representa-
tions, [myp,] and [myp,)], is seen (using Ref. 1) to be
H = AM. Hence the Clebsch-Gordan coefficients
are

({mpJM I [myp 1M 1; [maps}J o M)
= N(mp, mypy, Myps)

~ mp”* ~
xf dch—:r,u+m2,—p1+szM(gc)
SL(2,C)/AM

X D—’,erlnﬁl-p1J1M1(gc)D7—n72rﬂzz-—szz]ﬂz(ngc)
=N f d#(477)_1fd QDT&:-sz—anszM(MQ)
N

X DM o (DI L 5 (8002

=N 3 (@4 f dQDY. (DY 11 (D)
M My My’

X D:{lzz']llz(Q)‘[Nd/"’Din’r‘r,tH-mz-—pl-kszJll'(ﬂ)

X Din;l.,l‘l—PlJlMl’({l’l’)D:nfrfzz—ngzMz'(g'DH)

= N‘SM Mit+M:

X Z (JIM'M, + M, | [J,IMiM,; [J,IMoM,)?
M My Msy'

X fv AuDT8 s prtped s (1)

maP2

X D-:n;nlil—pl-f1Ml'(lu’)D——’mz'—'ﬂszAMz'(ngu)9 (4'11)

where (J, M, + M,, M, + M,| J MM ;J.M;M,)is
an SU(2) Clebsch-Gordan coefficient! and N is a
normalization factor depending on how the basis
states |[mp}JM) are normalized.

5. CONCLUSION

In the process of computing D functions and
Clebsch-Gordan coefficients a number of assumptions
were made restricting the generality of the results. It
is interesting to see to what extent the assumptions
can be relaxed.

This paper has dealt only with semisimple groups.
Presumably most of the nonsemisimple groups have
unitary irreducible representations which can be
written as induced representations, according to a
theorem of Mackey.!® For example, the theorem has
been applied to the nilpotent class of Lie groups!?;
but, for semisimple noncompact groups, it is well
known that there exist classes of unitary irreducible
representations, such as the discrete and exceptional
series, which cannot be written as induced repre-
sentations. However, such classes of representations
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can be generated as induced representations by
choosing appropriate subgroups. Thus the discrete
series can be generated by representations of K, the
maximal compact subgroup of G; such representa-
tions are realized on the G/K homogeneous spaces.

For these classes of representations the method for
computing D functions would not work. However, it
may be possible to analytically continue the D
functions obtained for the principal series to the
discrete series. For SU(1, 1) it has been shown that
such analytic continuation not only gives the D
functions for the discrete series of SU(1, 1), but also
the D functions of the compact group SU(2).** Once
the D functions for classes of representations like the
discrete and exceptional series are known, it should
be possible to calculate the Clebsch-Gordan coeffi-
cients.

Other classes of representations of semisimple
groups present another difficulty. Classes of repre-
sentations such as the supplementary series cannot
be generated by induced representations acting on
homogeneous spaces; rather, the appropriate func-
tion spaces are defined in terms of bilinear kernels.™
For such classes of representations, the Clebsch-
Gordan coefficients could not be obtained using the
techniques discussed in this paper.

Finally, the restriction to 1i-dimensional repre-
sentations of the inducing subgroup was made. It
should be clear that such a restriction is for conven-
ience only, and easily lifted. The Poincaré group
probably provides the best example of a group whose
inducing representations are not 1 dimensional—when-
ever the spin for the positive mass representations
is nonzero.

With these restrictions in mind, how are the
techniques for computing Clebsch-Gordan coefficients
presented in Sec. 2 to be compared with the standard
method for computing Clebsch-Gordan coefficients,
as given, for example, in Ref. 77 The usual formula
for Clebsch-Gordan coefficients can be written

(Dedx | Dl Dealxe)

=N BB | dgDEeDE DL (o)
x' x; x3/Je
where the D functions under the integral are generally
chosen to be the ordinary (nonmixed basis) D func-
tions as given, for example, in Eq. (2.10). The impor-
tant thing to notice about the above formula is that the
normalization factor N now depends not only on
the irreducible representation labels, but also on the
primed indices. If these primed indices are set equal
to their respective unprimed ones, it is possible to
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show that the above equation can be written

Kl | Ll [aleal? = fadgvz;@D;:ml(ng:wz(gx

so that, after a phase convention has been chosen,
the Clebsch-Gordan coefficient itself is given by a
square root of the above integral.

In contrast, the normalization factor appearing in
Eq. (2.14) depends only on the irreducible representa-
tion labels, and thus, after a phase convention has been
chosen, the Clebsch-Gordan coefficients are given by
an integral over G/H. The formulas are then simpler
than those given by the standard formula for Clebsch—
Gordan coeflicients, but, on the other hand, less
general in that Eq. (2.14) can be written only for
representations which can be written as induced
representations.

Finally, if in the tensor product reduction a repre-
sentation appears more than once (multiplicity
greater than one), the standard Clebsch-Gordan
formula provides no means for distinguishing between
these representations, and hence an ambiguity
appears. In contrast, Eq. (2.14) contains a multi-
plicity parameter » which generally will handle the
multiplicity problem. In fact, as shown in Refs. 1, it
is possible to compute the Clebsch-Gordan coeffi-
cients arising from the n-fold tensor product reduction,
where the multiplicity generally is greater than one.
For example, in the Poincaré group, a spin multi-
plicity already appears in coupling two positive mass
nonzero spin representations together. When more
than two representations are coupled together,
enormous mass multiplicity can also occur. All such
multiplicity is readily handled in Eq. (2.14).
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APPENDIX

Various double coset decompositions of SU(1, 1)
and SL(2, C) are required to compute the mixed-
basis D functions and Clebsch—Gordan coefficients.
This appendix will show how such decompositions
are obtained. '

Consider first SU(1,1). What is required are
the S-4 double cosets, in order to compute the
mixed-basis D functions [Eq. (3.8)). It seems easiest
to construct the homogeneous space SU(1, 1)/4 and
then compute the action of S on points of SU(1, 1)/4.

WILLIAM H. KLINK

SU(1, 1)/A can be realized as the following mani-
fold. Consider the transformations

H(x') = gH(x)g', geSU(,1),
and
H(x)=( z ""'y);
x + iy z

then it is readily seen that g carries a point H(x)
into H(x'). Further, the point (¢ 1) can be chosen
as a stability point since it is left invariant by 4
[recall that A consists of matrices of the form
(Lgoeho, isimh9)]. The space is, of course, nothing
other than the hyperboloid z2 — (x® + ?) = —1.
An arbitrary element of S moves a fixed but

arbitrary point H(x,) of SU(1, 1)/4 into H(x), where

x = Xo + (2o + yo)2ne™’,

Y = yoe®® — xg2ne® — (zo + yo)(2n® + sinh 26). (A1)
Using (Al), we can show that all points H(x), x? +
Y221, can be reached from three points (which
will fix the double cosets), one of which is the stability

point. It is the quantity (z, + y,) which distinguishes
the various regions, chosen in the following way:

Region I, z, + y, =0, corresponds to the point
( 0 il) )

1 0/’
Region I, z, 4 y, >0, generates H(x) such that
y > 0, x arbitrary; (A2)
Region III, z, + y, < 0, generates H(x) such that
y <0, x arbitrary.

Region I corresponds to the identity double coset.
A convenient choice of points generating Regions II
and Il is zy = x4 =0, y, = 1 (Region II), y, = —1
(Region III). An element of SU(1, 1) which carries

the stability point to the generating points for Regions
IT and IIT [that is, 4-(2, —/)] can be chosen to be

e
(s

Thus, we have three double cosets

o
S (e 0‘ ) A,
0 e’
with @ = 0 corresponding to Region I, ¢ = §n

corresponding to Region II, and ¢ = —4n corre-
sponding to Region III.

0. ) with ¢ = +in.
e’
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In order to be able to write an arbitrary element of
SU(1, 1) in terms of the S-4 double coset decomposi-

tion
(5 )=l

with ¢ taking on the three values corresponding to
the three double cosets, it is necessary to make sure
that each element of SU(1, 1) is uniquely determined
by 0y, n, 0,, and @. From (Al) it is readily shown
that, if cosh 20 > 2nr?%, uniqueness holds. Which of
the three double cosets are to be used in (A2) depends
on the value of « and B; in particular,

Zo + Vo = 2 Re af* + Im (o** 4 §**)
= ~2(ag = f)(ar — Br)s (A4)
which, according to (A2), determines the region of
the hyperboloid and hence the double coset.

When (A3) is written out, for the two nontrivial
double cosets one obtains

Qy%m,mm
e ®

20, 1 205 % — Pr
=7F , €= F —,
2(ag — By — Br) ap — Br
(A5)

where the upper sign refers to Region Il (z, + yo > 0),
the lower sign to Region III (z, + y, < 0). From
Egs. (A4) and (AS) it is thus possible to compute
([plp’| [plm) [Eq. (3.10)].

To compute the Clebsch-Gordan coefficients of
SU(1, 1), it is also necessary to know the S-S double
coset decomposition. It has been shown?® that there
are a finite number of such double cosets, the number
being equal to the order of the Weyl group, defined
as the quotient of the normalizer of K divided by the
centralizer of K.'* Further, one of these double cosets
is dense in G. For SU(1, 1) the order of the Weyl
group is 2, so that besides the identity double coset,
which is obviously never dense in G, the Weyl group
yields the element (} °) as a suitable choice of double
coset representative; then

S(i 0 )S
0 —i

is dense in SU(1, 1).

Since Gel’fand?®® has listed many of the homogeneous
spaces of SL(2, C), the relevant double coset decom-
positions are easier to work out than for those of
SU(1, 1). In particular, it is possible to realize the
homogeneous space SL(2, C)/H, where H is the
inducing subgroup for the principal series [Eq. (4.1)],
as the set of complex numbers & (including oo) with
the group action given by

k' = (ek + »)/(Bk + 6).

(A6)

(A7)
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With k = 0 chosen as the stability point, it is clear
that the stability group is H.

Then the H~AM double coset decomposition can
be given by the following representatives:
Region I:
when acted on by AM the point k = 1 is sent

into A2, which covers all values of the mani-

fold except k =0 and k = oo

Region 1I:
the identity element (Region I, with k = oo

will be ignored). (AS)

Since the point k = 1 can be reached from k = 0 by
the element (1 9), H( 9AM is dense in SL(2, C).
Finally for geSL(22,C), heH, h,e AM, and
gp =G (E¢H, 070),

g = h(g)gp(g)hg),
GO=05 50 D )
y @ 01111022’(A9)

0=Aidy, y= "11’1;1, B = pls,
B=0dy, 2=0y
The H-H double cosets, required for the Clebsch-
Gordan coefficients, can be obtained either from the
Weyl group (again of order 2) or from the SL(2, C)/H

homogeneous space. The two double coset representa-
tives can be chosen to be the identity element and

(L 3), so that
H( 0 1)H
-1 0

is dense in SL(2, C).

(A10)
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Tt is shown that every p matrix has a dual matrix which describes the p-hole properties of the system. A
general procedure is given for using particle-hole equivalence to obtain new N-representability conditions.
In particular, necessary and sufficient conditions are given for both pure and ensemble N-representability

of p matrices whose l-rank is N + p.

I. INTRODUCTION

Recently, there has been considerable interest in
the so-called N-representability problem.!-® Many
necessary conditions are known, but sufficient
conditions have been given in only a few very special
cases. In this paper, particle-hole equivalence is used
to obtain a general procedure for deriving new N-
representability conditions from known conditions.
The procedure is applicable to both necessary con-
ditions and to sufficient conditions. In particular, one
can obtain necessary and sufficient conditions for both
pure and ensemble N-representability of p matrices
whose 1-rank is N + p.

It is well known that by considering 1-particle
states to be occupied by either particles or holes, one
can obtain two completely equivalent descriptions of a
quantum mechanical system. However, this equiv-
alence has never been used explicitly to study the
N-representability problem. Even the interpretation
of Garrod’s Q-matrix condition® as a dual hole
condition does not seem to have been given previously.
Because the pth-order density matrix is explicitly
constructed to describe p-particle properties, the
particle-hole equivalence is obscured when one uses
reduced density matrices to describe the properties of
a system. To describe p-hole properties, one must
consider a different, but related, kernel called the

p-hole matrix.®> The second quantization formalism
provides an elegant language for discussing particle~
hole equivalence and for defining the dual p-particle
and p-hole matrices. Nevertheless, we prefer to begin
with the more pedestrian Slater determinant approach;
and then make the simple connection with the second
quantization approach.

A review of relevant terminology is given below.
An N-particle ensemble density matrix p is defined as

p=2 0, u(l - NY¥H1 - N), &)

where "
0L, <1, (2a)
(2b)

2oy =1,

and ¥, is an antisymmetric N-particle function. p
describes a pure state when the sum in (1) consists of a

single term, i.e.,
p =W (3)

The pth-order reduced density matrix of p is defined” as

Do(x; x') = [ p(x, v X', ) dy, @)

where x stands for all space and spin coordinates of
particles 1---p and y for those of particles p + 1
-+« N. p (or¥ if p is pure) is called the pre-image of
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N-REPRESENTABILITY PROBLEM:

D*. A p matrix, also denoted D*(x; x'), is a function
of 2p particles which is Hermitian, nonnegative,
antisymmetric in each set of indices, and satisfies
Tr D* = 1. A p matrix is said to be pure or ensemble
N-representable if it can be derived from an anti-
symmetric N-particle pure state or ensemble according
to (4). The l-rank R of a p matrix is the number of
nonzero eigenvalues of its 1-matrix. The eigenfunctions
of the 1-matrix are called natural spin orbitals (NSO).

The hole matrix is discussed in Sec. 1I; p matrices
with R = N + p in Sec. III; and general N-repre-
sentability conditions in Sec. IV.

II. THE HOLE MATRIX

Before defining the hole matrix, it will be useful to
derive a new expression for the expansion coefficients
of D?. The hole matrix is then discussed in the second
part of this section. Finally, the hole matrix is con-
sidered in the second quantization formalism.

A Useful Formula

One can expand D? in a set {f;} of R orthonormal
1-particle states as

-1
D = (N)
p k1<kg<kpl1<iz<lyp
X [kl e kp][ll e lp],*, (5)
where [k, ---k,] is the Slater determinant® formed

from fi - fi,. The expansion of ¥ in l-particle
states can be written as

dﬂ
k1kp.drly

V= 3 byaslki - kal, (6)
ky <k <kny
but it will be more useful to write it in the form
Y = Croyeetepr Py eas » @)
ki<ko - <ky

where R=M+4 N and ®, ., is the Slater
determinant® which does not contain the states
Ji, " “Jr,,- It will be convenient to use, instead of
Cppoiy > the antisymmetric tensor x, ..., ~defined by
xkl...kM = (_)k1+k2+".ko:l...kM

when ky <k, < <ky. (8)

To further simplify the notation, capital letters will be
used to indicate ordered sets of indices. In particular:

I, =i i, hH<i, < - <y,
Jo=j T << " <J,
K=k1"‘k‘,, k1<k2<...<kv’
L=1§--1, L<l, < <A,
M,=m-m, m<m< - <m,
Np—a=”1"'n,4—a> n < ny < ...<n”_a.
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One writes I < J if every i in I is equal to some j in J,
I N J # 0 if there is at least one i in [ and one j in J
with i =/, and INJ =0 if i 5 j for all i in J and
jin J. Finally, define D® = .

First, let D® be the pth-order reduced density matrix
whose pre-image is given by (7), and consider only
those elements of D? which have the first = indices
equal (and all others unequal). Then

P

p —
deI\’,JrL T Mardrkycky drcdrlely

=(=) IZ xluKXZL ®
I,ln:lfrzo
=(-)2 xz,,KxZ,L (=) 2 qusz,L
Ill Iu
IunT ;%0
(10)
= (r(dkcs— 3 Stml
+ 3 SIM)— (—)’S[J,l),
M:< J,
(11)
wherer +v=p,u+v=M =R — N, and
S[M,] = 2 xM,,Nu_,Kxj’klldNu_o.L' (12)

1\"‘_,,-

To derive (11) from (10), one must verify that, when
I, NJ, #0, the term xg, Kx}"”L has been subtracted

exactly once. If 1, has exactly « elements in J,, the
term quKx}"u £ occurs in the sum over S[M,] exactly

() times. Since®

a=1

Sr(5) = -

each term has indeed been counted exactly once.
Equation (11) can be inverted to obtain an expression
for S[J,}), i.e.,

(=)SUel =(=)dj, k. y,r. — dx.0 + CZJ S[m]

(=Y. 2

My S Jg

— SIM, ), (13)
where ¢ = o + v. Now one can use (13) to succes-
sively eliminate S[M,] terms from (11). One substitutes
for all S{M,_;] terms, then for S[M,_,], etc. Each
substitution leaves only lower-order S[M,] terms.
Finally, d’f;rK, JL will be written as a linear combina-
tion of S[J,} and elements of D? with » < g < p. In
fact,

» — p—1 — -2
J. K, J. L _1;-_1; JTdI,_lK,I,._lL Ir—z; le,_gK.I,.sz
SRR (=)Hdi,, + (=)L

(14)
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Ifdp ..., n-n, has any arbitrary u indices equal,
one can derive an expression differing from (14) in

only + or — signs. Simply define
(13)

q — U]
JI,K.I,L - Elezdmy“mq.m"-n,,’
where
I,K =F(my - - mp),

LL =9y np),

m1<m2...<mq’

ny < nyee < ng,

¥, and ¥, being permutations, and where «; is the
parity of §;. Then (14)is correct if df z ; ; is replaced

by ‘?f,K,I,L .

Properties of the Hole Matrix

The general hole matrix obtained from an arbitrary
p matrix is now considered.

Definition 1: The pth-order hole matrix n* corre-
sponding to a p matrix D? is defined by

R — N\ ,
- ( ) s S R e,

p My <Mg<my n1<nger <ng

X [my o myllng - n,1'%, (16)
when N 4+ p < R < o and
7

hfny‘-m,,,m'--np = €1€2ﬁ?l,K,J,L
, |
. ((—)"” s ds’:&,,,,L), (18)

a=0 IS,

where ¢, €, J;, K, and L are related to m; -+ - m,
and n,---n, as in (15). The matrix of expansion
coefficients, H? = {7 % will also be
called the hole matrix. Although #” is well defined
only when N 4+ p < R < oo, H? is well defined for

all R.

For the important cases p =1 and p =2, (18)
becomes
hil,j = 0;; — dtl'.a"

h?i.kz = d?j,kl - 62’kd}l + 5,-kd}, - 6;‘1‘1:‘1.;
+ Oudip + 856, (20)

It is clear from (20) that »? is identical (except for
normalization) to the Q matrix discussed by Garrod.*1

It is not immediately obvious from its definition
that n” describes the hole properties of a system. The
next few theorems show that #? has properties which
are analogous to those of D?. Theorem 4 then shows
why 7? really describes hole properties.

(19)

MARY BETH RUSKAI

Theorem I: The hole matrix 7 has the following
properties:

(a) %”is Hermitian;

() Tr»* = Lor Tr H? = (BN); 21

(¢) %P is antisymmetric in each set of indices;

(d) ﬁﬂk“p—Lpﬂ““p—ﬂPMP
=7"" (22)

Proof: Proofs of (a) and (c) are trivial. To prove (b),
note that

2(25) = ()60

Some simple manipulations with Gould’s formulas®

give
L N\ /R — R—~N
262 = (57
9=0 q/\p— 4 p
which proves (b). Part (d) can be proved similarly.
An easier way is to use Theorem 3 to first prove (d)

when D? has a pure pre-image and then extend this
to arbitrary p matrices.

Theorem 2: Every hole matrix corresponds to a
unique p matrix, i.e., if D? 5 D?,then #? % #2.

Proof: Using (22), one can determine all lower-
order 7, g < p, from %?. Therefore, one can deter-
mine all D? with g < p so that (18) can be inverted to
give D? from 7”.

Theorem 3: If D? has a pure state pre-image, then
every element of its hole matrix H? satisfies

:1-~~k,,.zl~--z,, = e,6,S[J,] = ;meL, (23)

where
K=k1"'k1,,
L=ll"'lp,
=8 iy ., M=R-—N,
J,=KNL.

In particular, if M = p,
(24

BE ity = Xy Xty -
Note that Eq. (23) is completely analogous to the
equation

> biperpiyin Prrtyisin,ys  (25)

dﬁ) _—
fikpilitlp )
iy iN-p

where b, ..., is defined by (6) and antisymmetry.
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The Second Quantization Approach

One can obtain the elements of any reduced-density
matrix D? as expectation values of second quantiza-
tion operators. Then, in the state |«),

t T
d£1~~’k,,zl~-'t,, = {«] A, " Qg g, """ 4y, fay,  (26)

where af and a; are the usual fermion creation and
annihilation operators. Since_D? describes all p-

particle properties of the state |a), one expects the
p-hole properties to be given by something of the form

(| bE, - by, -+ by, L), 27

where b! creates a hole in the jth state and b; annihi-
lates a hole. The next theorem states that H” does
indeed have the form (27).

Theorem 4: If D” has a pure state pre-image |a),
then every element of its hole matrix H” satisfies

ettty = (&l @ry a,mcf;1 ce azp loy.  (28)
Proof: This is really just Theorem 3 in a new

notation. One can also obtain a more direct proof by
using the anticommutation relation

azaj -+ a,-a;r =y
to change (26) to (28); this is simply equivalent to
deriving (14) in a different notation. Since a; can be
considered as either annihilating a particle or creating
a hole, one can identify b} with ;. Thus (28) shows

that #® (or H?) has exactly the form required to
represent hole properties.

ITI. N-REPRESENTABILITY: R < N+ p

In this section N-representability conditions are
given for p matrices with R = N + p.

For R< N+ p one can always formally add
unoccupied states (completely filled holes) to the set
of 1-particle states. Then

- (H” 0)’

0 A 29

where

H?hasR=N+p,

H? has R< N + p,

A is a nonnegative matrix.
Theorems 5-8 can then be applied to A”. In fact, one
can show that a necessary condition for ensemble
N-representability when R < N + p is that H” = 0,
so that Theorems 5-8 must actually be valid for A.

Pure States

The solution to the pure N-representability problem
can be stated quite simply in terms of the hole matrix.

PARTICLE-HOLE EQUIVALENCE 3221
Theorem 5: A p matrix D? with R = N + p is pure
N-representable if and only if its hole matrix is
idempotent, i.e., (#7)* = 3.
Proof: Necessity follows directly from (24). For
sufficiency, note that the matrix H” = {h
satisfies

.

(45 )1

Then idempotency implies that H? can be written as

(30)

H? = ww', 31
where w is a normalized column vector
W= (W g,k <kyr o <kph
Now let ¥ be given by (7) with
Chprortey = (—)’“*"”"'““”w;"r..k” (32)

Then #? is the p-hole matrix corresponding to W, and
Theorem 2 implies that ¥ is the pre-image of D”.

Recently, Yoseloff and Kuhn'! have given a neces-
sary condition for pure N-representability when
R=N+p in the form of an inequality on the
diagonal elements of D®. Theorem 5 implies that this
condition needs not be checked explicitly when testing
for N-representability; when #? is idempotent,
Yoseloff’s inequality is automatically satisfied. In
particular, when p =2, Yoseloff’s inequality was
previously shown* to follow directly from the fact
that, when 7?2 is idempotent, it will also be nonnegative.

It is interesting to note that the case p =2, R =
N + 2 has been solved previously. The solution
depends on the fact that the eigenvalues of the 1-
matrix must satisfy a paired degeneracy condition
which is reflected in the natural expansion of the
pre-image.’* In the absence of extra degeneracy,
degenerate NSO’s will always be paired in the pre-
image.!® Then the solution of the pure N-represent-
ability problem for D? can be obtained as a special
case of a known result for a class of functions with
special pairing properties.14-15

Ensembles

The connection between the theory of convex sets
and the N-representability problem is well known! and
has been discussed in considerable detail by Kummer.18
It provides a means of relating the pure and ensemble
N-representability problems. The space of ensemble
N-representable p matrices % is convex, and the
extreme points of %, are contained in the set of pure
N-representable p matrices. There are some topo-
logical difficulties involved in applying the Krein—
Milman theorem to P%,, but for all practical purposes
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P2, is the convex hull of its extreme points. Therefore,
any ensemble N-representable p matrix D? can be
written as

D? =3 a,D%, (33)

where "
0L, L1, (34a)
(34b)

20n =1,

and D? is extreme and therefore pure N-represent-
able.

With this result it is a simple matter to use Theorem
5 to solve the ensemble N-representability problem
for R=N +p.

Theorem 6: An ensemble N-representable p matrix
with R = N + p is an extreme point of P% if and
only if it has a pure state pre-image.

Proof: D? is ensemble N-representable if and only
if it can be written as

D? =3 «,D},
m=1

where «,, and D? are as in (33). The corresponding
hole matrix is

(35)

where 7? is the unique hole matrix corresponding to
Dp . By assumption,

)’ = i
Thus, if D? has R = N + p, Theorem 5 implies that
D? is pure N-representable:

7= Aulims
m

<= (") =7

< MPM=mp=-cc=y
< Df=Dj= =Dy
<> DP7?is extreme.

Theorem 7: A p matrix with R = N + p is ensemble
N-representable if and only if its hole matrix #” is
nonnegative.

Proof: Theorem 6 implies that a p matrix D? with
R = N + p is ensemble N-representable if and only
if it can be written as

D? = 2 oD%,

where «,, and D2 are as in (33) and (34). D7, is pure
N-representable, and one can assume, without loss
of generality, that the pre-images of D2, are ortho-
normal. Then Theorem 5 implies that H?, = w, w],
and wiw, =4, . Since the correspondence between
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H? and D? is unique, D? is ensemble N-representable
if and only if
H® = > a,HY, (36)

=3 o W W 37

Since the vectors w,, were assumed to be orthonormal,
(37) is just the eigenvector expansion of H?. The non-
zero eigenvalues ., are > 0 by definition. Thus, %?
is nonnegative if and only if D? is ensemble N-
representable.

Davidson'” has given a procedure for obtaining
inequalities on the elements of the 2-matrix which are
necessary for ensemble N-representability and which
are independent of Garrod’s condition* that the Q
matrix (20) is nonnegative. However, Theorem 7
implies that, when R < N + p, these inequalities are
reduced to a finite set which can be derived from the
Q matrix condition.

Theorem 8: The pre-image p of any p matrix with
R = N + p is unique, and (H?)* is the matrix of
expansion coefficients of p in a Slater determinant
basis.

Proof: The proof of Theorem 7 implies that the
pre-image of D? is
p =2, ¥V,

where ¥, is given by (7) with expansion coefficients
€z, determined by w,, according to (32). Clearly,
p is unique if «, is nondegenerate. But any linear
transformation on w,, induces the same linear trans-
formation on {¥',} so that p is always unique. Expand-
ing¥,, as in (7), one gets

* 3 5, %
P = z Z hkl"'kﬁ-ll"'lp®k1"'kp(l)ll"'l]»’

k1<:rkp l1<:lp

(38)

where

k
(Dkl"‘k»p = (—) ks ky(bk]"'kg

and @, ... is the Slater determinant defined pre-
viously.8

Theorem 8 implies that, in order to test D? for N-
representability, one must generate its pre-image. The
unfortunate connection between N-representability
tests and finding the pre-image occurs in all known sets
of sufficient conditions for N-representability. It has
been discussed in general elsewhere.218:1%

When R = N 4 p, H” describes an ensemble p-hole
state. Theorems 5-8 are simply the hole versions of the
well-known results on p-representability of p matrices.
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For purposes of comparison, these results are:

Theorem 5: A p matrix is pure p-representable if
and only if it is idempotent.

Theorem 6: The extreme points of B2 are the pure
states.

Theorem 7: A p matrix is ensemble p-representable
if and only if it is nonnegative.

Theorem 8: The p-particle pre-image of a p matrix
is itself.

IV. N-REPRESENTABILITY: GENERAL HOLE
CONDITIONS

The Basic Theorem

The results of the previous section are just a special
case of a more general result which we discuss now.

Definition 2: A hole matrix % is said to be pure
M-representable if there is an antisymmetric tensor
Xpoyy S2tisEying (23); it is ensemble M-representable
if there are J such tensors satisfying

J
Py tep 11ty =]_21°‘a' ; XkXL1s (39)
where I, K, and L are as in (23) and {o,} is as in (2).
Now, if %? is M-representable, each tensor xf ..,
defines an antisymmetric (R — M)-particle function
¥, according to (7). Then consider the (R — M)-
particle ensemble density matrix

p= Z “lejIF?
7

and the unique p matrix D? corresponding to #*. Then
it is clear from Theorem 2 that p must be the pre-
image of D?. Conversely, whenever D? is ensemble
N-representable, tensors x] ..~ satisfying (39) will
exist. Thus one can conclude that N-representability
of D? and #? are equivalent problems.

Theorem 9: A p matrix D? with R=M + N is
pure (ensemble) N-representable if and only if its
hole matrix #” is pure (ensemble) M-representable.
In addition, for every condition on D?”, there is a
corresponding condition on #” and vice versa;
corresponding conditions are obtained by making the
exchanges

(a) N<>M, R=M+ N, (40)
(0) APy 1ity > Wty 1oy (41)
(©) Bagy € eyt - (42)

Examples: Necessary Conditions

Using Theorem 9, one can extend the nonnegativity
of reduced density matrices to hole matrices.
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Theorem 10: A necessary condition for ensemble
N-representability of a p matrix D? is that the corre-
sponding hole matrix #? is nonnegative. When p =1,
this is equivalent to the well-known fact that the
eigenvalues of D* must be bounded above by 1/N.
When p = 2, it is simply Garrod’s Q matrix condition.*

One can try to generate new necessary conditions
by applying Theorem 9 to all known conditions.® We
mention, as examples, only two such results here. In
the Slater determinant basis, the diagonal elements
h?...k, k-2, ar¢ bounded above by 1. The rank of
7® must be greater than (¥_%).

The application of Theorem 9 to known conditions
does not always generate new conditions. For example,
if one makes the substitutions d}, <> i}, and &, ,, >
h}; ;5 in one of the Davidson inequalities,” one merely
generates another inequality in the same set.

If G is the hole analog of the G matrix,® one finds
that

gab,cd = 8va,dc* (43)
Therefore,
G = PGP,

where P is a matrix which permutes the rows of G.
Thus, although G # G, they are unitarily equivalent,
and one cannot obtain any new conditions from G.

Bounds on Eigenvalues of 7%

We now try to use Theorem 9 to obtain an upper
bound on the eigenvalues of %% Let A and w be the
maximum eigenvalues of D? and #2%, respectively.
Recall that

0LAiL(N-1

and that one can obtain D? with 1 arbitrarily close to
the upper bound by considering extreme antisymme-
trized general power (EAGP) functions.'20-22 An
EAGP function has an R-fold degenerate 1-matrix,
and the largest eigenvalue of its 2-matrix is

A= (N—=1)2[R— N + 2)/R). (45)

Now Theorem 9 implies that the eigenvalues of any
2-hole matrix are bounded by

0<w< (R—N— 1)

(44)

(46)

The interesting question is whether or not (46) is the
best possible bound on w. It is not difficult to see that
pre-image of #” will be the hole analog of an EAGP
function if and only if the pre-image of D? is. It is
then easy to show that the largest eigenvalue of an
EAGP 72 is

@ = (R — N — D1[(N + 2)/R]. (47)
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Clearly (47) cannot be made arbitrarily close to the
upper bound (R — N — 1)1, This appears to
contradict the duality principle which we have stated.
However, the contradiction is easily resolved. To
make A large, one must take R 3> M. But, if N is fixed,
one cannot make R > M = R — N. In order that o
reach its bound, one must fix M and increase N with R.
Thus, for fixed N, (46) may not be the best possible
bound. Indeed, one can obtain a better bound on w
as follows. First, define

13-
()

Then one can show from (20) that

b <A+ 1. (48)
This clearly implies that
oL (R—=N-=DTN+2/R~-N)] 49

By taking R > N for an EAGP function, one can
make (47) arbitrarily close to (49). Thus, (49) gives
the best possible bound on w.

Theorem 11: The eigenvalues of %? are bounded
above by (R — N — 1)7H[(N + 2)/(R—N)].

It is interesting to note that the analog of (48),

1< +1, (50)

also holds. Combining (48) and (50), one gets
A—1<d<A+1, (51)
d—-1<i<d+ 1 (52)

Sufficient Conditions

One can also use Theorem 9 to obtain new sufficient
conditions for N-representability. As mentioned
previously, the results of Sec. III can be easily derived
in this way. Unfortunately, there are not many known
sufficient conditions to which one can apply Theo-
rem 9.

MARY BETH RUSKAI

When p =2, sufficient conditions for pure N-
representability are known in the following cases:

(a) N = 3 (see Ref. 23);

(b) N odd, with a very restricted class of pre-
images with triple excitations and pairing properties®13;

(c) N odd, with (N + 1)/2 pairs of degenerate
NSO’s2:15;

(d) Single excitation pre-images?*;

(e) the Q! matrix defined from the N-completeness
conditions has a sufficiently small degeneracy.?1®

Case (a) can be used to obtain sufficient conditions
when R = N + 3. Cases (b) and (d) involve very
specialized pre-images which do not have interesting
hole analogs. Case (c) is itself the hole analog of a
special class of functions with N = 3. The N-complete-
ness conditions can certainly be extended to 72, but
this is not a particularly useful procedure.

* Much of this work was done at the Theoretical Chemistry
Institute of the University of Wisconsin, where the author held an
NSF predoctoral fellowship.
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The twofold multiplicity problem associated with the Wigner supermultiplet reduction SU4) =
SU(22) ® SU(2) is resolved by spin-isospin projection techniques analogous to the angular momentum
projection technique introduced by Elliott to resolve the SU(3) = R(3) multiplicity problem. The pro-
jection quantum numbers, which furnish either an integer or half-integer characterization of the
multiplicity, are assigned according to an (ST)-multiplicity formula derived from a consideration of the
symmetry properties of spin-isospin degeneracy diagrams. An expression is obtained for the coefficients
which relate the SU(4) ® SU(2) ® SU(2) projected basis states to states labeled according to the
natural U(4) = U(3) = U(2) = U(1) chain. General expressions for SU(4) > SU(2) ® SU(2) coupling
coefficients and tensorial matrix elements are given in terms of the corresponding U(4) = U(3) =

U(2) = U(1) quantities.

1. INTRODUCTION

In 1937 Wigner! pioneered work that established
SU(4) as a group of major importance in nuclear
structure studies. Its basis, the charge independence
of nuclear forces, followed from an observed approxi-
mate fourfold degeneracy of nuclear energy levels. The
result was the introduction of a nucleon distinguishing
isospin quantum number which was combined with
that of ordinary spin in the development of a spin—
isospin supermultiplet theory. Group-theoretically,
it corresponds to a state labeling scheme based upon
the spin-isospin reduction SU(4) > SU(2) ® SU(2).

In general, a complete specification of states in the
supermultiplet scheme requires six labels in addition
to those of the irreducible representation (IR) of
SU(4). The direct product SU(2) ® SU(2) provides
only four; two additional labels are needed. Techniques
that can be used to resolve the multiplicity have been
proposed by several authors.? In particular, Moshinsky
and Nagel?® have given a recipe for the construction of
two operators whose eigenvalues may be used to
complete the labeling. Labels obtained in this manner
do not, however, exhibit any obvious symmetry
properties, nor do they correspond in any way to
know quantities of physical interest. In addition,
the labels are not necessarily rational numbers.

A mathematically more convenient reduction is
the natural or Gel'fand® chain U(4) > U(3) =
U(2) = U(1). In this case, the IR labels of U(3),
U(2), and U(1) provide the required six labels.
Unfortunately, the reduction is unphysical. Neverthe-
less, since calculations are simpler within such a
framework, the scheme has been used to calculate
quantities of physical interest which depend only
upon the IR labels of SU(4). An example in point is
that of the SU(4) unitary recoupling coefficients
(U functions) given by Hecht and Pang.*

The purpose of the present paper is to state and
prove the existence of another solution to the SU(4) >
SU(2) ® SU(2) multiplicity problem, one in which
the two additional labels are chosen so as to furnish
an integer or half-integer characterization of the
multiplicity that exhibits spin-isospin symmetry
properties. The technique used is one of spin-isospin
projection; it parallels closely Elliott’s® resolution of
the multiplicity problem in the SU(3) > R(3) reduc-
tion. The simplifications associated with the U(4) >
U@3) = U(2) > U(1) reduction are incorporated into
the scheme via coefficients which relate the projected
SU4) = SU(2) ® SU(2) basis states to those labeled
according to the U(4) > U(3) > U(2) > U(1) chain.

To establish notation, Sec. 2 is devoted to a brief
review of SU(4) operator and state labeling techniques.
In Sec. 3 a discussion of SU(4) spin—isospin degeneracy
diagrams is given, and a new rule for determining the
number of occurrences of a spin-isospin pair (ST)
in a given IR of SU(4) is derived. In Sec. 4 the pro-
jection hypothesis is stated, and the completeness of
the states so defined is proved. In Sec. 5 an expression
is obtained for the coefficients which relate the pro-
jected basis states to those labeled according to the
canonical U(4) > U(3) = U(2) © U(1) reduction;
general expressions for SU(4) > SU(2) ® SU(2) cou-
pling coefficients and tensorial matrix elements in
terms of the corresponding U(4) > U(3) @ U(2) @
U(1) quantities are also given.

2. BASIC NOTATION
A. Infinitesimal Generators
The 16 infinitesimal generators of U(4) are given in

terms of nucleon spin-charge creation and annihilation
operators by

Ay =Y adlas,, (2.1
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where s denotes the full set of space quantum num-
bers. The A, satisfy the U(4) commutation relations

[Aup, Apel = 0ppAus — 0504, 2.2)

Deletion of the operator N = Y, 4,, which commutes
with the 4,, leads to a set of 15 infinitesimal generators
for the group SU4). If « = 1, 2, 3, and 4 represent
the spin-isospin quantum numbers m, and m, in the
sense

14) =|—%, —%),

then the SU(4) generators can be expressed in terms
of SU(4) = SU(2) @ SU(2) tensors as*

) = |+, +1),

So = %(Au e Aas + Azz - A44),
To = %(An - A22 + A3y — A44)a
Eoo = %(Au e A22 - Azs + A44),

S, = Az + As,
T, = Ay + Au,

Ey = Ayg — Ay,
Ey = Al2 — Ass,s
Ey = Ay,

E = Aps,

S_ = Az + Ay,

T_= Ay + Ag,

E o= As — Ay,

Ey_y = Ay — Ay,
E = A41,

E_y1=As.

(2.4)

The commutation properties of S, T, and E follow
from the commutation properties of the 4,; given by
Eq. (2.2).

B. Irreducible Representations

Gel’fand patterns of the type

h14 h24 h34 h44
hl3 h23 h33
h12 h22

hll

G) = 2.3)

furnish a complete set of labels for the basis states of
an IR of U(4). The A, 1 < o < B < 4, specify the
IR’s of U(B) in the canonical chain U(4) > UQ3) >
U(2) = U(1) to which the state belongs. The h,; are
integral and satisfy the Young tableau or between-
ness conditions

hag > oy > hasrp = 0. (2.6)

Replacing each h,, by h,; — hy, leads to the corre-
sponding basis state for SU(4); it differs from the
U(4) state by at most an #A,-dependent phase
factor.

Other characterizations for the IR’s of SU(4) in-
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clude the set of three numbers (4,4,4;5) given by
b= hy — gy Ay = hoy — b3y, and Ay = hyy — hyy.
SU(4) conjugation properties can then be expressed
as relating the (4;4,45) and (A34,4;) IR’s.® Wigner!
introduced the triplet of numbers (PP'P") given by
P=4A+2%+2), P=%A+4), and P' =
$(4; — 13). They are associated with the maximum
eigenvalues for the operators Ey, S,, and T, (e.g.,
P = maximum eigenvalue of E,, contained in the
IR, P’ = maximum eigenvalue of S, for states with
Eq = P, and P" = maximum eigenvalue of T, for
states with Eo, = P and S, = P’).” In what follows,
simplicity of formulation will determine which
labels are used. In all cases the relationships as given
above apply.

The states |G) are eigenstates of the operators A,,
with eigenvalues w,,

A |G) = w, |G),
W= > rowa — 3 row (o — 1)
= %hﬂu - %hﬂ,a—l'

States of particular interest in the present develop-
ment are those for which the operator Ey, = $(4,, —
Ay — Asg + Ayy) assumes either its (a) maximum
(Egy™ = P) or (b) minimum (Ef" = —P) eigenvalue.
The h, for such states are uniquely specified by Kg
and K, the eigenvalues of §(4;; + Aps — Ag3 — Ay)
=Sy and $(Ay — App + Ay3 — Ag) = Ty, respec-
tively. Explicitly,

Q.7

hy hy hs hy
hy—p hy hy s
|G gy{KgKp}) =
EpNSghr hl—‘p ha—q
h—p
OSPS}&,OSqSla, (288)
hy hy hy hy
hl h2 h3_q ’
|G g {KsKqp}) =
E) ST hl—p ha"q
hs—q
0<p<4,0K9<L A3, (2.8b)
where
KS+KT=h1—-h2——2p=Zl—2p,
Ky — Kp=hy,—hy — 29 = Ay — 2q, (2.9a3)

KS+KT=hZ—h3—2q=)'3—2q9
KS—KT':hl_hz——ZP:j'l_ZP (2.9b)

for |Ggy) and |Gg)), respectively.® The solid curves
in Fig. 2 of Sec. 4 illustrate the result schematically.
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Note that for (a) (4,43)-(odd, even) Kg and K, are
half-integral with K differing from K, by twice an
integer, for (b) (A,45)-(odd, odd) Ky and K, are
integral with Kg differing from K, by twice an
integer plus one, for (c) (4,4;)-(even, odd) Kg and K
are half-integral with K differing from Ky by twice
an integer plus one, and for (d) (4,45)-(even, even)
Kg and K are integral with Ky differing from K,
by twice an integer. That is, the odd-even charac-
teristics of 4, and A, furnish a complete characteriza-
tion of distinct symmetry types for the {KgKp}-values
associated with the |G ).

3. SPIN-ISOSPIN MULTIPLICITIES

Racah® has given a relatively simple algebraic
formula for determining the multiplicity N(gq(4;4:45)
of (ST)-values in an IR (A;4;45) of SU(4). Some
simplifications in his result follow from the investiga-
tions of Kretzschmar!® and Perelomov and Popov.'*
In each case the expressions given are based upon the
Littlewood rules'? which allow Ngp)(4,4:45) to be
related to a sum over terms of the type N(sr)(4,4;4;),
where the IR’s (4;4;4;) have particularly simple
multiplicity structures. In this section an expression
for Nigp(4,4:45) is given which involves a sum over
terms of the type N g7 (4;045) where the ($'T")-values
are related to the (ST)-values in a very simple way.
Since Racah’s expression for Ngp(4,04;) is quite
transparent, the result is particularly convenient for
a study of the origin of (ST)-multiplicities and leads
quite naturally to a rule for the projection numbers of
Sec. 4.

A. Degeneracy Diagrams

A spin-isospin degeneracy diagram for the IR
(A14245) of SU(4) is a regular lattice of points (ST)
each of which is labeled by the numerical value of
Ns1)(A4245), the multiplicity of the pair (ST) in
the IR (4,4,4;). Figure 4 of Sec. 4 gives examples.
The spin-isospin symmetry property Nigz)(AiAsds) =
Nips)(44,45) corresponds to reflection symmetry in
the S’ = T plane. The conjugation properties of SU(4)
imply that N g7 (414:d3) = N g1 (434:4;). A systematic
study of SU(4) spin-isospin degeneracy diagrams
can therefore be limited to a consideration of those
IR’s of SU(4) for which 4; > A, and within such IR’s
those (ST)-values for which § < T.

Figure 1 illustrates features common to all SU(4)
spin-isospin degeneracy diagrams. The heavy solid
curve EP(4,4,43) is, in the terminology of Perelomov
and Popov,!! the enveloping polygon for the spin-
isospin degeneracy diagram associated with the
(A414243) IR of SU(4). It circumscribes all (ST)-values

3227

T

u
£ hg)

FiG. 1. General features of an SU(4) spin-isospin degeneracy
diagram. The heavy solid curve EP(1,4,4,) is the enveloping polygon
for the spin—isospin degeneracy diagram associated with the (4,4,45)
IR. of SU(4). The (ST)- and [UV]-coordinates of the boundary
points are given by

AP P)[Q, +A5); B (P, P),[Q, +07); € :(0, 7,107, + 07,
AP, P), [Q, —A); B:(P, P),[Q, —Q"); C':(Q7, 0),[Q7, — Q)
where (PP’P”) are the Wigner supermultiplet quantum numbers

P =} +4s), P"=34 — 1)
and the (Q Q’Q") triplet of numbers is given by

Q" =2 + As.

P= %(]»1 + 22, + As),

Q=11+12+13, Q,=}vx+lz,

The dashed curve EP(A,045) is the corresponding result for 4, = 0.

for which Ngp)(4;4,45) is nonzero. The boundary
points for the polygon are as given in the figure. The
axes U =T+ Sand V = T — S have been included
as a simplifying feature for the discussion that is to
follow. The dashed curve EP(1,04;) is the corre-
sponding result for 4, = 0. As shown, the figure
corresponds to 4, + A; even and hence integral (ST)-
values. For 4, 4+ 4; odd and hence half-integral
(ST)-values, the schematics are identical, the only
difference being that the lines OC and OC’ are
shifted one-half unit from the coordinate axes.

As can be seen from Fig. 1, EP(4;AA;) and
EP(2,04;) are simply related; for S < T, EP(4,4,45)
corresponds to EP(4,04;) shifted 4, units along the
T axis, and, for S > T, EP(A,A;43) corresponds to
EP(4,04,) shifted A, units along the S axis. More
precisely, EP(A;4;45) is the envelope of all isosceles
right triangles built by 4, regular lattice displace-
ments'® upon the (ST)-values of EP(4,04;). Therefore,
EP(2,02;) is a characteristic structure common to all
IR (44345) (4, and A, fixed; 4, arbitrary) of SU(4).
Furthermore, note that for A, = 0 the boundary points
B and B’ coincide with the boundary points {P", P’}
and {P’, P"} of Fig. 2a (Sec. 4). Therefore, like rule
(2.9) for the {KgKp}-values associated with |Gg), a
classification scheme based on the odd-even charac-
teristics of the fundamental lengths U, — Ups =2,
and Vy — V, = A; furnishes a complete characteriza-
tion of distinct EP(A4,04;) and hence EP(4,4,1;)
symmetry types.
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The results for EP(,,45) suggest that N gp)(4,454,)
may be simply related to N(g.p,(4,045) and, further-
more, that the classification scheme (a) (4,4;)-(odd,
even), (b) (4,435)-(odd, odd), (¢) (4,45)-(even, odd),
and (d) (4,4s)-(even, even) may furnish a complete
characterization of distinct Ngp(4,045) and hence
Nis1(A14:45) symmetry types. To test the hypothesis,
a quantitative study of the numerology of related
degeneracy diagrams was made (e.g., see Fig. 4 in
Sec. 4). In terms of Ny (4,4,4;) = Ngr)(A2:4s),
U=T+ S,and V=T — S, the result of the in-
vestigation, with ¥ > 0, is that

Neom(Adedy) = Nigyy(Ay > 4 — 1, Ay)
+ Nigpn(404g) + Oy, (2,4,

U’ = U - }hz,

V'=map [V — 4, mod (V — 4,,2)]], (3.1)
where 0;;,(4,4,4;) = 0 for cases (a), (b), and (c)
and, for case (d),

Sum(Aiddy) = 1,
= —1,
= 0,
The formula is recursive and therefore may be iterated
to yield
N [UV](}quls) = E N [U'V’](AIO)‘:))’

A >U>V,U— A; even,
22 > UZ V, U—lg Odd,

otherwise. 3.2)

U'=U-m, (3.3)
V' =max [V — m, |mod (V — m, 2)]},
0<m<i, m#U if U—1;o0dd,

which is applicable to all four cases (a)-(d). In terms
of Ngr)(4,04;), Eq. (3.3) has the form

S>T:
Nsm(haads)
=N (ST)(}HO}*a)
+ Ng_1,7(4045)

+

+ N(pr(2,04;) (3.42)
+ N(z,r-1(4,045)
+ N(p_1,7-1)(}10%;)

-+

+ Ng(2:04y),
S+T' =S+T—2,,
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SLT:
N g1)(412545)
= Ns)(4073)
+ Ng,7-1(41045)
+

+ N(g5)(4,043) (3.4b)
+ Ng,5-1)(404;)
+ Ng_1,5-1(4,045)

+

+ Nigp(4045),
S+ T =S+T-—2,,
where N (4,025) is not included if S+ T — 4, is

odd. The next section is devoted to an analytic proof
of this result.

B. Proof of the Multiplicity Formula
Racah® has shown that
N[UV](}‘11223) = w[UV]()‘l + 4,4, + Ay)
— o th+45+ 1,4, -1
— (b — 1,4, — 1), (3.5)
where w;yp,(xy) vanishes unless
x+y2>max(U+ V,U—-V),
x+y=U+V=U-—V(mod?2),
and that, if these conditions are satisfied and x > y,
w[UV](xy) = w[UV](yx)
=gy +2—-1V)
—e(y+1-0)
+ eU—-x+1)
—teU—-1Vl—x+y+1)
The function ¢(z) is given by
¢(2) = [2%/4], z2>0,
=0, z<L0, 3.7
where the boldface brackets indicate the greatest

integer contained in the argument.
Define
ANy (4244 = N, [UV]()&}”zla)
— Nigyi(ds 4, — 1, 45), (3.82)
Awpgy(xy) = o)
— Oggp(x — L,y — 1),
Ap(z) = ¢(2) — ¢z — D).

(3.6)

(3.8b)
(3.8¢)
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Then, to prove Eq. (3.1), it is sufficient to demonstrate
the equivalence of

ANigpi(idads)
= Awgph + As, A2 + 4y)
— Aoyl + A + A+ 1,4, ~ 1)
=Ap(la + A4 +2—-V)—Ap(la + 4+ 1 - V)

+A‘P(U—l1_lz- 1)_A‘P(Zz+1—V)
+ Ap(dy — U) — Ap(U — 41 — 4, — 43) (3.9)
and
Nigyy(A404s)

= Aw[U’V’](llls)
=Ap(l; +2 V)= A, +1-U")
+ Ap(U' — 4, — 1), (3.10)

For (1,4;)-(even, even) and 1, > U > V, the factor
8, uyy(A,24,45) must, of course, be added to

Niyrp(4,04s).
Consider the following special cases:

Case 1: U >V > A,.
Case2: U2, >V:
@ V— 21, =—2n,
®V—-2=-2n—1.
Case3: 4, >U>V:
@ U=V+2n+1:
(1) (A145)-(odd, even),
(2) (A 45)-(even, odd);
b) U=V + 2n:
(1) (A425)-(odd, odd),
(2) (A;45)-(even, even).

For case 1 the result is trivial since U' = U — 4,,
V' =V — Ay makes ANy (4,4,45) and Ny p;p(2,04,)
identical functions in ¢. In both (a) and (b) of case 2
an application of the result Ap(m + 2n) = Ap(m) +
n, m,n integer, leads to the desired conclusion.
Case 3 is somewhat more complicated because
U =U-— 1, <0 implies that Ny (4,04,) =0.
In this case it is therefore necessary to demonstrate
the equivalence of AN{;-1(4,4,45) and 8;;p4(4,4,,).
The substitution 4, — U=2m+ 06 and A, + 1 —
V = 2n 4+ v, m, ninteger and u, » being 0 or 1, sim-
plifies AN ;p1(4,4,4,) to

ANy (AAhs) = Ap(d + 1 + )

—Ap(Ag+ 1 +p). (3.11)
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For 3(a) 4 = v so that ANy,(4,4,4;) = 0. For 3(b)
u 7 v, but the substitution A3+ 1 =2k + «, k
integer and « being 0 or 1, leads to

AN[UV](}'llzla) = A‘P(”) - A(p(:”')

=0 (3.12)
for (bl) and
AN (A Ahy)
=Ap( + 1) — Ap(u + 1)
={ 1, U—Ayeven, u=0,v=1 . (3.13)
-1, U—J,0dd, p=1,r=0

for (b2), which is the desired result.

4. SPIN-ISOSPIN PROJECTION

The additional quantum numbers that are required
to resolve the twofold multiplicity associated with the
reduction SU(4) = SU(2) ® SU(2) may be chosen in
a variety of ways. The solution proposed by Moshin-
sky and Nagel® is not necessarily the most convenient
because of the algebraic diffculties inherent with
the corresponding eigenvalue problem. In this section
the existence of another solution to the multiplicity
problem is stated and proved. It is based upon spin—
isospin projection techniques in which the {K Kp}-
pairs associated with the states |Gg) furnish the
required labels.

A. Projection Hypothesis

A projection operator for a state of total angular
momentum J with projection M may be expressed in
Hill-Wheeler integral form' as

Plx =] +1) f dQDI(QRAQ), (4.1)

where D, () is an R(3) rotation matrix and R;(Q)
is an R(3) rotation operator,

R;(Q) = e *Tsg=BI2g—i1Ts

1, Js] = iJ;  (cyclic). (4.2)

The integration is over Euler angles («fy). From this
definition it follows that

P'J{l"K'P}{lK = 6J’J6K'AIP%J’K, (4-3)

t
Pux = Pxa, (44)
where Py indicates the Hermitian conjugate of
P& - Cases of interest in the present analysis are
those for which J is either the spin S or the isospin
T of Eq. (2.4).



3230

Since eigenstates of the total spin and isospin
operators may be obtained from a state |G) by simply
applying the projection operators P§; . and P%; . ,
we define

|GKsSMsKzTM ) = PSPy x.1G). (4.5)

The complete G symbol has been retained in the
projected ket as a reminder of the Gel'fand state
from which it was derived; only the IR labels &,
however, remain valid state labels. In many cases the
|GKgSMgKTM ) will turn out to be identically zero.
It remains to specify the |G) and pairs {KgKp} with
their corresponding (ST)-values for which projected
states span the IR space.

The Projection Hypothesis
The projected states
IGzKsSMgK yTMp) = Py i Prs 1G), (4.6)
with |Gg) the Gel’fand states for which the operator
E, assumes its maximum (4, > 1,) or minimum
(A, < 4,) eigenvalue, span the (4,4,4;) IR space of
SU(4) if with each integer (4; + A3 even) or half-
integer (4; + 43 odd) pair {K¢K} satisfying
Kg + Ky = max (4,45) — 2p,
Ky — Kp = min (A4143) — 29,
0 < p < [max (4;45)/2],
x < g < min (44y),
K = 0, KS + KT # 07

x = [min (4,45)/2], Kq+ Ky =0, 4.7)
is associated the (ST)-values
o> T STy= (o + u, v+ »),
0< <4,
0<v<o—7+ 4 —u,
(4.82)
c6L7#0: ST)=(c+ p, 7+ ),
0<v< A,
0 pu<LrT—0+ 4 —,
(4.8b)
c=71=0: (ST)= (g — 2u — »,v),
0 < p < [4/2],
0<vr<i,—2, (480

where ¢ = |Kg| and 7 = |K;|. The projections Mg
and M, assume the usual values —S < M < S
and =T < M; < T.

The proof of the hypothesis will be made in two
steps. First, the value of Ngp)(4,4:4;) predicted by
the rule will be shown to be precisely that derived in
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Sec. 3. And, secondly, the assumption that there
exists a function belonging to the IR space but orthog-
onal to the projected states will be shown to lead to a
contradiction. Before proceeding, however, we first
consider in more detail the structure of the rule as
given by Eqs. (4.7) and (4.8).

Since the Gel'fand states |Gg) are eigenstates of
Sy and T, the {K Ky }-pairs of Eq. (4.7) are necessar-
ily a subset of the allowed {K¢Kp}-pairs given by Eq.
(2.9). The choice made (see Fig. 2) is not, however,
unique; other possibilities exist. For example,
simply replacing each {KgKp}-pair of Eq. (4.7) by
{—Kg, —Ky} (inversion in the {K¢K;}-plane) pro-
vides an equally acceptable set of projection numbers.
It is also true that any partial inversion in the {KgKr}-
plane provides an acceptable set of projection numbers.
The essential feature of any such choice is that only
one of the pairs, {KgKy} or its inversion {—Kg,
—Kp},be included. Inclusion of both pairs leads to
states which are not linearly independent. The choice
made by Eq. (4.7) is therefore one of convention; its
simplifying feature is that it maximizes the number of
{KgKp}-pairs contained within EP(4,04,).

In some applications it is convenient to know the
rule corresponding to Eq. (4.7) for projection from
|Ggy)if 4; < 23 and from |Gg,) if ; > 5. It can be
obtained from Eq. (4.7) by simply interchanging the
max-min specifications. It follows that the rules for
determining the {KgKp}-pairs for projection from
|Ggy) and |Ggy) without regard to the relationship
of 4, and A5 are given by the following:

projection from [Gyy):
Ks + Kp = 4 — 2p,
Ks — Kp =4 — 2q,
0 < p < [h/2],
k< q<L s,
k=0,Ks+ Kp #0,
x = [43/2], Kg + Ky = 0;
projection from |Gg,):
Ks + Ky = 4 — 24,
Ky — Ky =4, — 2p,
0 < g <[4/2],
k<pLh,
k=0, Kg+ Ky #0,
e =1[4/2], K¢ + Kz = 0. (4.9b)
Figure 2 illustrates the result schematically. The
dashed curves (Kg + K7 = Onotallowed)and the bro-

ken curves (Kg + Ky = 0 allowed) divide the {KgKy}-
pairs of Eq. (2.9) into two sets equivalent under

(4.9a)
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Fi1G. 2. The envelope of {K¢K7}-pairs associated with [Gg). (a)
|Gz) =|Ggt), (b) |Gg) = |Ggrl). The boundaries are denoted by
their (pg)- and {KsKr}-values. The dashed curves (Kg+ Kp =0
not allowed) and the broken curves (Kg + Ky = 0 allowed) divide
the {KgKr}-pairs into two sets equivalent under inversion; the
pairs for which Ks+ Kr > 0 are by convention the projection
numbers of Eq. (4.9).

inversion; the pairs for which Kg + K > 0 are by
convention the projection numbers of Eq. (4.9). In
any case the spectrum of (S7)-values given by Eq.
(4.8) depends only upon ¢ and = and is therefore in-
dependent of the {K¢Ky}-rule chosen as long as all
{KgKrp}-pairs belonging to the Gel'fand state |[Gp)
under consideration, but not equivalent under inver-
sion, are included in the rule specification.

Figure 3 illustrates Eq. (4.8) by giving the spectrum
of (ST)-values associated with a given {K¢K,}-pair
for the cases o< 7, o=7=0, and 6 =7 =0.
The schematics of the figure are such that the (ST)-
values labeled by the same symbol are those derived
from the same {K K,}-pair. In the examples shown,
2y =4.Foro < 7,both {K;K} = {67} and {KK}=
{ro} have been given. In the case o < 7, note that ex-
ceptfor ST)=(r+ A —v,7+9),0< v < 4y, for
each (ST) g, (labeled by +) there exists the trans-
pose set (I'S) g, x , (labeled by O). The asymmetry can
be removed for 1, odd by relating (ST) = (r + 4, — »,
7+ 7), 0<v<[4/2], to {or} and (ST)= (= +
a—v, 7+, [ALR21+1<Lv< 4, to {r6}. For
2s even, however, the asymmetry associated with
(ST) = (v + 425, 7 + $4,) cannot be removed. The
choice made by Egs. (4.8) is therefore again one of
convention. Its simplifying feature is manifest in the
form of Egs. (4.8a) and (4.8b). For ¢ = v = ¢/, an
asymmetry only exists if {K¢Kqp} = {—0',0'}. It is
related to the fact that the transpose of (ST, _x
is not allowed because {—Kg, Kg} is related to
{Kg, —Kg} by inversion. The singularity of the point
{KsKyp} = {00} is manifest in the form of Eq. (4.8c).

The eight degeneracy diagrams of Fig. 4 illustrate
in complete detail the result of associating (ST)-
values as prescribed by Egs. (4.8) with the {KgKr}-
pairs defined by Eqgs. (4.7). The examples shown
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correspond to symmetry types (a) (4,43)-(odd, even),
(b) (445)-(odd, odd), (c) (4,45)-(even, odd), (d)
(4145)-(even, even) for two cases, 4, zero and 4, such
that the degeneracy of S = T = P’ is a maximum.
On each degeneracy diagram the {K Kjp}-lattice
corresponding to Eqs. (4.7) is given in outline form.
Note that for symmetry types (a) and (b) the {KgKp}-
lattices are rectangular (Kg + K, = 0 not allowed).
The corresponding degeneracy diagrams reflect a
maximum degree of regularity. For symmetry types
(c) and (d) the {K¢K}-lattices are not rectangular
(Kg + Ky = 0 allowed). Nevertheless, since sym-
metry type (c) is equivalent to symmetry type (a)
under conjugation (4,4, interchange), degeneracy
diagrams of type (c) also possess a maximum degree
of regularity. For symmetry type (d), however, the
singularity of the point {K¢K,} = {00} is an inherent
feature which propagates an irregularity into the
multiplicities of the (ST)-values associated with
(ST) = (00) by 4 < 4, regular lattice displacements.

B. Completeness of the Projected States

First of all, consider the multiplicity N&,(4,4,4,)
of (ST)-values predicted by Eqs. (4.8). As can be seen
from Fig. 3, the basic structure of the rule is one
of triangulation. That is, the (ST)-values associated
with each {K¢K;}-pair for 4, > 0 are simply those

A
a_|+x2 x ro'/
X X
X X X
. x X% X
o XX X X x
THA e+ + + +
+++@ +
+H+OO ¢
t++200+
Tt ++d00® +
Q0000
Q0000
c 00000
X\, —n
| o
| 0" o
S
o—-0—0—0
cl) | o T o' a'+x, S
x2 T+\

2

Fig. 3. Spectrum of (ST)-values associated with the projection
numbers {KsKr}:

{KgKT} = {O’T}Z + s
{KsKT} = {D’IG,}'. X,

(KsKkr} = {r6}:0,
{(KsKz} = {0,0}: 0.

In the examples shown, 4, = 4.
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F1G. 4. Spin-isospin degeneracy diagrams for the (4,4,4,) IR of SUM). (8) Nisni(5, 0, 2), (9) Nisry(S, 0, 3), (€) Niszi(4, 0, 3), (d) Nigry X
(4,0,2), (@) NuszS, 6,2), (6 Nispi(5,7,3), (¢) Nisny(4, 6,3), (d) Nam(4, 6, 2). The {KyKpj-lattices given by Eq. (4.7) are included in
outline form. The value of 4, in ('), (b'), (¢'), and (d’) corresponds to a maximum value for the degeneracy of § = T = P’.

(ST)-values contained within the envelope of isosceles
right triangles built by 4, regular lattice displacements
from the (ST)-values associated with {K4K,} for
Ay = 0. The one exception, {KgK,} = {00}, admits
only the subset of these (ST)-values for which § + T
differs from 4, by twice an integer (U — 2, even). It
therefore follows that the {K3Kp}-pairs that contribute
1o NEz (A, 4,A,) are the {KsKy}-pairs that contribute
to the Nf&.,\(4,04,) related to NE,, (4,4,4,) in the
same way as the Ngp(4,04) are related to
Ngp(AA,4,). That is, NE, (A4,4,) satisfies Eqs.
(3.4). Tt remains to prove that

N ES’T)(AO%) =N (ST)(A10)‘3)'

Consider Eqgs. (4.8) for the special case 4, = 0:

c>1. ST)=(6,74+), 0<rv<o—r1;
(4.10a)

oL (ST =@+ ur1), 0<pu<r—o
(4.10b)

Then NE,., (1,04;) is equal to the number of {KgKy}-
pairs given by Eqgs. (4.7) for which (ST) is contained

in the set given by Eqs. (4.10):

S>T: Ngm(404)
= number of {K4K}-pairs for which

=38, v<T; (411a)

S T: Nip(Aok)
= number of {KgK ;}-pairs for which
6<S, r=T (4.11b)

The algebraic formulation is straightforward; it
leads directly to the result that NZ;,(4,04;) =
Nis7)(1,04;) and hence NE)(414:43) = Nigp)(A14ahs)-
On the degeneracy diagrams of Fig. 4 the {K K,}-
lattices corresponding to Egs. (4.7) have been included.
By using Eqgs. (4.11) the result can be verified for
each of the four cases (a) (4,43)-(odd, even), (b)
(A4g)~(0dd, odd), (c) (4,45)-(even, odd), and (d)
(A143)-(even, even).

To complete the proof of the projection hypothesis,
an adaptation of the method first given by Elliott®
for the SU(3) > R(3) reduction and subsequently
used by Williams and Pursey’® in considering the
R(5) ® R(3) reduction problem will be used. It
proceeds by reductio ad absurdum. That is, the con-
sequence of assuming that the projected states do not
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span the IR space is shown to be a contradiction. Ex-
plicitly, suppose there exists a function | @(S"MgT' M)
belonging to the IR but orthogonal to all the
|G KsSM oK TM ),

(P(S'MT'MYy) | GyKgSMKyTMp) = 0. (4.12)

Since N&p)(Aeds) = Nigr)(hhsds), the only non-
trivial implications of such an assumption are those
which follow for $' =S, Mg= Mg, T'=T, and
My = Mrp, namely,
(p(SMsTMy) | Gg{KsKz})
= <Pﬁls¢WsP%‘llTMT(p(SMSTA;IT) l GE'{KSKT}>
= ((SMsTMy) P33 PYpa1, 1Gu{KsK 2}
= ((SMSTM )| P1,31sP ooty 1Gu{KsK )

= 6MsKs6MTK1
X (p(SMsTMy) | GgKsSMgK pTM ) =0.
(4.13)
As is shown below, Eq. (4.13) implies that
(p(SMsTM )| O |GE{KsKp}) =0, (4.14)

where O is an arbitrary element of SU(4). But, by
definition of irreducibility, functions of the type
O |Gx{KsKy}) span the IR space. Hence a contra-
diction exists; the hypothesis that there exists a
function |@(SMsTM7y)) belonging to the IR which
is orthogonal to all the |GzKgSMKTMyp) is false.
It follows that the |Gy K SMgK,TM5) span the IR
space.

The argument given above hinges upon a proof
that Eq. (4.13) implies Eq. (4.14). For this, note that
the operator O being an element of SU(4) implies
that it can be expressed as a power series in the
generators of the group. Furthermore, note that the
commutation properties of the generators imply that
the order of the generators within each term of such an
expansion can be chosen in any desired manner.
Then we define

§li = §(S: + Eno),

53; = S+ — Eso),

7t = Ty + Ep10),

ni = T, — Eo.),

and consider the case of projection from [Ggy). It is
convenient to divide the generators into the two sets

At Eg= ¥(Ay — Az — Aaz + Ay,

Sy = 3(Ay + Az — Agz — Ay),

To = 3(An — Asg + 433 — Aga)s

Ep=Au, E = Ay,

4.15)

(4.16a)
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E\ 4= A4y, E_j1=Agp,
Ei = Ay, §i = Ay,
"7}1— = A, N2 = Ag,
B: S, =A;+ Ay, S_= A5+ 4Asp,
T.= A+ Az, T. =45 + A44. (4.16b)

When a generator of the set A operates on |G ,), the
result is either another intrinsic state of the same type
(Eoos So» T By, Ey 1, Ey 4, E_yy) or zero (&%,

2 nt, n2). Generators of the set B do not reproduce
intrinsic states but are operators which act only in the
direct product space SU(2) ® SU(2). Express O in the
form

0 = Z Camg Ty
a

where the C, are constants and 7, and 7p, are
products of generators of the type 4 and B, respec-
tively. Then consider

(P(SMsTM7)| O |Go{KsKp})
=3 CAPSMTMy)| wp 7y, |G{KsKp}). (4.18)

(4.17)

Each factor =, acting to the right changes at most
Kg and K, and the mp, factors acting to the left
change at most Mg and M. Therefore,

(p(SMgTM7)| O |Gg{KsK7})
= Z C,(p(SMgTMy)| TR, A, |GE{KSKT}>

= 3 CUp(SMSTM}| G{KsKy)) = 0.
aMsMrKsKr
(4.19)
The equivalent proof for the case of projection from
|G, follows by merely replacing the &1, &2, 71, #2
operators of set 4 by the operators &L, %, 51, n%.

5. TRANSFORMATION BRACKETS

Although the projection numbers {KqKy} furnish
an integral or half-integral solution exhibiting spin-
isospin symmetry properties for the SU(4) = SU((2) ®
SU(2) multiplicity problem, the projected states are
not normalized nor are they necessarily orthogonal on
the Kg and K labels. The difficulties associated with
the nonorthonormality of the projected states can be
resolved, however, if an expression for the coefficients
(transformation brackets) which relate the projected
states to the orthonormal Gel’fand basis vectors is
known. This section is devoted to deriving such an
expression. The method used is similar to that
developed in Ref. 16, where the analogous problem in
the SU(3) @ R(3) reduction was considered; it is
based on the results of Moshinsky and Chacén'? for
the matrix elements of the permutations (1, 2), (2, 3),
and (3, 4) between the U(4) basis states |G).
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A. The Expression

Since the Gel’fand basis vectors |G) for a given IR
of U(4) form an orthonormal set which spans the
representation space, an arbitrary projected state
|GKgSMgKyTMy) belonging to the IR may be ex-
panded in terms of the |G) as

|GKsSMgK 7 TM )
=Y (G'| GKgSMgK,TMp)|G", (5.1)
e

where it is to be understood that h,, = h,. The
(G| GKsSMgKTM ) in Eq. (5.1) are the trans-
formation brackets which relate the U(4) > SUQ2) ®
SU(2) scheme of Sec. 4 to the Gel’fand U(4) > U(3) »
U(2) > U(l) scheme. By definition of the projected
states, we have

(G'| GKsSMgK M)
= (G'| PﬁlsKsPﬁ'lme |G>

= 25 + 1) [ 40D QT + 1

X [0 D, (00)(G' RAQRH L) 16,
(5.2)
Therefore, an expression for the
(G' | GKsSMgKpTM z)
can be obtained if the matrix elements
(G'| Rs(Qg)Rp(Q27) |G)

are known. Note that the inverse of the transforma-
tion matrix defined by Eq. (5.1) is only guaranteed to
exist if the |GKgSMgK,TMy) are restricted to the
projected basis vectors |GgKgSMgKTMp) defined
in Sec. 4 by the projection hypothesis. An expression
for the (G’ | GxKgSMsK;TMy) follows as a special
case of the general result for (G' | GKgSM K, TMy).
For notational convenience let

h hy hs hy

y z

IG) = (5.3)

¥

The infinitesimal generators of SU(2) corresponding
to U(2) in the chain U(4) = U(3) = U(2) > U(l) are
given by

J+ = A, J_= A21’
Jo= l(Au — Ajy), (5.4)
where
Jo=J, & iJ,. (5.5)
Then, for '
R(Q) = &g T1g71T0, (5.6)

J. P. DRAAYER

it follows that

<G,, “R(Q) 'G> = 5z'm611"y6z’z61)’p6q’qD'zn’m(Q)’
j=¥p—q, m=r—4p+q),
m =71~ 4p+q).
To relate Rg(€2) and R7(L2) to operators of the type
R(Q), the permutation operators (1,2), (2,3), and
(3, 4) can be used. For example, consider Rg(Q). Let

(5.7)

Se = Ss + St,
So = $(An — Ag3) = (2,3)J4(2, 3),
Sﬁ = %(Azz — Ayy) (5-83)
= (1, 2)(3, (2, 3)Jy(2, 3)(3, 4)(1, 2),
[S5, Sol = 0,
Se = Sh+ 83,
Sz =20 (A — Ag) = (2, 3142, 3),
Sz = i~ (Agy — Ag) (5.8b)
= (1, 2)(3, H(2, 3)J4(2, 3)(3, 4)(1, 2),
[53, S2] = [So, Sal = IS5, Sl = 0.
Then

Rg(Q) = e7Sog #S2g=1250

= oS0’ pmiaS = iBSy ~iBSY g 1280’ =i7S0"

= g8 o P Szt g8 o' e-iusoze-iﬁ Szze—ivsoz

= (2, )R(D)(2, 3)(1, 2)(3, 4)(2, 3)

x R(Q)2, 3)(3, 4)(1,2). (5.9)
In a similar fashion it can be shown that
Rp(2) = R(D)(2, 3)(1, 2)(3, 42, 3)
x R(Q)(2, 3)(3, 4)(1, 2)(2, 3). (5.10)

From Egs. (5.9) and (5.10) it follows that
Ry(Qs)R7(Q7) = Rp(Qr)Rs(L2s)

X R(Q7)(2, 3)(1, 2)(3, 4)

x R(Q)(2, 3)(1, 2)(3, H(2, 3)

x R(Q)2, 3)(1,2)(3,4). (5.11)
Define
Mg () = (G'] R(Q)(2, 3)(1, 2)(3, 4)(2, 3)

x R(Q)(2, 3)(1, 2)(3,4) |G) (5.12)

so that
(G'| Re(Q)Rp(Q1) 1G) = D Mg (Qp)Mgo(Qg).
&
(5.13)
Let
Mol KIM) = @I + 1) [42DI (@D Mg ol
(5.14)
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The transformation brackets of Eq. (5.2) are then
given by

(G'| GKgSMgKTM )

=;,,JK)G'G"(KTTMT)‘M’G”G(KSSMS). (5.19)

An expression for the matrix Ag.(KJM) can be
obtained by using the completeness of the ortho-
normal set of states |G) and Eq. (5.7) to put Mg.(£2)
into the form

Mg (L)
= GE (G' R(Q) 1G (G4 (2, 3) |G (Gl (1, 2) |Gy)

X (Gy| (3, 4) |G (G4l (2, 3) 1G5) (G5] R() |Gy
X (Ge] (2, 3) 1G7) (G4 (1, 2) |Gg) (Gs| (3, D) |Gy
= > DDy x(Q)(G](2,3) ]Gy

Gola#1,5)
K'M”

X (Gyl (1, 2) |G3){Gs| (3, 4) (G4 (G4 (2, 3) |G5)
X (Ggl (2, 3) |G (G| (1, 2) |Gs) (G5l (3, 4) 1G),
"=3p —q) M =r—-§p+q)
K'=r—%p +4)
= 3ps — q¢), M" =r; — i(ps + qs),
K" = re — #(ps + 46):
where, except for r, (determined by K’) and rg
(determined by M”"), the elements of G, and G; are
equal to the corresponding elements in the G’ and Gy,
respectively. Then, by using the well-known result
expressing the integral of three rotation matrices in

terms of a product of two SU(2) Wigner (Clebsch—
Gordan) coefficients, it follows that

"

(5.16)

Mg o(KIM)
—_ z <JIMI’

Gala1,5),
X (G| (2, 3) 1G2) (Gy| (1, 2) |G3) (G, (3, 4) |Gy
X (Gyl (2, 3) 1G5) (Gl (2, 3) |G (G4l (1, 2) |Gy
X (Ggf (3, 4) 1G). (5.17)

JUM//,JM><J/K/; J”K”IJK)

The permutation matrices (G'| (n — 1, n) |G), n =
2, 3, 4, required for an evaluation of Eq. (5.17), have
been given by Moshinsky and Chacén'’; they are
equivalent to special unitary recoupling coefficients
for the groups U(1), U(2), and U(3), respectively.
Note that (# — 1, n) operating on |G) changes only
the h,; for which § =n — 1 and these in such a
manner that the result is zero unless w,_, = w,,. The
apparent 6 X 6 = 36-fold sum over the G, in Eq.
(5.17) is therefore in actual fact at worst a sixfold
sum. The result as given by Eq. (5.17) may, however,
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be the most convenient for the purposes of machine
coding since the summations over G,, G,, G, and G,
G4 are matrix multiplications involving the permuta-
tion matrices. The remaining summation over G
then involves simply the product of two Clebsch-
Gordan coefficients and one element from each of
the matrix products.

It is to be noted that the transformation brackets
are equivalent to normalization and overlap integrals
of the projected states. This may be seen by con-
sidering
(G'KsSMgKpTMyp | GKSSMSKTTMT)

= (G'| P§ MSKS MTK,I GKgSMgK 7 TM )

= <G,l PK;MSPK’TM, |GKsSMsK 7 TMy)

= (G’ [ GKsSKgK pTKp). (5.18)
B. The Application
In general, the transformation brackets'®
TM )
relate the set of nonorthogonal basis vectors

|GgKgSMKTM ) to the set of orthonormal basis
vectors |G’y and are therefore the elements of a non-
orthogonal matrix 4. The inverse expansion of the
|G) in terms of the |GLK{S' MK, T'M,) exists, and
the coefficients B(GzKiS'MiK,T'My, | G) can be
obtained by inverting the appropriate 4 matrix. An
equivalent but perhaps somewhat simpler evaluation
of these coefficients can be obtained by considering
directly the expansion
IG) =¥ B(GyxKgS'MsKyT'My| G)

K8 M

KT M;

X |GgKsS'MgK7T' M7y, (5.19)

Then

_ pS T
- P.IllsKsPIlfTIxT IG>

D> B(GgKiS'MgKyT'M7y|G)
KSS M
KT My
X Pk Prerc, 1GEKSS MK T'M )
= 3> B(GzgKsS'MiKT'My|G)
K8 My
KpT' My

X Os50 k070, x, |GEK sSMsK 7 TM )
= 2 B(GzKsSKgK7TKy| G)
KsKp
X |GgKsSMgK7TM 7). (5.20)
That is, the B(GzK(S' MK T'My, | G) are not only
the coefficients in the expansion of the |G in terms of
the |GgKyS'M(K7T'My), but they are also the
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coefficients in the expansion of |GKgSMgK.TMy)
in terms of the |Gz KiSMgK,TM ;). Using this result,
we can determine a unique solution for the
B(G zK(S'M{KT'M | G)
from the set of simultaneous equations
A(G'| GKgSMsK zTM 7)
= Y B(GyKsSKsK7TKr|G)
K Ky
X A(G'| GgKsSMsK7TMp). (5.21)
In those cases for which the {K (K }-labels are redun-
dant, it follows that the B(GzKS MK T'My | G)
are simply given as the ratio of two transformation
brackets. Since B is the inverse of 4, Eq. (5.21) also
shows that

S AG | GMgSMMTMy) = 0z (5.22)
SMsTMr

lpG3pKg,SsM g Ky ToM 1)

K581 M3, Ko, T1 M1,
Ks,8: M3, K1, T2 M1,
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and
> A(G | GKsSM Kz TMy)
G

= 6M'SKS6M1'KT z , = aIVIsK,gaJI]‘KTN(ST)(21122’3)'
KT

(5.23)

In a fashion similar to that demonstrated in detail
in Ref. 16 for the SU(3) @ R(3) case, quantities of
physical interest which depend upon the SU(4) =
SU(2) ® SU(2) labels can be expressed in terms of
the corresponding quantities labeled according to the
canonical U(4) @ U(3) @ U(2) = U(l) scheme by
means of the A’s and B’s. For example, for the
SU(4) > SU(2) ® SU(2) coupling coefficients defined
by

Cl(GlEK51slMS1KT1 TIMTl 3 G2EK32S2MSZKT2T2MT2 | PG3EK33S3M83KT3T3M Tg)

X |Gy gKs,SiMg, K5, TiM 1) 1G5 K5, SsM 5, K 7, LM 1), (5.24a)

|G1eKs,$:Ms, K T,Mp,) |G K5, S: Mg, K1, T, M 1,)

= 2 Co(pGs£K s, SsM s K p, TsMp, | G1gKg,5:Mg,Kp, TiMp,; GogKs,S:Ms,K 7, M 1)

pGaEKsasaMssKraTsMTa

it can be shown that

X IPG3EKS3SBMS3KT3T3MT3>’ (524b)

CI(GIEKSJ,SIMSlKTl LMy, ; Go5Kg,SeMg, K 7, M 1, l pGigKs,S:M g K7, T:M 1)

= (§;Mg,; S;M, | SsMg X TuMp; ThM g, | TsMp) 3

(S:M’s,; SeM’, | SsKg,)
G1Ms M7,
GaMs, Mz,

X (M’ s TmM'p, | TiK 5 )B(G, zK g, SiMg, K 7, TiM . | G
X B(GyKg,S:M s, Kp, My, | GiXG1; Gy | pGap),  (5.252)

CpGagK 5,S:M5,K 7, TsM, | G1Ks,SiMs, K, TiMrp,; GoxKig,S:Mg, K 7, Ty M p,)

= ($;Mg,; S;Mg, | SsMs,) (TiMp,; oM, | TLM

(28, + Q2T + 1)
(28 + D2 + 1)

T3>

X ¥ (SiKg; S:My, | SsMs X T K p,; TbM 'y, | TM 7 )B(G3pKs, SsM s K TsMp, | G3)

@3 Mg, Mp,
Gy My My,

% (pGy | Gy; GA(G} | G,5K,S:Ms, K7, M), (5.25b)

where p is a label that distinguishes multiple occur-
rences of a given IR of G; in the reduction of the
direct product Gy ® G,. In Egs. (5.25), (Gy; Ga | pG)
and (pGs| Gy Gy) are U(4) = UQ3) > UR2) > U(1)
Wigner coefficients, and the (Jy;My; J,M, | J,M,) are
ordinary SU(2) Wigner coefficients.

Similarly, conmsider the SU(4) = SU((2) ® SU(2)

tensors defined by
T(GK¢SMgK pTM ;)

— @S+ 1) f dQDSE ¢ (QQT + 1)
x j dQp DT (@)
X Rs(Qg)RH(Qp)T(G)RF(Qp)R5'(Qg), (5.26)
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where T(G) is the corresponding U(4) > U(3) = U(2) > U(1) tensor defined by

[445, T(G)] = g<G’| A, 1G) T(G).

5.27)

The {KgKr}-quantum-numbers resolve the SU(4) = SU(2) ® SU(2) tensorial multiplicity in precisely the
same manner as described in Sec. 3 for the SU(4) > SU(2) ® SU(2) basis states. It can then be shown that

<pG3EKS;;S3MS3KT3T3MT3‘ T(GIEKsls].MS1KT1’I‘1MT1) IGzEKS2SZMSZKTgnMT2>
= <GSN T(Gl) “ G2>p 2 ) C2(PG3EK:S:;S3MSQ ,T:!T;}MT;; l GIEKS1S1M81KT171MT1 ; G2EK52S2MSgKT27'2MTz)

K{ K
,531\1'3

where (G;|| T(G,) ||Gy), is the reduced matrix element
of 7(G,) corresponding to the state |,G,).

The particularly elegant feature of all such relation-
ships is that a knowledge of the A’s and B8’s allows
completely general expressions for SU(4) = SUQ2) ®
SU(2) quantities to be expressed in terms of a subset
of the corresponding U(4) = U(3) > U2) > U(l)
quantities [e.g., all SU(4) @ SU(2) ® SU(2) coupling
coefficients are determined in terms of U(4) >
U@3) > U(2) > U(1) Wigner coeflicients for which
one set of labels corresponds to the operator Eg,
having either its maximum or minimum eigenvalue].
Furthermore, the problems associated with phase
conventions and multiplicity relate simply and directly
to the corresponding problems in the canonical
scheme.

6. DISCUSSION

The fact that a many-nucleon wavefunction can be
decomposed into a product of its space and its spin-
isospin parts allows the techniques developed in this
paper to be applied quite independently of any special
spatial considerations. A case of particular interest,
however, is that dealing with shell-model calculations
up to and through the first half of the 2s-1d shell.
For such nuclei the most promising theoretical tool for
the spatial part of the wavefunction is the Elliott
SUQ3) @ R(3) classification. For this reason the tech-
niques developed in Ref. 16 together with those of the
present paper furnish expressions which can be used
to simplify as well as extend such theoretical investi-
gations.

The simplifications are, of course, in calculational
technique in that the SU(3)  R(3) and SU4) =
SU(2) ® SU(2) transformation brackets reduce the
difficulties inherent in the physically significant
labeling schemes, but not present in the corresponding
canonical labeling schemes, to forms which can be
machine coded. Nevertheless, the solution furnished
by the transformation brackets to the problems
associated with the nonorthonormality of the pro-
jected states is indirect and not necessarily the most

X A(G3E ‘ pG3EKA’SaS3K53 lTa’IZlKTs)9 (5'28)

convenient for purposes of machine-coding matrix ele-
ment calculations. The difficulty is that the SU(3)
R(3) coupling coefficients of Ref. 16 and the SU(4) =
SUQ) ® SU(Q2) coupling coefficients of the present
paper are not Wigner coefficients. That is, the
coupling coefficients do not represent the scalar
product of orthonormalized coupled and uncoupled
basis states.

By orthonormalizing separately within each L and
(ST)-multiplet according to a symmetric recipe (e.g.,
see Ref. 19), the transformations which orthonormal-
ize the SU(3) ® R(3) and SU(4) > SU(2) ® SU(2)
basis states can be given in simple algebraic form as
the ratio of normalization and overlap integrals.
Since such integrals are equivalent to transformation
brackets, the problems associated with the non-
orthonormality of the projected states can be resolved.
And, in particular, they can be resolved in a form
convenient for machine coding while still maintaining
all the simplifications associated with the projective
processes. In fact, the SU(3) © R(3) and SU4) o
SU(2) ® SU(2) orthonormalizing transformations can
be incorporated directly into programs which calculate
the transformation brackets. The result is then
SU3) > R(3) and SU4) > SU(2) ® SU(2) trans-
formation brackets which relate physically significant
orthonormal basis states to the corresponding canon-
ical basis states. Within such a framework the SU(3) @
R(3) coupling coefficients of Ref. 13 and the SU(4) =
SU(2) ® SU(2) coupling coefficients of the present
paper become Wigner coefficients, and hence standard
algebraic techniques introduced by Racah? can be
applied to simplify matrix element calculations.
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We prove, by use of energy inequalities, a theorem of uniqueness and local (i.e., for finite time)
stability for the solution of Cauchy problem relative to the integro-differential system of Einstein and
Liouville. A global theorem of geometrical uniqueness follows from a general method, previously given.

We will prove elsewhere an existence theorem.

INTRODUCTION

The aim of this paper is to prove a uniqueness
theorem for the solution of the Cauchy problem for
the coupled Liouville-Einstein equations, i.e., for a
collisionless relativistic gas under its own gravita-
tional field. Such a gas provides a model reasonably
appropriate for physical systems like systems of
galaxies or some systems of stars (which are then the
“particles” of the gas) and certain plasmas or radia-
tions (in this last case the particles have a zero rest
mass).

With the uniqueness theorem we prove a local
stability theorem; i.e., we prove that the solution
(metric and distribution function) depends continu-
ously on the initial data: such a theorem, which
states that a small initial perturbation gives rise to a

small perturbation during some finite time, seems the
first necessary step to be assured of before any more
elaborate research on stability.

The plan of this paper is the following:

In Sec. I, I give a brief review of the fundamental
concepts of relativistic kinetic theory, and 1 recall
the equations governing the motion of a self-gravi-
tating collisionless, relativistic gas: the coupled
Einstein and Liouville equations. I also recall, or
establish, a few general properties of these equations
which will be used in the following (i.e., local equiva-
lence of Einstein equations in harmounic coordinates
and tensorial Einstein equations, and use of bounded
parameters for the momenta in the Liouville equation).

In Sec. II, T establish some inequalities satisfied by
the difference of two solutions of the Cauchy problem
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We prove, by use of energy inequalities, a theorem of uniqueness and local (i.e., for finite time)
stability for the solution of Cauchy problem relative to the integro-differential system of Einstein and
Liouville. A global theorem of geometrical uniqueness follows from a general method, previously given.

We will prove elsewhere an existence theorem.

INTRODUCTION

The aim of this paper is to prove a uniqueness
theorem for the solution of the Cauchy problem for
the coupled Liouville-Einstein equations, i.e., for a
collisionless relativistic gas under its own gravita-
tional field. Such a gas provides a model reasonably
appropriate for physical systems like systems of
galaxies or some systems of stars (which are then the
“particles” of the gas) and certain plasmas or radia-
tions (in this last case the particles have a zero rest
mass).

With the uniqueness theorem we prove a local
stability theorem; i.e., we prove that the solution
(metric and distribution function) depends continu-
ously on the initial data: such a theorem, which
states that a small initial perturbation gives rise to a

small perturbation during some finite time, seems the
first necessary step to be assured of before any more
elaborate research on stability.

The plan of this paper is the following:

In Sec. I, I give a brief review of the fundamental
concepts of relativistic kinetic theory, and 1 recall
the equations governing the motion of a self-gravi-
tating collisionless, relativistic gas: the coupled
Einstein and Liouville equations. I also recall, or
establish, a few general properties of these equations
which will be used in the following (i.e., local equiva-
lence of Einstein equations in harmounic coordinates
and tensorial Einstein equations, and use of bounded
parameters for the momenta in the Liouville equation).

In Sec. II, T establish some inequalities satisfied by
the difference of two solutions of the Cauchy problem
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relative to the coupled Einstein-Liouville equations
by using energy integrals related to these equations.

In Sec. I1I, T deduce from the preceding inequalities
a local uniqueness and stability theorem for the
solutions of such a Cauchy problem. The local
uniqueness implies global geometric uniqueness.!

In the Appendix, I treat the case of continuous
masses (star clusters).

I. EQUATIONS AND GENERAL PROPERTIES

We will in this part recall briefly the origin and
the form of the Liouville equation for the distribution
function f on a space-time of general relativity. In
order that the stress-energy tensor corresponding
to the particle flow associated with this distribution
function be bounded, we will have to make some
hypothesis about the decrease at infinity (in momen-
tum space) of this function (“‘weighted” distribution
function). For all metrics verifying, in a local chart,
the usual hypothesis of boundedness, differentiability,
and hyperbolicity, we will show that it is possible to
choose (we treat, for simplicity, the case of particles
with a given rest-mass) parameters in momentum
space which take their values in a bounded domain
of R®: This choice will simplify the establishment of
inequalities in Sec. I1I.

We finally write Einstein equations and give a form
for the stress—energy tensor adapted to the further
study.

A. Phase Space and Distribution Function

Within the framework of general relativity the phase
space is the tangent bundle T(M) of a 4-dimensional
differentiable manifold M, which has a hyperbolic?
metric g. If x* are local coordinates in M, we call
(x%, p7) the local coordinates in T(M), where the p*
are the components of a vector p tangent to M at
x in the natural frame associated with the local
coordinates x?.

A particle is a path in phase space (x(¢), p(1)),
where x(t) describes the position of the particle and
p(t) its 4-momentum. If »z is the proper mass of the
particle, the length of p in the metric g is m, and the
path of the particle in the phase space lies in the sub-
bundle

(H

We will suppose, moreover, that M is time oriented
and that p points toward the future. Then p, for given
X, is on the future sheet P, of the hypersurface of Eq.
(1). P, is called the mass-m hyperboloid.

The volume element in M and T,(M) being,

L'’ = m®.
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respectively, in the coordinates (x*) and (p*),
n=lgltdx, ©=1g}dlp,
d*x = dx® A dx' A dx® A dx®, ()

d'p = dp° A dp* A dp® A dp®,
the volume element in P, is given by the Leray form
such that

@ A d[¥(gp°p" — m*)] = o,
which may be written

w = (Ig/p)d®p, dp = dp' Adp*Adp®. (3)

In the absence of external forces (which we
suppose®), the particle paths are geodesics, i.e., tra-
jectories of the vector field X on T(M):

X = [p", -T%Lp'p"]
For particles of mass m, these trajectories lie on P(M).
The distribution function* f(x,p) is a scalar
function on T(M). Its interpretation is that the 7-form
on T(M),
0 =/(x,p)i (nAw),

induces, on each 7-dimensional submanifold X of
T(M), the volume element for the number of particle
paths crossing X.

In the case where particles are microscopic (rela-
tivistic gas or plasma), the proper masses take on a
finite range of discrete values m;. The distribution
function is then the finite sum of distribution func-
tions corresponding to each of these values

f=§fa"

/; being defined on P,(M).

In the case where the particles are macroscopic
(star or galactic clusters), the proper masses take on
continuous values, and the distribution function
could be defined on T*(M) (fiber g, ,p°pt >0, p
pointing towards the future). The astronomical data
prove, however, that the masses of the stars of a cluster
are bounded from above and from below®: f(x, p) is
then to be defined only on the submanifold

m; < gp0°p* < mi.

B. Liouville Equation

If we suppose that particle paths are differentiable
geodesics (no collisions), the conservation law of the
number of particles imposes the fact that 6 is invariant
under the trajectories of X, i.e., that

IXG = O,

ixydd=0.

4
)
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Equation (4) is, for any f, a consequence of the
identity
(ix) =

(5) gives a differential equation for f, called the
Liouville equation:
u 0
o f - Fa f

ix df = @)X = 9" Yo

If we denote by U a vector field on M, strictly
timelike for the metric g [i.e., U-p = U,p* > k > 0,
V p € T;[(M)] and set (g is the weighted distribution
function)

=0. (6)

¢(x, p) = (U - p)f(x, p), ©)
we deduce from (6) that ¢ satisfies the differential
equation
209 a‘P —1 3
Pl — T oo — Ne(p,U% 'p*p"V,U, = 0;
P o ap“ @(p.U") p'p'V,U,
(®)

let us remark that
plpuVlUu = %plpu(V).Uu + VMU},)
vanishes for all p € T,(M) if and only if U, is a

Killing vector field of the metric g.
On the other hand, the inequality

p'p'ViU, = ixd(U-p) <0
means that U - p is nonincreasing on particle paths.
The existence of a timelike vector field verifying this
assumption, for a given metric, has been proved by
Bitcheler® and will be called the Bitcheler lemma.
We will not use this lemma here.

Remark: The vector field X is tangent to P(M);
thus Eqs. (6) or (8) may be restricted to partial
differential equations on P(M).

C. Bounded Parameters on P,

In a coordinate chart, it is physically reasonable
to suppose that the metric of the space-time is
differentiable enough for the geodesics to be well
defined, and uniformly hyperbolic, and to choose
adapted coordinates; more precisely, we state the
following:

Hypothesis H,, Definition: A metric, given in a
local chart by ten functions g,,; defined on an open
set U of R?, satisfies hypothesis H,, if on U:

(a) There exist positive constants a, b, and M such
that

-2, X' X' > b*3 (X', b>0,
go2a*>0, g°>a">0, [g¥ <M

YVONNE CHOQUET-BRUHAT

(uniform hyperbolicity of g, with x° = ¢ uniformly
spacelike, and boundedness of g);
(b) gupis C?and

0,8 < M', |05,8%1 < M.

Remark : The metrics satisfying H, form a bounded,
closed convex subset of the space (x C?, ).

If? m # 0, we may take, as parameters on the m
hyperboloid P,

vt = p'lp°. )

We denote by A, the image in R3 of P, by the mapping

p — (v°). For all x € M and all metrics g satisfying H,

on U, the domains M, are contained in a fixed

bounded domain 6 < R®: Eq. (1) may indeed be
written
Zoo(P")? + gi5(p" + &7pO)p’ + £%p°)

— 8878V (P = m?, (10)
7% = gitg,,, with g being elements of the
We deduce from (10) and

where g
matrix inverse of g;.
hypothesis H,

m

(800 — gijg

0 - 00,3
p 2 gt = mlg"|* > ma (11)

and
3 . 3 X . 3 .
b‘Z z (01)2 S 2b2 z (vz + g—Oz)Z + 2b2 Z (g-01)2
i=1 i=1 i=1

3 . . " . 3 .
< —2g,; > (0 + 80 + g%) + 267 3 (&%)
P P

<280 — 888" + 2sz "y
2 ~0i
=F’+2b22(°)2 (12)
Hence
3
> (') < K(a, b, M). (13)
i=1

A straightforward computation gives the following
for the Leray form (3) in the parameters v’ on the

fiber P,:
@ = |gl}[(p°)!m?]d%. (14)

If we define the functions »*#(x, v) on P(M) by
v(x, v) = ppP(P") [(UP"Y, (15)
with U, strictly timelike for all metrics satisfying H;,
chosen such that

Uy + Up' > k>0, V{v'}ed,
then »*(x, v) is bounded on G if
N> 6.

(16)
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If p(x, v) is the expression of ¢ on P, in the param-
eters v*, Eq. (8) reads
i 0 i 09

+v— — A4 —

99 _
ox’ ov'

ox° (17

NFp =0,
with
AP =T% + 207 4 T 0"
— vy — 20T ;0" — v'T907", (18)
F = (U, + Upy!
X [VoUy + v'(VoU; + V,Up) + vv'V,U,]. (19)
Under the hypothesis H,, the functions 4° and F

are C' on U x M, with bounded derivatives of order
< 1 or, if U, has been chosen® C2, with bounded
derivatives of order < 2.

Hypothesis H,, Definition: We will say that a
function @(x,v) on U x A satisfies the hypothesis

H, if,on U x JE, @ is C! and there exists a constant
M" such that

” n a(p ”
ol <M”, 10,91 M7, |20 | < M.
14

D. Einstein Equations

We will now suppose that the particles are the
sources of the gravitational field, i.e., that Einstein
equations are satisfied:

S = R* — }g*R = T*, (20)

with T4, the stress—energy tensor due to the particles,
given at each point x € M by

= e 1)
=( M)

I1(M) denotes the fiber appropriate to the prob-
lem at hand [i.e., P,(M), X ; P,(M), T} (M), - - -].

To study the solutions of (20) from the point of
view of analysis, it will be convenient to use local
coordinates which are harmonic (i.e., 9,[|g|* g*#] = 0).
We know that, in such coordinates, the Finstein
tensor reads

a & a
_%gluaiug g + H ﬂ(g}-ll, avglu‘)s a}. = _l ’
Ox
(22)
where H®# is a rational function (with denominator
a power of [g|) of g*# and 0,g*».

On the other hand, it is known that, if f satisfies

the Liouville equation, the stress—energy tensor
(21) satisfies the conservation laws

(h)saﬂ —

VT = 0. (23)
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By standard arguments, it then follows that any
metric g solution of
(h)Saﬁ = T

verifying the constraints on an initial spacelike
hypersurface  will verify the tensorial Einstein
equations (20).

If we suppose, for simplicity, that all particles have
the same mass® m £ 0, the tensor 7%# reads

T = m_zf pb %d"v,
7 gl

where A, is a bounded domain and »*# [cf. Eq. (15)] a
bounded function on A,.

II. ENERGY INEQUALITIES

We define, in a coordinate system, norms for the
difference of two metrics g and 2g and of the corre-
sponding weighted distribution functions ¢ and 2¢,
at a given *“time” x° = ¢, and then establish inequali-
ties between the sum of norms and the sum of the
corresponding norms at an initial time (x° = 0). We
set gt — gtk =y 19 — 2¢) = y_ where g and %g
are two metrics satisfying the hypothesis H,, with !¢
and 2¢ satisfying H, and the couples (g, 'p) and
(g, ?¢) satisfying both of the coupled Einstein-
Liouville equations.

By subtracting equations satisfied respectively by
('g. ') and (g, 2¢), we get

2 2 A 2 1 2 2774 1gy4 i
._% gaﬂaaﬂyu_%yaﬂaaﬂ g”+ HA — H*" = p**

(24)
4 ]
oy + vy — 2A’a—'f’; —N¥Fyp=V, (25
v
where
2 i 1,4 0 1<P 1
V=(4"'— A’)—a7 + NCF—-"F)'g (26)
and

U}.u=f 2 aBZ%d3 __f 1 uﬂl%d:% 27
i, 77 I"g|* d*v o F'gl* d, (27)

with 2AC, (resp. 1A,) denoting the range of the vari-
ables {v*} corresponding to the fiber P, for the metric
%g (resp. 'g). Equation (27) may be written

A _ 2 1 N 1241}
v f%zn%z [Coe — ") %l
+ (%81t — gl g a®
+f Zq)vaﬂ |2g|% d3v
P Pz NI )

1 1
- f v e gl .
LMoz— Gz N o)
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Our uniqueness will then follow from energy
inequalities applied to (24) and (25). We will also
deduce from these inequalities a stability theorem.

A. Norms and Energy Inequalities for
Differences in Metrics

We denote by X the part in the future (x° > 0) of
a subset of V, globally hyperbolic for all metrics
satisfying H;, with Cauchy surface w,, a relatively
compact subset of S, (i.e., all timelike or null curves
issuing from x € X, towards the past, cut w, once and
only once; the existence of such domains X is easy to
prove); we denote by w, the hypersurface x° = 1 of X,

We setl®

= [ 0D + s, o9
where .
| DYy = zlan (29)
and
Il =,12,4 ™1z (30)
and analogously ’
loll, = » z‘; [o™]® dx.

We obtain bounds for (28), as usual, for second-
order partial differential equations: We multiply by
dpy*# and integrate over X (intersection of X with the
past of w, for the metric 2g), using Stoke’s formula
(the ‘““lateral” boundary of X is characteristic and
gives rise to a nonnegative integral) and using, more-
over, the fact that, for any differentiable function u
on X,

|u(x*)|* < 2XOJ: |0gu(x’, 7)I* dr + 2 |u(x’, 0);

we thus find that there exist constants C;, Csy, and C,
depending only on bounds H, such that

t 1
lyll < Cullyllo + (Co + 2t)£ iz dr + CsL lvll| dr.

B. Norm and Energy Inequality for Difference
in Distribution Function

Let us denote by Q the subbundle of P(V) with
basis X:

(x,p) ez

a point (x, p) in the boundary 9Q of  is either

v e diM,;

xeX, v={=pp’}eM,,

x€dX or peodpP,, ie,

we see that 9Q is the union of a “lateral” boundary
L, generated by null geodesics of 2g, and of subsets
where x belongs to w, or to w,.

YVONNE CHOQUET-BRUHAT

If we multiply (25) by v and make some obvious
transformations, we get

30 19l + 80" |l*) — a%(zA" vl

= (N L 2A") Iyl + 2Vy. (31)

If we integrate (31) over Q and apply Stoke’s
formula on the one hand, the integral over L vanishes,
and we get (C, and C; depend only on bounds H,)

il < lpllo + Ca f Ul dr + C, f Wi, dr,

where we have set (recall that ® < ,)

ol =[ [ ot oF s

and analogous definition for || V]|, .

C. Bounds for ||V and [|v]||

We deduce from (26) and bounds H; and H, that
there exists a constant K, depending only on these
bounds, such that

Vil < K liyll;. (32)

We consider now (27). We remark that 240, (resp.
tAG,) is defined by

$(0') < goo
where [cf.(9)]
() F — g,(0" + g + g™);

it results from the definition of y*# and hypothesis
H; that the points v* of 2A(, which are not in UG,

[resp. *¢(v") < "goo ],

satisfy the following inequalities (C,, constants
depending on bounds H,),
g™ = Cop IP™ < 0N < ™) € 20,
(33)

from which there results the existence of constants
D,, > 0 such that the measure of the set 2AC, —
(PG, M 2AG,) is bounded by D, [y
It is then easy to obtain the majoration, where the
constants K, and K, depend only on the bounds
H, and H,:
ol < Ko llyll + Ko Il (34)

We then deduce from inequalities (32) and (34) that,
if
t<T onlX,

there exists a constant C, depending only on T, H,,
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and H,, such that
Iyl: + llwll; < Ciliylls + el

scfapt+ vl a9
An easy consequence of this integral inequality is
e + il < (Colivllo + llwlloe. (36)

III. UNIQUENESS AND STABILITY THEOREMS
We will deduce easily from the inequality (36) the
following:

Local uniqueness theorem (discrete masses):

Hypothesis:

(1) 'g and 2g are two metrics satisfying H;. On
S(x0=0):

o =22, 05, =0.%,,, for xX°=0. (37)
(2) '@ and *p satisfy H, and
lp =2p, for x°=0, (38)

which implies [under hypothesis (37)]
Y=2f for x*=0.

Conclusion: In a neighborhood X of S,

g =1,
and, on the corresponding bundle P(X),
=

Proof: Equations (37) and (38) imply

lylle =0, Iyl =0;
thus, by (36),

Iyll; =0 and lyll, =0,

Under the hypotheses H, and H,, these equations
imply

t<T

y*# =0 on X,ie, 'g*="72g"

and y = 0 on the corresponding bundle P(X); thus
If = 2f. From this local uniqueness, that we have
obtained in harmonic coordinates, one deduces by
standard arguments (cf. above) a geometric (i.e., up to
isometry) global uniqueness theorem for the solution of
Cauchy problem in the class of smooth globally hyper-
bolic metrics.

Stability: The inequality (36) proves that, if the
norms at time x° = 0, {|ly}¥ and {||ylls}?, are less
than some small number ¢, the corresponding norms
at time x° = O will be less than Ke, where K is bounded
for bounded . This property proves what could be
called a local or weak stability theorem': Such a
theorem states that a small perturbation in the metric
and the distribution function gives rise to a small
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perturbation, at least during some finite time. The
strong stability,’? in a rigorous sense, would be
obtained if K could be proved to be a bounded
function of f: In general, X increases infinitely (and
even exponentially) with ¢. It would be interesting to
study its order of magnitude, in special cases, after a
proper choice of coordinates geometrically (or
physically) meaningful.
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APPENDIX: CONTINUOUS MASS
(STAR OR GALACTIE CLUSTERS)

It is very easy to extend the local uniqueness and
stability theorem to the case of proper masses ranging
continuously from m; > 0 to m, > 0. The fiber I,
is then given by the manifold with boundary

m; < gopp*p’ < mj.
We can take on II, the parameters v' = pi/p°, t =
8.pP°PP. For a given metric g, the range of {v'} is the
bounded domain A, of R? (cf. Sec. ID), independent
of ¢, and, if we set

fGe, p) = p(x, v, O(Up* ™,

2
T* = f f o (gt 1 d% dt,
£ .M;w

where v*# is the bounded function (15) (with N = 6).

The function ¢(x, v, t) satisfies the same Liouville
equation (17) as in Sec. ID (the derivative 0¢/dt does
not appear, due to the fact that the absolute deriva-
tive of g vanishes). It is then straightforward to apply
arguments analogous to those of Sec. II.

we have

* This work was done while the author was at the University of
North Carolina in Chape! Hill, supported by the National Science
Foundation.
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2 Le., pseudo-Riemannian, with signature (+———).

3 There will be complications in writing, but no essential difficulty
if an electromagnetic field is also present.
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The irreducible basis of the Lie group G(0, 1) are obtained in connection with the quantum physical
problem: a motion of a free electron in a magnetic field. The differential operators are shown to be the

infinitesimal operators defined by Brown.

Much progress on the relation between Lie group
and special functions has recently been developed.
The most familiar example is the connection between
the rotation group and spherical harmonics, which
gives fundamental knowledge in quantum mechanics.
Now we will point out that the representation of the
4-dimensional Lie algebra G(0, b) is realized by the
functions of Landau levels which express states for
the motion of a free electron in a magnetic field H.
The 4-dimensional Lie algebra G(0,5) with basis
A,, A_, A3, and E is defined by the following com-
mutation relations:

[A+s A—] = —bE9 [A39 A+] = A+,
[A3, A ] = —A_. 1)

Now we associate following differential operators to
each 4 (in a polar coordinate system):

. 9 ,id
AL = +e**(28p £ ——),
L= ke (ﬁp:l:ap-}-pag

4,=-2, E=1 )

TN
L

It is easily verified that they satisfy the commutation
relations (1), b = 2f. The Casimir operator is given by

C=A4,A_ — b4,

1 o a B,
=—4+-—+=—+if=———=p*—F (3
; + ¢ 06° ﬂae 2 F B. (3
If we put § = mw, [k and w, = eH[mc, it is found
that the Casimir operators are simply connected to
the Schrodinger equation of a free electron in a
magnetic field H directed to the Z direction, apart

from the Z component; that is,
12(,2), 12 mo.2
pdp P dp h 00

p* 00"
+ gh%n(lz — Imew?

The eigenfunction g’ of (4), for zero or any positive

integer n, is

pz)}p =0 @

=0 pnL Y (4B) 0]
and has the eigenvalue (n + j + $)hw, (upper sign) and
(j + $hw, (lower sign), respectively. The degenerate
eigenfunctions of semi-infinite numbers (upper
bounded) with a constant eigenvalue (/ + $)hw, will
be obtained by operating the 4. operators on any
function with the same eigenvalue; for ’P(z) n=1j=0,

Ay} =0, Ay =2y, -,

and, in general, we have the following recurrence
relations:

Ayl =2(j+ Dyitl, n+j=1,
and
Agly=——bB . ©)
n+l4+1

Then these functions will form the irreducible basis
of G(0, b), isomorph to G(0, 1). It is to be noted that
the operators A, are to be called infinitesimal mag-
netic translational operators in a polar coordinate.
These are simply related to the magnetic translation
operators T, 4 iT, introduced by Brown! and are
easily derived from them.

L E. Brown, Phys. Rev. 133, A1038 (1964).
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The analytic properties of the S function in the complex angular momentum plane for regular potentials
with inverse square tails are discussed. Special attention is given to the determination of the poles of S
in the limits of low and high energies. Two soluble examples are considered in detail.

1. INTRODUCTION

The purpose of this paper is to study some features
of the r—2 potential. Our interest is mainly on the
consequences of the long-range tail.

As repulsive singular potentials do not present
difficulties or features of special interest, we restrict
our attention to attractive potentials. In order to study
in a practical way the effect of the singularity, we
perform a regularization of the form of the potential
within a range b about the origin. In Sec. 2 we study
some properties of the S function for a given range b
and look for general results which remain meaningful
as b becomes small.

In Sec. 3 we discuss two particular examples. In
one case, we put V(r) = V(b) = const for r < b; in
the other, we introduce a repulsive hard core of
radius b. These two special cases have in common the
interesting property that the forms of their Regge
trajectories are independent of the range b.

2. REGULAR POTENTIAL WITH INVERSE
SQUARE TAIL
Let us consider the Schrédinger equation for a
particle of mass m and energy E = h%k?2m in a
potential of the form

V(r) = o(r), r<b,
= —(B2m)ur=2, r > b, 2.1
where v(r) is a regular function in the interval [0, b]

and is such that V(r) does not present an infinite
discontinuity at r = b. We define the variables

A=1+1, .2
v = (22— wh 23
and
z = kb, 24)
where / is the angular momentum.
Let us call
D(b’ k’ j')'=bl‘(b9k’ l)— %’ (2'5)

where L(b, k, 1) is the logarithmic derivative at
r = b of the / wave reduced radial wavefunction for
the inner region. The solution in the outer region is
a linear combination of Bessel functions H{V(kr)
and H®(kr). Following the usual procedure of im-
posing continuity in the logarithmic derivative of the
wavefunction, we obtain for the S function

S(b, k, A) = —exp [im(A — )]
D(b, k, YH?(z) — zH?'(2)
D(b, k, DHV(z) — zH'V'(2)

(2.6)

A. General Remarks

The analytical properties of S(b, k, 2) have been
discussed by Barut and Calogero.! We wish to add a
few remarks to their work.

The first remark concerns the possibility of §
presenting nonessential singularities of the second
kind, namely, indeterminacy points of the form 0/0.
The simultaneous vanishing of numerator and denom-
inator in Eq. (2.6) would imply in the vanishing of
the Wronskian of HW(z) and H®(z). Since this
Wronskian is given by

W[HY(2), H?(2)] = —4i(rz)™, Q.7

it does not vanish for any given z. We conclude that
such indeterminacy points are never present in the S
function for a potential with an inverse square tail.

The second remark concerns the analytic continua-
tion of S to the half-plane Re 2 < 0. This continua-
tion depends on the form of the function D(b, k, A)
and, consequently, on the form of the potential v(r).2
By inspection of Eq. (2.6) and by making use of
properties of the Hankel functions, we obtain that the
Mandelstam reflection property®

S, k, —2) = S, k, 1), A= integer, (2.8)
is satisfied if
Db, k, —3) = D(b,k, %), A= integer.
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We thus see that this result, obtained previously
for potentials of finite range, is also valid in the
presence of an 1/r? tail. In what follows we consider
only the half-plane Re 1 > 0.

We now proceed to study the location of the poles
of S in the complex angular momentum plane. We
first study the general problem of a regular potential
of the form given in Eq. (2.1) and discuss the pole
distribution in the limits of low and high energies.
The pole locations are determined by the solutions of

D(b, k, YHM(2) — zHM'(2) = 0. (2.9

B. Low Energies

It is known* that H¥(z) and H*'(z), considered
as functions of » and z, both vanish at » = 0, z = 0.
Thus, for zero energy the zeros of the denominator
in Eq. (2.6) are located at

A=y = b, (2.10)
a result which does not depend on the form of the
potential v(r) in the inner region. At the threshold,
the positions of the poles are entirely determined by
the inverse square tail, and all poles are at the same
point of the complex angular momentum plane.

Besides the poles located at A = 4,, it is possible
to have poles at different values of 1. These values are
the possible solutions of the equation for 4,

D(5,0,2) + v =0, (2.10))

which is obtained from Eq. (2.9) dividing by H{(z)
and taking the limit kK — 0. Of course, the existence of
solutions of Eq. (2.10") depends both on the form of
the potential in the inner region uv(r), through the
value of D(b, 0, 1), and on the intensity of the in-
verse tail, through the value of ». Special attention
should be paid to Eq. (2.10") for a given v(r). However,
since our interest is on the effects of a r~2 tail and not
on the details of a specific potential in the inner region
o(r), we shall consider that v(r) has been chosen in
such a manner that Eq. (2.10") has no solutions, Of
course, this restricts in some way the potential v(r),
but it is not a very severe restriction. It is not difficult
to find forms of v(r) regular at the origin and for
which Eq. (2.10") has no solutions. Although not
explicitly specified, we shall assume through all this
section that o(r) satisfies those conditions. This
assumption must be kept in mind below, particularly
when we draw conclusions about bound states and
resonances.

To see what happens for small values of |z], we first
expand the Hankel functions in Eq. (2.9) in power
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series, retaining only the first few terms. We obtain
321 ~ 2[D(b, k, DI + 0(z)}
= ™{1 + v[D(b, k, D" + 0(z%)}
x I'(t + )/ —»). (2.11)
We follow the procedure of Keller er al and take

the logarithm of the two members of the above
equation. Noting that

Tl + ») © {(2m + 1yt
1 | = —2yy — AN
o8 [m _ v)] D
(2.12)

where y is the Euler constant and { indicates the
Riemann zeta function, we obtain, for the equation
determining the poles,

log (32) = —inwly + Lin — y + [D(b, k, D]
+ 00 + 0(z%), (2.13)

where n=1,2,3,---. The above Egs. (2.11)
and (2.13) are meaningless when v(r) is such that
D(b, k, 2) = 0 for z = 0. If this be the case, we have
to discuss the solutions of Eq. (2.9), taking into
account the behavior of D(b, k, 4) for small |z]. If
D(b, k, ) — 0 as any power of z when z — 0, we can
easily verify that the location of the poles is deter-
mined by an equation similar to Eq. (2.13), with the
only change that the term [D(b, k, A)]™* does not
appear and # is replaced by n — §.
Let us call
Dy, = D(,0, 4y (2.14)

the value of D(b,k, ) at z =0, » = 0, which we
assume to be different from zero. We expand:
oD oD
(b, ) = Dy + ( 0)[%]; %) +
(2.15)

The derivatives of D are well behaved for small » and
z, so that Eq. (2.13) gives

log (3z) = —innfv + }im — v + D' + 0(%) + O(2).

(2.16)
Writing
z = pe® (2.17)
and
, 8 = —(log (3p)1 7, (2.18)
we obtain

v = inwd{l — [i(k7 — ¢) — y + D*10
+ [iG7 — @) — y + DF*PP8% + 0(6%)}). (2.19)
The above equation gives explicitly the position of

the poles of S(b, k, A) in the complex angular mo-
mentum plane, for a given b and small complex
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values of k. The dependence on the shape of the
potential v(r) in the inner region appears only through
the value of Dy.

Now we draw some conclusions from the previous
results. Equation (2.10) says that at zero energy all
poles are on the positive real axis for u > 0 and on
the imaginary axis for 4 < 0. It is well known? and
can be seen directly from Eq. (2.19) that, for negative
energies, poles in the half-plane Re 1 > 0 can be
only on the real axis. For u > 0 (attractive tail), as
the energy approaches zero from negative values,
the poles move along the segment of the real axis
between the origin and the point 2 = u¥. For u > }
there is an infinite number of bound states for every
angular momentum satisfying /=0,1,2,---, <
(u¥ — ). There are no bound states for values of
angular momentum larger than u® — }. These results
do not depend on the form v(r) of the potential in the
inner region.

As Dy is real, Eq. (2.19) telis us that, for

llog 3p)I7 K 1, (2.20)

the Regge trajectories are independent of the form
of v(r). The above condition is satisfied for small
absolute values of the energy or for small values of
the range b of the regularizing potential v(r).

For 4 > 0, Eq. (2.19) says that, for pure imaginary
values of z (negative energies), ¥ is pure imaginary.

3247

As z increases from zero toward real values, the
poles leave the real axis in the A plane along different
trajectories. To obtain the trajectories of the poles
for small real z, we first write Eq. (2.19) in the form

2.2
A= ,ﬁ{l - ”2—; 52[1 = 2i(k7 — ¢) — y + D746

N (3[1‘(%77— ?)— v+ D0—1]2+24f/i:—2)62+0(63)}},

(2.21)

which is obtained by substituting » given by Egq.
(2.19) into

Y ,u%(l + P 2u — v8u%), |l L p (2.22)
We then obtain

Im 2 = 2d /)4, — Re D). (2.23)

Equation (2.23) shows that, as the energy increases
from the value zero, the poles leave the point 4, mov-
ing to the left along curves tangent to the real axis
(see Fig. 1). This form of Regge trajectories, which
occurs whenever an attractive inverse square tail is
present, is peculiar and essentially different from
what is observed for short-range potentials.®

The curve corresponding to n = 1 has the highest
value of Im 4 for a given Re 4. The poles labeled with

Im X

Fi1G. 1. Regge trajectories at
small energies for a regular
potential with an attractive in-
verse square tail —(uh?/2m)/r,
for @ =4. As the energy in-
creases from negative values
towards zero, the poles move
along the segment of the real
axis between the origin and the
point 4, = ud. At zero energy
an infinite number of poles are
located at A,. As the energy
increases from zero, the poles
move along separate curves, all
of which are tangent to the real
axis at A,. The few highest
curves are shown in the figure. 5
An infinite set of curves are :
located between these and the
segment of the real axis between
Ao and the origin.

n=}i

Re A
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higher values of n move along trajectories located
between this first curve and the real axis. The segment
of the real axis between 4, and the origin is an accumu-
lation segment for the set of trajectories.

Resonances at low energies do not occur for
potentials with inverse square tail. Regge trajectories
for positive energies can pass near points correspond-
ing to half-integer values of 4, but this does not apply
in the occurrence of resonances because the poles move
toward the left as the energy increases.

It should be mentioned that the observed fact of
infinitely many trajectories approaching the point
A = 4, for a r2 tail is the exact analog of the well-
known fact that, without such a tail, infinitely many
trajectories approach A = 0 as k — 0.

C. High Energies

At large positive energies the poles tend to infinity
in the 4 plane. We introduce the Taylor expansion

HYG) = HYG) + 0 = ) 2 )
82

+ v — ? e HP() + - (2249
and use the relation
0 0
5}" Hy(z) = — a—z H,(z),
which is valid for large 4 and z, to obtain
HY2)=HY )+ (A —»HP () + . (2.25)

Taking this expansion into the equation determining
the poles, we find
D(b, k, DH\'(z) — zH(2) + (2 — »)

x [D(b, k, DHY'(2) + zHY ()] + -+ = 0.

(2.26)
Since
A —v =00,

the leading terms in the above equation give
D(b, k, DHP(z) — zHY' (2) = 0,

which is the equation for the poles in a finite range
potential of the form »(r), without tail.
3. TWO EXAMPLES

We now choose particular convenient forms for
v(r). We treat two cases which present the interesting
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property that the form of their Regge trajectories
does not depend on the range b.

A. Constant Potential Near the Origin

We first discuss the continuous potential

V(r) = —(B22m)u/b?, r < b,
= —(H2m)ufr®, r >b. 3.1
In this case
D(b, k, 1) = EJ(E)]T(8), (3.2)
where
£=(+ pt
The S function
S(b, k, 1) = S(z, 1) = —exp [im(A — )]
’ (2) _ (2)’
9 SR, (2) — zJ(HH, (2) (3.3)

ETAOHY(2) — 20 (DHLY (2)

depends on k and b through the product kb = z.
Owing to this fact, the trajectories, described by the
poles as the energy varies, are the same for all values
of b.

Using the well-known formula for the Wronskian
of Bessel functions

W(J(8), J_4(£)) = —2 sin (Am)[7é,
we derive from Eq. (3.2)

D(b,k, —3) = D(b,k, %), = integer,

and so the Mandelstam reflection property (2.8) is
satisfied.

In Sec. 2 we mentioned the possibility of D(b, k, 1)
becoming zero for z =0, A =1,. In the present
example this possibility is excluded, as follows from
the fact that AJ;(4)[J;(4) is a monotonously increasing
function of 4 for real positive A.%

B. Hard Core

The general treatment given in Sec. 2 to potentials
with an inverse square tail was limited to cases in
which V(r) is regular everywhere. We now consider
an example which is not included in these cases:
Namely, v(r) is taken as a hard core of radius b.

The S function

S(b, k, ) = S(z, )
—exp [im(A — MIHP(2)/HM(2) (3.4)

admits continuation into the half-plane Re 1 < 0,

through the equation
S(b, k, —2) = exp (—i2mA)S(d, k, 1). (3.9)

This last relation shows that Eq. (2.8) is valid.
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F1G. 2. Regge trajectories for a potential formed by a repulsive core with radius & and an attractive inverse square tail —(A2/2m)u/r?.
The solid lines represent the first trajectories for 4 = 4. For reference we show in dashed lines the corresponding trajectories for a pure hard
core potential, ¢ = 0. The form of the curves does not depend on the core radius 4. For infinite negative energy there is an infinite number
of poles at (—4, c0). As the energy increases the poles move down the line Re / = —4, pass the origin for a nonpositive value of the energy
and move along the positive real axis, all poles reaching the point (## — 4, 0) when the energy becomes zero. As the energy takes positive
values, the poles pass to the complex plane, moving along different trajectories, all of which are tangent to the real axis at the point
(u¥ — &, 0). For large energies the curves tend asymptotically to the trajectories corresponding to the pure hard core case. The numbers

on the curves indicate the values of the parameter z.

As happened in the previous example, the S func-
tion depends on k and b only through the product
z = kb. This implies that the trajectory followed in
the angular momentum plane by a Regge pole when
the energy varies from —oo to +oco is the same
whatever the value of b. There is only a change of
scale in the values of the parameter kK when we pass
from a given value of the core radius to another value.

The location of the poles of S is determined by the
roots of H¥(z), considered as a function of », for
different values of the parameter z. These roots have
been discussed by Keller et al.* for real z and by
Ferreira et al.” for imaginary z. All results concerning
the occurrence of bound states, and the behavior of
poles, which were obtained in Sec. 2, remain valid
in the present example. For illustration, we have
represented in Figs. 2 and 3 the Regge trajectories for
a potential V(r) formed by an attractive inverse
square tail r > b and a repulsive hard core r < b.

For infinite negative energies all poles are on the
positive imaginary axis of the A plane. As the energy

increases, the poles move down the Re/ = —1 line
and reach the real axis at an energy which is different
for each pole. As the energy is further increased, the
poles move along the real axis. All poles reach the
point Re / = u¥ — } when the energy becomes zero.
If u¥ > 1, the poles pass through the points / = 0,
1,-++, < (u¥ —}) which correspond to physical
bound states. The values of Im/ at the poles are
shown as a function of the energy in Fig. 3, for a few
Regge trajectories. For comparison, we show in the
same figure the corresponding five trajectories for
the hard core potential without the inverse square
tail. We see that at low energies the trajectories
depend essentially on the presence of the tail. As
E— —o (and so Imz — 4 o), the poles tend to
ignore the tail and depend only on the core. This is
in agreement with what we have seen in Sec. 2.

For positive energies the poles pass to the complex /
plane, leaving the real axis at the point ut — L. An
approximate expression for the location of the poles
at small |z| can be obtained with a procedure similar
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FiG. 3. Displacement of the Regge poles for negative energies
for a potential formed by a repulsive core with b and an attractive
inverse square tail —(A2/2m)u/r®. The solid lines represent the first
few trajectories for p = 4. For reference we show in dashed lines
the trajectories for the pure hard core case, 4 = 0. The upper part
of the vertical axis represents Im /, while the lower part indicates the
values of Re /. In the example of the figure above, there is an infinite
number of physical bound states for /=0 and /=1. At Re [ =
ut — % the poles pass to the complex plane. In the case of pure
hard core, the poles do not move along the real axis and pass to the
complex plane at Re/ = —4.

to that used to derive Eq. (2.21). It is

2 _2
A= ;ﬁ{l - 62[1 — 2filr — @) — 710

+ (3u(%-w — @) =P+ "4; )62 + O(tﬂ}
2l K 1. (3.6)

In first order we again obtain Eq. (2.23).
For large values of |z| we can use, for the zeros of
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HW(z), the approximate expression given by Keller
et alt:

=z 4 6~ H zn/’iqnz + (180) 163 217/3 2 —%‘_}_ O(Z_l),

IZI »>n, 37
where ¢, is the nth zero of the Airy function,
Ai(qg,) =f cos (£ — q,t)dt = 0.
0
Using the equation
L=y + 00,
we obtain
A-"n =z 6—% 111/3 2 + (]80)—16% 121r/3 —-3 + O(Z._l),
|zl »n, (3.8)

where the strength u of the tail does not appear.

The coincidence between the expressions in the
right-hand side of Egs. (3.7) and (3.8) was to be ex-
pected in view of the fact that the addition of a r~2
term in the hard core region is of no consequence. So,
the Regge trajectories for a hard core potential with
a r~2 tail are obtainable by the simple transformation
Eq. (2.3) from those of a pure hard core potential.
This makes our previous result quite self-evident.

In Fig. 2 we show the trajectories of the poles for
positive energies in the angular momentum plane.
All trajectories leave the real axis at Re / = u? — }
moving towards the left along curves tangent to the
real axis.

The trajectories corresponding to a pure hard core
are also shown in Fig. 2 for comparison. We see that
for large energies the poles tend to ignore the presence
of the tail.
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A retarded potential tensor (4-vector) is derived in an arbitrary system of inertia for an arbitrary
electromagnetic source in a moving homogeneous, isotropic, nondispersive, lossless dielectric. The
velocity is uniform, and the result is relativistic correct.

I. INTRODUCTION

The differential equation for the potential tensor is
simplest in the system of inertia K,, where the medium
is at rest. A 4-dimensjonal integral representation for
the potential tensor can readily be obtained by using
the 4-dimensional Green's theorem. One may carry
out the integration with respect to the time coordinate
to get the space integral representation for the (re-
tarded) potential tensor.

As pointed out in Ref. 1, the space integral repre-
sentation in K, is not very utilizable in another system
of inertia K which is in uniform motion relative to K, .
This is due to the fact that space-time coordinates
mix under the Lorentz transformation from K to K,,.

It is shown that the 4-dimensional integral repre-
sentation for the potential tensor in K, can be
transformed to an arbitrary system of inertia K.
Integrating with respect to the time coordinate then
leads to the space integral representation for the
(retarded) potential tensor in K. The results found
here are in agreement with those in Refs. 2 and 3,
where the pertinent differential equation is integrated
by using Fourier transformation and an operational
method, respectively.

II. INTEGRAL REPRESENTATIONS OF THE
POTENTIAL TENSOR

We use Cartesian tensor notation. By a tensor we
understand a tensor defined on the Lorentz trans-
formation group. Latin subscripts run from 1 to 4;
Greek subscripts run from 1 to 3. The coordinate x,
is equal to icf, where ¢ is the time and ¢ the speed of
light in vacuum; therefore, the metric tensor in 4-
space is equal to the Kronecker symbol 4;; (when
Cartesian spatial coordinates are used), and we do
not distinguish between contravariant and covariant
tensors. Repeated subscripts obey the summation
convention, and commas in subscripts denote partial
differentiation with respect to coordinates (or covari-
ant differentiation, since the metric tensor is inde-
pendent of the coordinates).

The potential tensor A, satisfies a differential
equation,!** which in an arbitrary system of inertia K

can be written as a tensor equation:

Ay — xA; ,UU, = =8,
. 1
(ue)t’

s, Eu(h + %JTU,Ui).
n

i,nn

il

()

_ ¢
R n=—,, C
4

u and e are the permeability and the dielectric
constant of the medium. U, is the velocity tensor of
K., , and J; is the current density tensor.!'?

Let primed quantities refer to K,,. Since U] =
(0,0, 0, ic), we get from (1)

Azlnn + czKAl{.M = Az/‘.vv + nzAzl',44 = —Sz, . (2)
Introducing new variables by y, = x, and y, =

ntx;, we get from (2)
Ai ¥r) = =Sy,

where (y,) = (11, V3, Vs> V-
For the solution of (3) see Ref. 5, p. 146. The result

3)

is
4
iy = @ [[[[ (s ) 3 et = ) aveen.
r=1
N SR )
Substituting back to variables x,, we obtain

aie) = [[[[stnee —spaven,  ©
—a
where
G'(z; — x;) = (4m*n) " uguy + (e/n®)u, U
and
u, =z, — x,.

The poles of the function G’ are given by u, =
T, = :};in(u;u;)%. As in Ref. 5 we can deform the
contour for the z; integration to circumvent one of
the poles. Since advanced potentials are not of

interest, we consider the pole 7_.
From (5) we get

iy = [[[ § 516 iy dui s au i, (o)

where L' is a closed path surrounding 7.
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Equation (6) is valid in K,,; we now transform (6)
to an arbitrary system of inertia K. Let x, = a,,x be
the proper Lorentz transformation connecting co-
ordinates in K with coordinates in K,,. Multiplying
(6) by a;; and substituting x, by x,, we see that the
left side in (6) (which is a tensor) becomes A,(x,). a,,
is independent of the coordinates, and, since S; is a
tensor, we have a;,5;(z)) = Sy(z,) if z, and z, are
connected by the proper Lorentz transformation, i.e.,
z, = a,.z;. Furthermore, G’ transforms like an
invariant, i.e.,

G(u) = (4=°n) [, + (c/n?)(w, Uy (T)
Without loss of generality, we choose a,, so that
xt = x,
xg = p(xy + ifx), X, = y(x; — ifxy),

where y = (1 — 2%, f = v/c, and v is the velocity
of K relative to K, (Fig. 1).

To see how the poles to be circumvented are trans-
formed under the Lorentz transformation, we con-
sider the tensor equation

uit, + (kln®)(w, U, = 0, ®)
which is a 3-dimensional hypersurface in Minkowski
4-space. In K,,(8) reduces to (u,[i)* — (nu)? = (np’)?
and p’ = (uz + u2)} which in Euclidean 2-space
is the equation of a hyperbola (Cartesian coordinates
u,fi, uy). In Fig. 2 the situation is illustrated in a way
due to Minkowski.®

When 78 < 1 and w3 is given, there is one pole to
be circumvented. When nf > 1 (this situation is
shown in Fig. 2), there are two poles to be circum-
vented if us > lalt p, a = [1 — (B)2)/(1 — B?), and
no poles are to be circumvented if uy < lalt p (ie.,
A, is equal to zero).

The roots in (8) are given by

Ré
Xy = X,

“_ ng__
i ET 1 — (npy
X [(n — n Yy £ (B — Bl + apdtl. 9)

Since nf < 1 implies that a > 0 and (81— §) >
n — nt > 0, we actually see that | > Oand 7_ < 0.
In this case, from (6), we can deduce

Ax,) = f f f ffLs,.(z,)G(u,) dug dus duy dug, (10)

Kmg K

FiG. 1. The motion of X relative

Xy . Xy to K,,.

GUNTHER JOHANNSEN

Uz

WU (/) {u U =0

FiG. 2. Location of poles of the function G in Minkowski space.

where L circumvents 7_. By the method of residues,
we get

U pf Sdz, %4+ 1)
Ai r) = dV )
;) 47 .”][(z3 —x)? 4 apZ]% @)

nf<1. (11)

In the case of nf > 1, we actually see from (9) that
7. >0 when u; < — (a|} p, that 7, are imaginary
when —lal¥ p < us < lal? p, and finally that .. < 0
when u; > |al} p. From (6) we get

Afx) = f fj 3§Ls,.(z,)c(u,) du, dug du; duy, (12)

where the u, integration is to be taken from oo to
laj? p (L surrounding =_) and back to oo (L sur-
rounding 7). It turns out that’

Alx,) = — Zl— ”J‘ Sdz,, % + 7)) + Sz, x4 + 1)
k

[(z5 — x3)2 + aP2]%

x 0]z, — (x5 + laft p)] dV(z,),

ng>1, (13)

- velocity of
-V

Zp )
-— the medium

> X3

Fi1G. 3. Conical region in K, where a source point
contributes to the field, nf > 1.
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where 0 is the unit step function, i.e.,
6(t)=0 when <0,
=1 t>0.

Equations (11) and (13) hold in an arbitrary system
of inertia. The step function in (13) implies that a
source point (z,) contributes to the field only at pomts
inside a conical region given by (x3 — z3) < —lal? p-

when

III. TIME HARMONIC SOURCES, 3-
DIMENSIONAL REPRESENTATION

Let the source be time harmonic in K: S;(x,) =
S;(x,)e~*™, where k = w/c and o is the frequency.
Omitting the time factor e~**, we derive from (9)
Si(z,, X4 + 72)

= Si(z,) exp [—ikb(z; — X))

x exp {ik(n]a)l(zs — x5)* + ap®lt}, (14)

where
Brc?
1— ()

1 —n(ﬁnﬂ)z( _%) -

Furthermore, we derive
Si(zpa Xy + T—) + Si(zp9 X, + T+)
= 25(z,)e =) cos {(knfa)(z; — x.)* + a2}t).
1s)

b
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From the definition of S;, and making use of the
continuity equation J,, = —J,, = iovp = kJ,, we
get, for the spatial components of S,

Si(z,) = u(éh +5v, U;) Iz,
2

K
+ i YU e (16)

Similarly,
2 2 2
£ 542,) =‘f—c(1 ~ )J +8< U, an
i 1w n

Substituting (14)-(17) into (11) and (13) leads to
expressions which are in agreement with Ref. 1.

The field vector £ may be obtained by using the
equation £ = —V® + iwA (Ref. 1; it can be shown
that £= —V® — 04/dt holds in any system of
inertia). By some calculation the results may be
transformed to an expression as given in Ref. 8.
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We write the n-point function of currents as a sum over nested commutators, a form more suitable

for certain current algebra calculations.

I. INTRODUCTION AND RESULT

In this paper we consider the n-point function,
defined as

T(qI’ T, qn—l)pl"'p,,

=‘U~.“J‘d4x1“.d4x"'le
X O T (%) * * " Jua(Xn-)Jun(ON 10), (1)

where T(j,---j,) is the product of the n current
operators j,,***,j,, in the order of the time com-
ponents of their points of evaluation:

T(jo(x1) = - Ju(X0))
= 2 O(x‘;m - xg(z)) e

7€Sn

—iq121—*~qp-1%n_1

0 0
: o(xar(n——l) - xﬂ(n))

X ju(l)(xw(l)) o 'ju-(n)(xv(n))’ (2)

where the sum is over all permutations = in S,,, the
symmetric group of order n. The function 6(¢) is the
usual step function. In Eq. (1) we only integrate over
n — 1 space variables because we are using the transla-
tion invariance of the theory to work in a coordinate
system where x, =0and g, + -+ +¢4,=0.

It is a straightforward calculation, which is given
below, to rewrite Eq. (1) as a linear combination of
products of »n current operators (or, rather, of their
Fourier transforms in momentum space) not involving
the step functions 6. However, current algebra treats
only commutators of operators rather than arbitrary
products, so that it is desirable to express the »#-point
function as a linear combination of commutators of
operators.
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function as a linear combination of commutators of
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Bjorken' and Johnson and Low? pointed out that
in the case n = 2 the 2-point function is asymptotically
equal to a commutator term. They showed, specifi-
cally, that the leading term in the asymptotic expan-
sion of

Mg, ) = — j dixe="% (4] TG0 B), (3)

as go — oo with q fixed, is

1 f dxe (A [j,(0, %), 7,0, )] [B)  (4)
do

and that the higher terms involve time derivatives
of the currents; thus the next term is
\ (5)

—, i e+ 4 ’ % 0.0.10.0]8)

Not only the leadmg term, but all subsequent
terms in the expansion of the n-point function, as the
energies ¢? become infinite, can, in fact, be written as
sums of equal-time commutators.® The expression
we obtain is

T(ql s

) qn—l)[,u U

z‘11‘7‘1_""iqn—l"‘n—l

Xy * X,

X 2

7€Sn

. d . 0 \)_1]
+ i + 0+
0ty O1,(s)

X <0] [[’ o [juﬂ-(l) ’jlln-w)]’ o .]7 juﬂ(m] |0>|t1="'=t"=09

(6)

where the meaning of the right-hand side is that for
each permutation = we expand each factor

o0\t
+latm>)

I: ( #(1) + 0+ Evr(s)

. 0
(E,(1)+---+E,<s)+z———+---
atir(l)

as a series

< a i a )r/ r+1
—i— == ! (Ery+ -+ Ez)™,

gﬂ( Oty Oty () '

formally multiply these differential operators, apply

the product operator to the commutator

[ Dpy(Bry > Xe)s uze(Eai2rs Xa2))) <71,

jllrr(n)(tﬂ'(n) ’ xr(n))]’
evaluate at t; = -+ =1, =0, and finally Fourier-
transform the space part of the result and divide by ».
We have made the convention that

0 0

ot, ot,
(since x, and hence 7, are identically zero, 0/9z, is
undefined), and 7, and E; are the time components of
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x¥ and g*, respectively. Written out in full, our result is
T(Ela T n—l)l n

e

X e —iE1t——iE p—1tn— 1<0| T( J;u(xl) . j""(O)) |0>
1 @ 0
==y 33
NreSpr=0 ry—1=0
n—l(’n)—l _a at _—e 1 ur
9 ( I (—id/ot, ) la/arf:(:)) )
s=1 (Ey(l) +-+ En(s))
x ( n1 (ia/atﬂ'(s-f-l) + 4+ ia/atw(n))“)
s=n—Y(n) (Eﬂ(l) + -+ E:r(s))h—H
X O] [~ - [jll‘n‘(l)(tﬂ(l) ’ x:r(l))’jmr(2>(t’7(2) X)) 0],

juﬂm(tr(n) s xﬂ(n))] l0>

Here we have omitted the integration over the space
variables.

Before deriving this result, we will state it in a
different form. Since the space variables and integra-
tions do not affect the problem, we will cease to write
them; similarly, we omit the brackets (0|---|0)
denoting the vacuum state. Although the j, are, in
fact, components of a single current, we do not use
this, but treat them as separate functions; since the
subscripts u, do not change, we omit them. Thus
Ju(ti» X)) will be denoted j(r;) for 1 <i<n~— 1
For convenience, we define j, by j,(t) = j, (0)d(2).
We use the following Fourier transform:

f(E)=2—1; f e B dt, f() = f eVEF(E)dE. (7)

With this definition of the Fourier transform, we have
(=i 4 Oheo = | (=i 2= 6PF(E) dE

- f ETJ(E) dE. )

Making all of these changes and substituting the
definition (2) for the time-ordered product, we obtain
as the theorem to be demonstrated,*

[ fan

X X 0(t,qy — tay) "

7eSn

X jr(tzw)

ne—iE1t1—"'—iEntn

0(tﬂ(’n—1) - tfr(n))

: jir(n)(tn'(n))

= 2—"ﬂ-~-de;---dE;6(E1+ +E
n
‘3 0 DB o EDL L B8]
" TI(E,y+ - + Eqg— Ef— - — E
s=1

€)]
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This is the real result, and the previous form, in
which integrations had been done by using Eq. (8),
is simply its expansion for large energies [which may
not be valid; it is only the identity (9) that will be
proved rigorously].

The proof of the theorem, Eq. (9), is purely
algebraic in nature and so makes no reference to the
actual existence of the commutators and T" products
which we consider. It has been shown?® that, in fact,
they do not exist in certain perturbation-theoretical
models. We regard the question of their existence in
general as being open at the present time. In the
following, we assume that there is a theory for which
the problems found in Ref. 5 do not exist.

II. PROOF

The proof of Eq. (9) will proceed in two stages:
first, transforming the left-hand side to an expression
involving a linear combination of products of n
current operators, and then rewriting this as a sum of
commutators. With the normalization of Egs. (7), the
Fourier transform of 8(t — t,) is e*F/2miE, and the
rule for transforming a product is

~ 1 —iEt — nNa . !
.MD=5;ﬁMWkEthﬁEmE E') dE,

(10)
so that
» f"(E/)e—-i(E—E')fo
0(t — to) f(De Ftdt = | —— dE’. (11
foa =i T (1)
Applying this repeatedly, we obtain [abbreviating
0(t; — t;) to 6,,]
ff Jaus e
1E”(1)tl_ —ZE“")tﬂel Bn—-l,njﬂ(l)(tl) o .jﬂ(’n)(tn)
____ff . .fdtz e dtn
X e—iEmz)tz——'“—iEmn)fn623034 Ce gn_l'"
Jr(Epe BBl
X dE; ) Joa(t
J- i(E,,.(l) _ E{) 1]17(2)( 2) .]17(’!1)( n)
=ﬂ---fd£;d£;dt3---d¢,,
X e—iE:r(a)ts—"'—fEm,n)tne—i(Eml)+E7r(2)—E1'—E2')la
.
W Oy Oy Jr(E1) :
i(E;q) — E)
fm)(Eé)
X P (Y R e (
i(E;) + Eqe) — Ey) @ w(ta)
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n—l ff J‘dEl -dE;_; dt,
_1(Fm1)+ A-Epny—Er—~En-1)ty
]n‘(l)(El) Ja(Eg) .
E.) — E1 E;q) + Epe) — E1 — E
jﬂ(n-l)(E"n—l) .
Eyp+ " +Ejy — Ej— E;_IJ"‘"’O")‘

The final expression contains no 6 functions and,
therefore, can be evaluated by the direct substitution
of the first of Eqs. (7). We notice that

7r(1)+".+Eﬂ(n)=E1+'”+E =0
(smce g: + -+ + g, was zero), so that the result is

s j f J dE- - dE'_,

J:r(l)(El) Jw(n—l)(En—l)jfr(n)(—E{ —_

n-1

11 (Exy + 7+ Eqo

which may be written more symmetrically as

o f f f dE] - -+ dE'O(E] +

Jrw(ED * * Jatw(Ey)
n—1

H(Enu)‘l""+En(s)"Ei—“'—E§)
fub

This completes the first stage. Multiplying our last
equation by "' and summing over all permutations
mof1,2,--+, n, for the left-hand side of Eq. (9),we
obtain the expression

o —E, )

"
8

—E,— —

B

2 f f f dE} -+ dEISE] + -+ + E1)
]n(l)(El) ]ﬂ(n)(En)
”S" H (Bt "+ Eyg—E— - —E)

the desued expression as a sum of products of the

Ji:- Both in this expression and in Eq. (9) we could

just as well have written E/ ,, for E/in the denomina-
tors, since for each permutation = one could relabel
the symmetric expression

ff“'de;"'dEvlza(E1,+"'+E;L)-

Therefore, it suffices to prove the purely algebraic
identity

Jr(Ep) " Jrtm)(Erin))
h zq n—1 :
" 1:{ (Ern+ +Ej—Epqy— " —Epy)
-3 [ e (Er)s Jo@(Ere)) 1, Jrin(Eqia)]
n—1 ‘
TE€ES, ’ ’
1:[1(E1r(1) + o+ E—E;q——EL)

(12)
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Having simplified the problem, we will again
simplify our notation. Since the character of j as a
function of energy no longer interests us, we will
omit the argument and tilde and write simply j; for
Ji{(E}). Next, we have E| + -+ + E' = 0. [Because
of the presence of the Dirac d, it does not matter
whether or not the sum in Eq. (9) can be written as a
sum of commutators off the subspace E’ + -4
E, = 0; indeed, s1mple examples show that 1t cannot.]
Of course, E; + -+ + E, is always zero. Further-
more, because we were able to group together E’s and
E”s with the same subscript in Eq. (12), we can now

define a new set of numbers F;, = E; — E/, and the
identity to be demonstrated becomes
n z - Jan) " Jata)
7650 Fry(Frqy) + Fry) * (Fpy + *** + Fagnn)
= [[ s [jﬂ'(l)’jﬂ‘(2)]’ s ']’jﬂ(n)]
reSn Fry(Foay + Fr) *  (Foy + 0 + Frgaon)
(13)

where the F; are n numbers such that their sum is
zero, but no subsum is zero [the identity is meaning-
less if any subsum vanishes, but it suffices to prove it
in the converse case since the region where some-
subsum vanishes has zero measure in the (n — 1)-
dimensional space E; + --- + E, = 0], the j, are
noncommuting quantities, and the sums extend over
all permutations of 1, 2, -+, n.

To prove Eq. (13), we evidently have to expand the
commutators on the right and then rearrange the
sum so that we can pick out the coefficient of a given
product j, 1y * * * frw and check that it is indeed

nF)(Foy + Fo@) " (Fay + 00 + Frpen)-

A commutator of n operators has 2! terms, half of
them positive and half negative, and we must start
by finding the rule which determines which of the
n! possible permutations appear and with what sign.
If we expand a commutator such as [[[[h,, h,],
hs], hy], hs], then typical terms are hghhhohy and
—hghhohyhg . Inspecting the terms, we see that each
one has descending subscripts up to A; and then
ascending, so that it is in the form A 4, * * * B
where o() > "> ok)=1<ak+ 1)< - <
a(n) for some k, and that the sign of such a term is
(—1)*"1. Now, for a given value of k, we can choose
anyk — 1 ofthen — I numbers2,3, - - -, nto precede

ZAGIER

o(k) = 1, but then their order is determined ; thus the
set S, ; of permutations owitho(l) > -+ > ok) =
Il <otk +1)<---<on) has G=h members and,

since
- (n—1 n~1
2 = 2",

k—1

if all the terms of the commutator are of the special
form considered, then all terms of this form appear
in the commutator. That this is, in fact, the case can
be seen easily by induction: We have to prove

[ [hys hal, - ), b
—2( W73 h

€Sy, k

(1) " " ha(n)’ (14)

an identity plainly valid for n equal to one or two.

If itis valid for n, then [[[ - - [y, h5), - -+ ], h,], Poial
is given by
n
—1
2D (hanhee * Botmhan
k=1 0€Sna,x
- hn+1ha(1)hd(2) “ Raim)
n
p—1
= Z("l)k Z hfr(l) e h;r(n+1)’
k=1 7ESn41
a(l)>->n(k)
=1l<-<g{ntl)=n+l1
n+1 1
k_
+ 2(_1) z hn(l) e hir(n+1)
k=2 T€Sn41
n+1=g(1) > >k}
=1<-<g{n+l)
n+1 1
k_
= 2( 1) DI HEREY SN
7€Sn+1,k

there being the last equality because any permutation
m of S,,;; must have either 7(1) or #(n + 1) equal to
n+ 1 [since any other =(i) is smaller than one of
these]. This completes the proof of Eq. (14).

Now we can expand the right-hand side of Eq. (13)
to obtain

2 [[ t [jﬂ(l)’jﬂ(2)]’ c ']vj:r(n)]
76Sn Fo)(Fry + Fro) " (Fpy + °°° + Frpen)
=3 3 X (=
7e8n k=1 068,k . R
Jza1) ' ' " Jraln)
Fry(Fay + Fa@) (Fey +°** + Frpny)

The coefficient of j ) fi2) * * * fom in this is obtained
by noting that for each o in S, , there is a unique =
in S, (namely, = = 707!) such that wo = =; thus, the
coefficient is

(-

€S,k Fm_l(l)(Fra_l(l) + Fra 1(2))

“(Frpiy + 4 Frpigpyy)
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To prove Eq. (13), we must show that this sum equals n T2} (F,y + * -+ + F,»)~". By expanding the commu-
tator, we have gotten rid of the operators and have reduced the problem to an algebraic identity among ordinary
numbers. Having fastened our attention on a single permutation 7, we need no longer carry it as a subscript,
but set G; = F,,;. If we can prove
z 1 _ (__l)k—l

eeSns Go (G 1y + Go i) " (Goy + 7 + G tpeny) GiGr+ Go) - (G + - + G y)
for 1 < k < n, then the desired equality will follow on summation from 1 to n.

We will prove Eq. (15) by another simple induction. Forn = 2, it reduces to +1/G;, = +1/G, or +1/G, =
—1/G,, depending on whether k is one or two, and both are true since G, + G, is zero. Qur previous
induction hinged on the fact that, for ¢ in S, ;, either o(1) or o(n) must be n, since each o(i) is smaller than
one of them; this one depends on the fact that g(k — 1) or o(k 4 1) must be 2 since every o(i), except o(k) =
1, is greater than one of them. Hence the left-hand side of Eq. (15) is

(15)

1 1
Gk ae%..k (Gk + Gk—l)(Gk + Glc—l + Ga“(a)) U (Gk +G .+ -+ Ga"(n—l))
al{k—1)=2
1 1
+— 3 . (16)
Gy z:es,.,k (G, + Gk+1)(Gk + Gy + Goizy) -+ (G + Gya + -+ Gopyy)
alk+1)=2

If k is 1, the first sum is empty and, if & is n, the second is also empty; but if this is kept in mind, the following
proof still is applicable. In any case Eq. (15) is almost trivial for k = 1 or k = n. To evaluate the two sums
in Eq. (16), we use the fact that both can be transformed to special cases of Eq. (15) for n — 1. Thus, if we
define numbers H; for | < i < n — 1 and [for each ¢ in the first sum in Eq. (16)] a permutation = of S,_; by

H, =G,, 1<i<k—2, n(i)=o@)—1, 1<i<k—2,
=G, +G,, i=k—1, =1, i=k—1,
=G,.1, k<i<n-—1, =oi+1)—1, k<i<n—1,

and notice that

H+ - +H_ =G+ "+ (Ga+G)+ - +G, =0,

we can rewrite the first sum in Eq. (16) as
1

(=1

ﬂESngl.k—-l (Hr_l(l))(Hﬂ"l(l) + H1r"1(2)) e (Hﬂ_l(l) ++ Hw_l(n—E)) - Hl(Hl + H2) e (Hl +- + Hn—2) ’

the equality following from the induction hypothesis.
Hence the first term in Eq. (16) is

(=D)YG G (G, + Gy) - - (G + -+ + Gyo)

XG4+ +G 1 +G) (G + -+ G,y
Exactly similarly, the second term in Eq. (16) is
(—D)"YGG (G, + Gy) - (G + -+ - + Gpy)

XG4+ G+ Gy - (G + -+ G,y
Adding these, we see that the expression (16), which
represents the left-hand side of Eq. (15), equals

(_l)k—1(61 + -+ G6H)+ (*l)k_z(cl + 0+ Gy

GGGy + Gy) - (G + - -+ G, y)

_ (_ l)k—l
GG+ Gy) (G + -+ + Gn—l)’
which is the desired right-hand side of Eq. (15). It is
interesting that the crucial hypothesis G; + « -+ +
G, = 0 did not enter the proof except to establish the
case n = 2, and for larger n it was only needed to be

able to apply the induction hypothesis.
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For a tentative choice of configuration space (1, it is proved that the Yang-Mills field, self-interacting
but not coupled to other fields, has states with a nonvanishing isospin component if gauge-invariant
quantization is used. This is shown by proving existence of a solution for the elliptic boundary-value
problem V,;Vﬂzi(x) = 0 on all of 3-dimensional Euclidean space, subject to the asymptotic condition
{i=ct+ O(r™), 0408 = O(r~*) as r - w, where ¢ are constants; V, is the covariant derivative
belonging to the spatial Yang-Mills potentials bg¢(x). The existence proof is a modification of Schauder’s
proof to an unbounded domain. () consists of all numerical real multiplet functions bg!(x) which are of
order O(r-2) as r — o, have aﬂbl’i = O(r~*), and satisfy certain smoothness conditions. Also, for this
configuration space, the problem of existence of equivalent transverse potentials is reduced to a simpler
uniqueness problem. In the classical theory, the existence of solutions ¢ implies that the constraint
equation can be satisfied for any choice of the “covariant-transverse’ part of B°%? within a very large
class, by a unique “‘covariant-longitudinal’’ part of B, if the potentials b,i(x) have the full SU(2) as
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holonomy group.

1. INTRODUCTION

The present paper is concerned with certain clari-
fications needed for a further development of the
gauge-invariant quantization® of the Yang-Mills
field. In that quantization method, use is made of the
Schrodinger representation, in which the spatial Yang-
Mills potentials b,’(x), § =1, 2, 3 and i =1, 2, 3,
are diagonal, and states are represented by complex-
valued functionals W' [b] of the real numerical potential
functions b, (x). By an obvious generalization of
concepts for quantum mechanical systems with a
finite number of degrees of freedom, the b,%(x) are
seen as generalized coordinates which specify the
configuration of the Yang-Mills field. The configura-
tion space Q for the Yang-Mills field consists of all
“kinematically” possible configurations. So far, it
has not been possible to give a complete and final
specification of the configuration space ). There are
restrictive demands on Q which come from mathe-
matical aspects of the theory, while £ should be gen-
eral enough to include all “physically” significant
configurations. Among the mathematical aspects of
the theory which force restrictions on € are the
existence of certain derivatives and integrals, which
set conditions of smoothness and asymptotic behavior
on the functions b,*(x). If transverse potentials are
to be used in the theory,  must be restricted such
that all potentials b€ can be transformed into
transverse potentials by gauge transformations, and
this amounts to an existence problem for an elliptic
boundary value problem on all of 3-dimensional
Euclidean space. The physical demands on the con-
figuration space Q depend on our expectations for
the physical capabilities of the Yang-Mills field, and
one can easily go wrong here.

One of our physical requirements is that the Yang-
Mills field is capable of states with a nonvanishing
component of isospin. The main purpose of the
present paper is to prove existence of such charged
states for the Yang-Mills field, for a tentative choice
of the configuration space Q. This choice of Q seems
physically attractive, and as far as we know meets the
essential mathematical requirements of the theory, as
it stands at the present time. The second purpose of
the paper is to show that, for this configuration
space (2, the existence problem for gauge transforma-
tions which change potentials b € Q into transverse
potentials can be reduced to a simpler uniqueness
problem.

In Sec. II it is shown that existence of charged
states of the Yang-Mills field, for the tentative
choice of the configuration space €2, is implied by
the existence of solutions of an elliptic boundary-
value problem on all of 3-dimensional Euclidean
space. The unboundedness of the domain causes a
difficulty in solving this existence problem. If the
domain were bounded, existence would be assured
by a theorem of Schauder?; little work appears to
have been done on existence theorems for elliptic
boundary-value problems on unbounded domains,
and the few theorems of this type which we found in
the literature do not apply to our system of differential
equations. We present here an existence proof which
is essentially a modification of Schauder’s proof to
an unbounded domain, and which goes through on
account of the asymptotic properties of the potentials
belonging to €.

In Sec. 3 the boundary-value problem is rewritten
as a functional equation, so that Riesz’s determinant-
free form of the Fredholm alternatives®* can be
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applied. The relevant part of that theorem states that
the linear functional equation f — L[f] = g has a
solution f in a Banach space B for every ge B if
L{f]is a completely continuous operator® on B and
if the homogeneous equation f — L[f] = 0 has only
the null solution. In Sec. 4 it is shown that, indeed,
our homogeneous problem has only the nuil solution,
if the spatial holonomy group® is simple and compact,
as is required for physical reasons,” and if the poten-
tials are nondegenerate, i.e., if their holonomy group
is the full SU(2). The remaining task is then to show
complete continuity of the functional operator
L[f] on a judiciously chosen Banach space B of
functions f. This is carried out in Sec. 5; B is chosen
to consist of functions f'which, besides being bounded
and Holder continuous, also have an asymptotic
bound and satisfy asymptotically a certain modified
Holder condition. The norm for B is chosen such that it
depends adequately on the asymptotic behavior of f.
The unboundedness of the domain also requires a
modification of the argument showing that the
integral expression &[f] for the solution of Poisson’s
equation with Holder-continuous source f may be
differentiated twice under the integral (after a partial
integration); this is done by replacing the Weierstrass
polynomials used in the approximation procedure® by
integral transforms employing a Gaussian kernel.
General as well as asymptotic estimates are needed
for &, its first, and its second derivatives utilizing the
asymptotic behavior of the potentials; these estimates
are found by replacing integrals by larger integrals
which can be evaluated.

The existence proof also makes it possible to reduce
the problem of existence of equivalent transverse
potentials to a simpler uniqueness question, for the
tentative choice of €. This is carried out in Sec. 6.
Boulware® has presented an argument purporting to
show that any potentials can be gauge transformed
to transverse potentials, but he assumes existence of
a certain Green’s function; of course, this existence
remains to be shown. However, Boulware’s method
which reduces the nonlinear problem to a linear one
is valuable and is used here; the resulting linear
equations, when thrown in the form of a functional
equation, involve a functional operator which is
similar to the operator encountered in the existence
problem for charged states, and complete continuity
of this operator in the same Banach space readily
follows. Existence of a solution would follow from
nonexistence of a nonnull solution for the associated
homogeneous problem.

The tentative choice of the configuration space Q
is reviewed in Sec. 7, using the results found here for

3259

the existence problems, and physical considerations.
In Sec. 8, the results obtained are applied to the clas-
sical constraint equation.

B, v,and drange from 1 to 3, and the x# are Cartesian
inertial coordinates in 3-dimensional Euclidean space.
« denotes the Holder exponent. As an argument of a
function, x stands for x#. The norm |x| is written as
x. 04 denotes 0/0x#, and the summation convention
is used. The real numerical functions b;(x), i = 1, 2,
3, are the spatial Yang-Mills potentials, which
express the configuration of the quantized Yang-
Mills field in the Schrédinger representation.! The
group indices i, j, k, /, and m range from 1 to 3, and
the structure constants for SU(2) are denoted by
¢;i. If desired, throughout this paper the isospin
group SU(2) may be replaced by any compact semi-
simple group, by appropriate change of group index
range and structure constants. We make use of the
covariant derivative

Vv = Ogv' — ¢/, /0",

(1.1)

where v* is any vector in the Lie algebra space of
SU(2). Group indices are lowered and raised by
means of the group metric

gii = calcy (1.2)
and its inverse. For compact semisimple groups, g,
is negative definite. The metric tensor in the Minkow-
skian event space of special relativity is taken with

signature 4 — — —; this results in a negative-definite
spatial part g, .

2. CHARGED STATES

In the gauge-invariant quantization! of the Yang-
Mills field (self-interacting but not coupled to other
fields), using the Schrodinger picture and the Schré-
dinger representation, states are represented by com-
plex-valued functionals ¥[b,(x)] of the numerical
spatial Yang-Mills potentials b,’(x). The configura-
tion space 2 over which the W[b,*(x)] are defined is
tentatively taken as the space of all real-valued
functions b,°(x) subject to the condition that, for
every function b,’(x), a constant B exists, such that

|bl < B, |D:b| < B,
IDib(x) — Dib(M < Blx —yl*, 0<a<,
x >R, x*|b|<B, x*|D;b| <B,
x*19,6%| < B, (2.1)
R<x<Ly,

x* 1950 (x) — 85b"(y)| < B Ix — y|*;

in (2.1), B and i have been suppressed, and the partial
derivative 0,b,(x) for any y, 8, and i has been
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written as D;b. Conditions (2.1) are reviewed in
Sec. 7. ¥ needs to be independent of the time com-
ponent of the Yang-Mills potentials in order to satisfy
the primary constraint.! States ¥'[b,] are called good
or bad as they do or do not satisfy the secondary
constraint.! Bad states ¥'[b,] are included in the state
space for the sake of simplicity of equal-time com-
mutators. Among the good states are the physical
states, for which we at least require that ¥ falls off
appropriately for large b,°(x) and that at large
spatial distances x the By,"(x)¥" fall off (component-
wise) as x—2 or faster.

Physical state functionals ¥'[bs] are invariant under
local gauge transformations, the infinitesimal members
of which are changes of the potentials b,°(x) by the
amounts

0bsi(x) = —Vyni(x), (2.2)

where the #*(x) are smooth real infinitesimal functions,
here subject to the conditions at infinity,

7'(x) = O(x™") (23)
and

am = O(x™%), 8,0"' = O(x™%. (2.4)

To show that this invariance statement is true,! we
calculate the change in ¥'[b,] caused by the infinitesi-
mal transformation (2.2); the result is

0¥ = _fd%c——.v,,n'

= —i f (d%), B ¥y’ + i f (VB (2.5)

Since ¥ is good, it satisfies the secondary constraint?
V,BYY =0, (2.6)

so that the last term in (2.5) vanishes. Since for
physical states B%,(x)¥" is at most of order x~* and
ni(x) is restricted by (2.3), the surface term in (2.5)
also vanishes. Hence, 6% = 0. Inversely, any state
¥'[b4] for which B%,(x)¥ is at most of order x~* and
which is invariant under local gauge transformations
satisfies the secondary constraint, as follows from
(2.5) in view of the arbitrariness of %'(x) up to (2.3)
and (2.4). The argument given above would go through
if, instead of (2.3) and (2.4), one would just have
7i(x) — 0 as x — oo, but 5'(x) = O(x7%) is required
in order that 6b, given by (2.2), is of order O(x~2),
which, in turn, is required to keep the local gauge
transformations from leading out of Q. Similarly,
the last of conditions (2.4) is required in order that
the transformed potentials satisfy the condition
94" = O(x™*), which is part of (2.1). A local gauge
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transformation takes a point » of Q into the point
b’. Applying all possible local gauge transformations
to the point b, the transformed points &' form a gauge-
invariant manifold y. Through every point b passes
one y; all the y’s together form a set of equivalence
classes in Q. A physical state functional ¥'[b] has a
constant value on any y, but the value ¥ usually
differs from one y to another.
An infinitesimal isospin transformation is a trans-
formation of the type (2.2):
0by* = =V, (7, @2.7n

where the {?(x) are smooth real infinitesimal functions
subject to the conditions

=&+c, (2.8)
x— 00, &=0("), 0 =07,
0,08 = 0(x™), (2.9)

but are otherwise arbitrary. The ¢’ are infinitesimal
constants which do not all vanish. Condition (2.8)
and the first condition (2.9) assure that at spatial
infinity an isospin rotation occurs; the second and
third conditions (2.9) are necessary in order that db
of (2.7) does not lead out of Q.

If there existed functions {*(x), subject to (2.8) and
(2.9), which produce, on a set of b’s with non-
vanishing measure, a displacement db given by (2.7),
which leads from one manifold y to another, then
such an isospin transformation would cause a notice-
ablel® change in some physical state functional; this
would assure existence of physical states with a non-
vanishing isospin component. Since there are no
7*(x) for which the displacement (2.2) coincides with
the displacement (2.7), the latter displacement does
not lie in y. However, this is not enough; since Q is
infinite dimensional, it must be shown that the angle
between the isospin displacement (2.7) and y is non-
zero on a set of b’s of nonzero measure.

Suppose that, on a set ! < Q of nonzero measure,
there exist infinitesimal functions™ {(, x), subject to
(2.8) and (2.9), which produce a displacement (2.7)
orthogonal to x(b) in the sense of Ref. 1, i.e., at b,

J dx(VPL)0bj; = 0 (2.10)

for all dbg,(x) tangent to y(b). If b, and b both belong
to N, then one has
Li(b, x) = Li(by, X) + %(by, b, x), (2.11)

where 7i(b,, b, X) are functions satisfying (2.3) and
(2.4), because the ¢ of (2.8) are the same for b as for
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by. (2.11) implies that, at b,

8by'(x) = —V,L(by, %)
= —V,li(b, x) + Vyri(by, b, x), (2.12)

showing that the displacement 6b at b is the sum of a
displacement orthogonal to yx(b) and a displacement
along x(b). In (2.12), db,*, {*, and #* are infinitesimal.
The displacement vector db,*(x) at b makes a nonzero
angle with y(b) at all b € N except for points b at which

V,0i(b, x) = 0. (2.13)

(2.13) implies that the vector {* is invariant under all
equivalence displacements® along closed loops in 3-
dimensional space. Hence, (' is invariant under the
spatial holonomy group.*? This implies that, in the
Lie algebra space of SU(2), ('L, commutes with
the Lie algebra £, of the spatial holonomy group.
Since, on account of (2.8) and (2.9), {* cannot vanish
for all x, it follows that £, cannot be the whole Lie
algebra of SU(2). Hence, if a solution (b, x) exists
for (2.13), then the potentials b,*(x) must be degener-
ate, i.e., their spatial holonomy group is not the full
SU(2). The set D of degenerate potentials in { forms
a manifold of potentials which are equivalent to
potentials by* which vanish for i = 2 and 3, so that
the spatial holonomy group is either SU(1) or the
identity; hence, the dimension of D is 1 of the dimen-
sion of €, and the set D has zero measure in Q. The
intersection of D and N then also has zero measure,
and it follows that the vector 6b,*(x) of (2.12) makes
a nonzero angle with y(b) at all b € : except possibly
for a set of measure zero. Therefore, if the set N has
a nonzero measure in 2, the Yang-Mills field has
physical states with a nonvanishing isospin component.
The 6by; in (2.10) are tangent to x(b), i.e., they must
be infinitesimal local gauge transformations (2.2).
Inserting (2.2) in (2.10) gives, at b,

f Bx(VE ;= 0 2.14)
for all 7,(x) subject to (2.3) and (2.4). Partial integra-
tion of (2.14) and use of Gauss’ theorem gives

f @,V L, — f &x(V, V0, = 0. (2.15)

For a spherical surface with infinite radius, the
surface integral vanishes on account of (2.3), (2.8),
(2.9), and (2.1). The volume integral in (2.15) vanishes
for all #,(x) subject to (2.3) and (2.4) if for all x, at b,

V, Ve = 0, (2.16)
with {* subject to (2.8) and (2.9). M is the set of b’s
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in Q for which there exists a solution (i(x) of this
elliptic boundary-value problem. In Secs. 3, 4, and 5
we will prove the following:

Orthogonal Isospin Transformation Theorem: The
set I of b’s for which there exists a unique infinitesimal
isospin transformation 6b L y includes all non-
degenerate potentials b € Q.

Since the set D of degenerate potentials has zero
measure in 2, the set N has nonvanishing measure
in Q if the orthogonal isospin transformation
theorem holds; therefore, if the orthogonal isospin
transformation theorem holds, the Yang-Mills field
with configuration space Q has physical states with a
nonvanishing isospin component.

3. EQUIVALENT FUNCTIONAL EQUATION

Writing out the covariant derivatives, we may write
the boundary-value problem (2.16), (2.8), and (2.9) as

0,08 — 2¢,,'bP70,E* — c;,/(0,bP))EF
+ cjile by bPE™
= ¢, (0pbP)cF — ¢l by’ e™,  (3.1)
x—> 00, & =0,
x— o, D=0, 0,0/ =0(xx7". (3.2

We will first ignore conditions (3.2) and prove
existence of a solution for the problem (3.1); after-
wards, we show that this solution satisfies conditions
(3.2). We introduce? the functions f*(x) defined by

8,0°¢° = f*. (3.3)
Using the condition at infinity for &', we may write
the solution of (3.3) in terms of f* as

E(f7] = — i f d“’yf"(y)’—l), p=Ix—yl. (34)

With (3.4), the boundary-value problem (3.1) may
be expressed as the functional equation?

fi=Lifll=¢g, (3.5)
where

L{f) = 2c;'bP0,E (1 + ¢,/ (0bPHE )
- Cjkicmkb”bﬂlfm[f]a (3.6)
and

g' = ¢ (067" — ¢l FbPbe™.  (3.7)

We should like to apply to the functional equation
(3.5) part of the determinant-free form of the Fredholm
alternatives®* which states that, if L[f?] is a com-
pletely continuous linear operator® on a Banach space
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B of functions f7 and if the homogeneous problem
f’i — L’l[f]] - 0

has only the null solution, then Eq. (3.5) has a unique
solution for every g* € B. In preparation, we discuss
first our choice of Banach space B of functions f*.
Since the space B must contain the g*, we choose B
as the space of the real multiplet functions f(x),
subject to the same conditions as g“(x), i.e., the f%(x)
are bounded, and for every f*(x) there exist constants
H,, K, and G, such that

(3.9)

IFix) — i) < He Ix =yl 0<a<1,
*fix) <K, x>R, (3.9)
X)) —f M LG Ix—y5, R<x<Zy.

H,, K, and G, are taken as the smallest values for
which (3.9) holds. In fact, one may take

up 1S/ — ()]
Ix — yI*
G — wup PO =)
= Sup ———————,
R<z<y Ix — y|*

K = sup x* | f(x)|.
>R

H,=s

a

(3.10)

As the norm in B we take
£ = sup |fi| + HLfT+ K[f*] + G[f]. (3.11)

The norm (3.11) differs from Schauder’s norm? by the
last two terms, which involve the asymptotic behavior
of f*.

That B is indeed a Banach space may be seen as
follows. First, it is clear that the norm (3.11) satisfies
the three conditions

(@ I 20, [f =0onlyiff*=0,

(b) llefill = ¢ |iffll for c constant,

© If*+ g1 <10+ ligl
To show completeness of B, we consider a Cauchy
sequence f,'(x),n = 1,2, ,ie.,

I/ x) — f' (0] <'e,

for all n, m > N(e), for any positive €. This implies
with (3.11)

i) = f ()] < e, (3.12)
H[f)' —fu'l < (3.13)
KIf) —ful <e, (3.14)
Glf) —fml<e (3.15)
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Condition (3.12) for fixed i and x implies the existence
of a limit. Taking this limit for every i and x defines a
function f*(x). Then,'? for every x and i there exists
an integer p(x, ) > N(e) such that

Ifi(x) — £} (0] < ¢;
hence
| /(%) — f(x)]

S0 = L0+ 130 = £001 <2e.
Defining

[(®) = £ ()
b —yl*
we see that (3.13) implies that
IHni(xa y) - Hmi(x’ y)] <e

Using the same argument as before, but now for
values of /, x, and y, one finds

Hn‘i(x’ y) =

b

Hi(x,y) = lim H (x,y),

|Hi(x5 Y) - Hni(x5 Y)l < 2€s
which, on account of (3.10), implies

H[fi(x) = £,)(x)] < 2e.
Similarly, we find

Gl (%) — [, (®)] < 2e

K[/'(x) — f'(®)] < 2e.
Therefore, (3.11) gives
If/x) — i) < 8e, all n > N(e),

for any positive number e. f*(x) belongs to B because
f#(x) is bounded;

H,[f] = sup |[H'(x, )| < 0,
and similar statements hold for K[f*] and G,[f*].

and

4. THE HOMOGENEOUS PROBLEM

In this section we show that the homogeneous
problem (3.8) has only null solutions!® f* in B, for
any nondegenerate b € Q. This is done by going back
to the partial differential equation form of (3.8):

V,ViE =0,

¢ =07, x— .

(4.1)
(4.2)

Transvecting (4.1) with &; and integrating the result
over all of the 3-dimensional space gives

o=ffﬁﬁw%i 4.3)
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Partial integration of (4.3) and use of Gauss’ theorem
gives

0=ﬁf@@W§—fﬂﬂ%@W& (4.4)

From the asymptotic condition (4.2) and (2.1) it
follows that the surface integral in (4.4), taken over
the infinite sphere, vanishes. For a compact semi-
simple group, the group metric is negative definite.
Since the spatial metric tensor gy, is here also negative
definite, it follows that the spatial integral in (4.4) is
positive definite, unless

V€ =0, 4.5)

Hence, if a solution of (4.1) and (4.2) exists, then (4.5)
must hold. But we have seen in Sec. 2 [discussion
following Eq. (2.13)] that existence of a nonnull
solution &; of (4.5) for potentials b,’(x) implies that
the by’(x) are degenerate. It follows that for nondegen-
erate potentials b € Q the problem (4.1), (4.2) has
only the null solution.

5. COMPLETE CONTINUITY OF THE
FUNCTIONAL OPERATOR Li[f7]

In this section we prove that L'[f7] is a mapping
in B and that this mapping is completely continuous,*
i.e., that L*[f’] takes any bounded set of B into a
compact set. The proof is a modification of Schauder’s
proof? to an unbounded domain. For a bounded
domain, the main concern is the effect of the singu-
larity of the kernel 1/p in (3.4); for an unbounded
domain, we must in addition avoid divergences or
inadequate asymptotic behavior of estimating inte-
grals due to the infinite integration domain, and this
makes the procedure of deriving sufficiently sharp
estimates more delicate. The unboundedness of the
domain makes itself felt in two other places as well.
First, on an unbounded domain, boundedness of the
first derivatives of a function does not imply Holder
continuity of that function on the whole domain.
Second, the calculation of estimates for the second
derivatives Dy& requires differentiating (3.4) once
under the integral, integrating by parts, and differ-
entiating the resulting surface and volume integrals
under the integrals. This last step requires that D, f
is bounded, and this is not implied by the conditions
(3.9) for /. A well-known method of dealing with this
difficulty is to find functions £,(x),n = 1,2, - -, which
belong to B, uniformly approximate f(x), and have
bounded first derivatives; the second differentiation
under the integrals discussed above can be executed
for f,(x), and it is then proved that the difference of
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D,¢, and D,£&, where the latter is expressed as the
result of formal differentiation under the integral, can
be made arbitrarily small by choosing 7 large enough.
For a bounded domain, Weierstrass polynomials may
be taken® for the f,(x). For an unbounded domain,
this does not work; instead, we use as approximating
functions

h®=(§ﬂﬁﬁwfmﬂin=Lz~.6n

We start out with a calculation of estimates for
§(x) and D,&(x), separating the cases x < 2R and
x> 2R.

Theorem 1: For x < 2R, |&(x)| and |D,&(x)| are
bounded by a number A(|| f||, R).

Proof: We write (3.4) as the sum of integrals over
the regions y < 3R and y > 3R, take absolute values,
replace in the first integral |f(y)| by ||/, and in the
second integral | f(y)| by K/y* and p by R. The result
is

BRI K
——2——+§}¥, x < 2R.

Since f is bounded, D,& may be calculated by differ-
entiating (3.4) under the integral.® Using the pro-
cedure indicated above, one finds
K
3R’

[6(x) <

[D:iEX) < SRIf] + x < 2R.

Theorem 2: For x > 2R, x|&(x)| and x2|D,&(x)|
are bounded by a number'* A(| fl, R).

Proof: The integral (3.4) is written as the sum of
integrals over the regions x < R and x > R. After
taking absolute values, one replaces in the first
integral | f(y)| by |/l and p by x — R, and in the
second integral | f(y)| by K/y*; the result is

IfIR K f d
3(x —R) 4w Ji>r pyt’
If 8 is the angle between the vectors x and y, one has

()| < x> 2R, (5.2)

p?=x% 4+ y* — 2xy cos §, (5.3)
and, for fixed x and y,
pdp = xysin § dp. (5.4)

Rotation of the volume element 4%y around x gives a
volume 2my* dy sin # df; using (5.4), one finds from
(5.2)

g < SR K (i

1
w-nt s ——),x>m.6®

R 2x
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Since f is bounded, D,é may be calculated by differ-
entiating (3.4) under the integral.'® Using the same
procedure as the one indicated above for |£|, one
finds

R |1 K f~dl 141 :
D250l < 3(x — R)? + 4x3 fR/x & In (1 - C)’

x> 2R. (5.6)

Inspection of the integral in (5.6) shows that no
divergences occur due to the infinite upper integration
limit or due to the singularity { = 1 of the integrand.
For large x/R the integral is bounded by a constant
C’ times x/R. This gives for (5.6)

R*If]
DO < o +

KC'
4Rx*’

x>2R. | (5.7

Before calculating estimates for D,&, we need some
properties of the functions f,(x) defined by (5.1).

Lemma 1: 1f f(x) satisfies «-H and «-G conditions,
so does f,(x), for the same o.

Proof: Writing v = y — x, one has

nd \
fn(x) _fn(y) = (7_"7_'3') fdau[f(u) ——f(u + v)]e—nlu—V, .

(5.8)
Using the «-H condition on f(x),

[f(u) = f(u+ V)| < H,",
one finds from (5.8)

IfoX) = fu < H, |x — ¥

The Holder coefficient of f,(x) is not larger than the
Holder coefficient of f(x). To show that f,(x) has
the «-G property, we take x and y such that
2R < x £y, and find from (5.8)

£ = £ < (:—)% f B, e, (59)

where
C, = sup (R*H,, G,)
and

M = sup (R, inf (u, [u + v|)]. (5.10)

For fixed x and y the space of integration in (5.9)
falls into two half-spaces a and b in which, respec-
tively, u < |[u + v| and ¥ > |u 4 v|. We have

in a, M = M, =sup (R, u),

in b, M = M, =sup (R, lu + v). (5.11)

HENDRICUS G. LOOS

The integral (5.9) over ¢ and over b may be replaced
by a larger number, which results from taking the
integral (5.9) over all of space, using M,, plus the
integral (5.9) over all of space, using M,:

fuX) = DI £ 1, + 1,

n3 d o dsu —nlu—x|2
Il=(;—3)Cavf—A}-:e s
3t
IZ = (I’l';) Cava
w

Calling |u — x| = p and using a relation like (5.4),
one finds

k] i R 2
Il = C’av_(ﬂ) (;{1_4.\[) u du(e-n(:c+u) _ e-n(:c—u)z)

X \T,

(5.12)

3
d’u e—n|u—x|2

b

“ du

r u®

+ (e—n(ac+u)2 _ e\n(w—u)z)). (513)
Upper bounds for the integrals in (5.13) are found
by making various replacements in the integrands,
such as replacing in the first integral (x + u)? by x?
and (x — u)? by (x — R)? and by replacing, in the
first part of the last integral, 1/u® by (v + x)/R%,
executing a number of partial integrations, and
making changes in the regions of integration. The
result found is

C
20, (5.14)
X

I, <

where the constant C;, depends only on || f|| and R.
The difference between I, and I, is due to the function
M, which is M, and M, respectively, for I, and I,.
Using this fact, it is easy to show that I, is obtained by
changing, in I, the x into y; hence, by (5.14), one
must have
Cit®
4 b

Cy t* <

g =

y X

I, < (5.15)

since x £ y.

Lemma 2: If | f(x)] < A for all x and if |f(X)] <
Kjx* for x > R, then f,(x) also satisfies these con-
ditions, for the same 4 and for a K’ which depends
only on 4, K, and R.

Proof: Taking the absolute value of (5.1) and re-
placing | f(u)| by A4, one obtains | f(x)] < A. To prove
the second part of the theorem, |f(x)| for x > 2R is
written as the sum of an integral over ¥ < R and an
integral over u > R. In the first integral, | f(x)| is
replaced by 4 and in the second integral |f(x)| is
replaced by K/ut.
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As a result one finds

3} \
I£,(®)| < 47R%A (11_) R
™
x > 2R.

n3i‘ dsu ol
o -
(5.16)

The first term on the right-hand side of (5.16) is at
most Cy/x4(n)}, where the constant C, depends only
on 4 and R. The second term on the right has already
been estimated in the proof of Lemma 1, with the

result
n*\ du
(173) J;>R ut
where the constant C, depends only on R. It follows
that | f(x){ < K’(4, R, K)/x* for x > 2R. Since f(x)
is bounded by 4, this inequality holds also for x > R

with a different constant X', which depends only on
A, R, and K.

: C
—nin— 2
e nju—x| <_4
X

Lemma 3: For f(x) € B, | D, f,(x)| < 2(n/m)} || f].

Proof: Differentiating (5.1) under the integral and
replacing | f(w)| by | f|| and |u, — x,| by p = |u — x],
one finds

D1, < ) 111 dppren -2 ) 51,

Lemma 4: If f(x) € B, one has, for all x,
Ifn(x) —f(x)l S Ca/n%a;

where the constant C, only depends on H,, and, for
x> R, |fi(x) — f(x)| < A/n*“x“, where the constant
A depends only on || f|] and R.

Proof: For any x,

£ .
[fax) — f(x)] < (7—’:;) fd3u [f(x) — f(m)| e,
(5.17)

where p = |u — x|. Replacing |f(u) — f(x)| by H,p%,

one finds

£, — f9] < 2H, (ﬂ)* [ ae

= 2H(1 + oc)( ) f dppe ™",

Replacing p* by 1 for 0 < p < 1 and by p forp > 1,
one finds

1£.(%) — FX)] < Hy1 + Ol1 + (2fem)?i]j2m)te.

(5.18)
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For x > 2R, one has from (5.17) and (3.9)

1£u0) — f(X)l<E( )é fdu e (5.19)

where
= sup (R*H,, G,)
and
= sup [R, inf (u, x)].

Splitting the integration region for u into the parts
u< R, R<u<ix, and u > }x and using, in the
first two mtegrals polar coordinates as shown by
(5.3) and (5.4), we may write (5.19) as

[fu() = [ LI + I, + I,

2B i1 rr z+u
= a(ﬂ_)_f dou- dpp1+ae~np2’
o
( )f du dpp1+a —np

n P“ ng?
I,=E duem,
8 (773) J;>%z P4

I, is estimated by replacing p* by R*(p/R)?, executing
the integration over p, replacing exp [—n(x + u)?]
by exp (—nx?), and replacing exp [—n(x — u)?] by
exp [—n(x — R)?]; the result is

11 S (n)%(e—na? + e—n(x—R)2)0(x) S Ca/n%x“

x > 2R,
where C; depends only on | f|| and R. Replacing, in
I, exp (—np?) by exp (—inx?) gives
0} —ina Clf1l, R)

4(")4.
Replacing, in I, P by x gives I3 < CGi(| fIl, R)/
x*n}e, Hence,

L) =) <

L L Em)ye™ o™ <

A(llfll R)

for x> 2R; (5.20)

on account of (5.18), the inequality (5.20) also holds
for x > R, with a different coefficient A(|| f], R). |

Since f€ B does not necessarily have a bounded
derivative, the second derivatives D,£ cannot be
obtained by differentiating D;£& under the integral
without further argument. The standard method of
coping with this situation® is to approximate f by
differentiable functions f,, for which the above-
mentioned procedure is allowed and leads to D[ f,],
and to show that the difference |D&[f,] — D&[f]|
(where D,&[f1 is the same expression in f as D,&[f,]
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is in f,) can be made arbitrarily small by choosing n
large enough. It turns out that the functions f(x)
defined by (5.1) are adequate for this purpose, if the
expression for D, is derived by a judicious split of
the integration region in the expression for D,&, and
partial integrations. The next two theorems deal
with this matter.

Theorem 3: For x < 2R,
1
0,05 = —— (L + L + I; + 1),
47
where

>

L =f (dy)lf(y) — f(X)2,
v=3R

o -

I=— f (@), /)3, L, (5:21)
y=3R p

Il

I, f Fy) — F601,3, L,
Y<3R P

1
I, =f Py )o,0, L
¥>3R P

Proof: By Lemma 3, D, f,(x) is bounded. Therefore,
one may take

~4m0,0,¢(f,] = f dy (a_z—" fn(y)) av%
=[5 0w - re)a

9 1

Pyl = f.ly) 2,=
+L>3R J(ay,,fn(y> >
ad

- f @A) — 00,

- f (@) fu)3, 2
y=3R P

1 )
+f Eof o0t (5.22)
y>3R p

Denoting (5.22) by D,&[f,] and (5.21) by Dy£[f], we
will prove that D,&[f,] — Dy&[f] can be made
arbitrarily small by choosing n large enough. We have

4m |DELS] — DLf]
sf (@9)5 1) = 1) — £u0) + FO01 &
y=3R p

+| @ ny -ros
3R P

y=

+ 2J d*y 1£uy) = f(§) — fu®) + f(%) ls
¥v<3R P

+ 2f Py 1 f.y) = f() 13 (5.23)
¥y>3R P

HENDRICUS G. LOOS

The surface integrals in (5.23) can be made arbitrarily
small, by Lemma 4, the boundedness of 1/p, and the
finiteness of the integration area. Replacing, in the
last volume integral of (5.23), 1/p® by 1/R® and using
Lemma 4, we have

3 1 47A [*dy 474

2 vl -0 < N Yo
For the first volume integral in (5.23) the integration
volume is split'® into the interior of a small sphere
with radius R’ centered at x and the remaining volume.
Using the «-H continuity of f(y) and of f,(y)
(Lemma 1) in the first integral, and using Lemma 4
and 1/p® < 1/(R’)? in the second integral, one finds

f Ey 1,9) — 1) — £ + f1 L
y<3R p

<8 HfR’d 1y 26, f d*

™ -4

- 0o PP (R’)3n%°‘ v<3R g
87H vw 127C,R®

= TRy 4 o (5.24)
o (R,)3n a

The first term on the right-hand side of (5.24) may be
made as small as desired, by choosing R’ small enough;
with that value of R’, the second term on the right-
hand side of (5.24) can be made as small as desired
by choosing n large enough.

Theorem 4: For x > 2R and a = R,
—470,08[fl = Sy + Jo + Ty + Jo + Js + Jg + Jo,

(5.252)
where
J= f (d?y),,f(y)ay’{, (5.25b)
y=0—a N .
Jy=— f (@U@ — fOB, =, (5.25)
y=z~q P
Jy= f <d2y)ﬁ[f<y>—f<x)lay;1), (5.25d)
y=xt+a
Jo=— f @) f 2, L, (5.25¢)
Yy=x+a P
Jy= f Y (13,0, (5.25)
y<o—a P
Jo = d3y[f(¥)—f(X)]3¢ay%, (5.25g)
z—-a<ly<ata
I, = f Py $)2,0, L . (5.25h)
I

v=ata
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Proof: Since D, f,(x) is bounded, D,&[f,] may be
obtained by differentiating D;&[ f,] under the integral:

—4md 2,EL] = j &y (5ay—,,f(y)) 2, i (5.26)

Expressions (5.25), written In terms of f,(x) instead
of f(x), follow from (5.26) by splitting the integration
regionintothepartsy < x —a,x —a <y < x +a,
and y > x + a, by replacing, in the second region,
(9/0y*) f (y) by (8/2y*)[f(y) — f(x)] and by executing
partial integrations. It will be shown that, for x > 2R,
x3 | DoE[f,(X)] — Doé[f(x)]] can be made arbitrarily
small by choosing  large enough. Using the expression
(5.25) for D,&[f] and the statement (5.25) modified
by replacing f by f,, one finds'?

47 [Ds&[f,] — Da£f 1|
<L+ILi+1L,+ 1+ 1+ 1+ Iy,
where

(5.27a)

L= [ & inw - 1ol Pi (5.27b)
= |
I = f 11,0 = F0) = 190 + [0 .
e (5.27¢)
I = f Py 1)) = S = £ + F ) %

y=a-+a

{5.27d)

I, = f dy |fn(y)—f(Y)l;12‘, (5.27¢)

y=zta

I =2 f &y 113) = F) =, (5.270)
p

yEz—a

I, =2 By 11.5) = F(§) = £u00 + F)l Pl

a-asvsata (5.27g)

I =2 f By 1) — ol = . (5.27h)
P

vz xt+a

I, is estimated by using the second part of Lemma 4
and (5.4); the result is

27A(I S, R) ;. (2x —a\ _ Al f], R)
L < 1 < . (5.28
né"x(x —a)® " ( a ) fays (>.28)

A similar procedure gives the result (5.28) for 1,, I,
and I,. I; is written as the sum of an integral I5; over
the interior of the sphere with radius R and remainder
I;;. By Lemma 4, we have I;; < 87R3C,/3n}*(x — R)3.
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Again by Lemma 4, one has for the remainder /;,
1

43’
p

d:’y

24

I, < 1

n2*
RZySa—a

using polar coordinates and (5.4), we find

Y=2—Q
Iy < 8]77A (1 +iln(x+ y) — —l—ln(x—y))
nex® Y 2x 2x v=R
< Az(lllfll, R)‘
n-.;otx:i

I; is written as an integral fy; over a sphere with
radius R’ < a centered at x and a remainder ;.
Using the « — G continuity of f(y) and of f,(y)
(Lemma 1), one finds

Aq(l f1l, R)

o

Iy < (R'Y. (5.29)
An estimate for the remainder Iy, is obtained by
using the second part of Lemma 4 and polar coordi-

nates centered at x; the result is

xalso < A S R)( a

In—+ 1~
R’ 2x +a
x31g; of (5.29) can be made arbitrarily small by choos-
ing R’ small enough. For that value of R’, x%g, of
(5.30) can be made arbitrarily small by choosing n
large enough. Hence, x*Iy = x%I + x%[;, can be
made arbitrarily small by choosing » large enough.
1, is estimated by using the second part of Lemma 4
and polar coordinates centered at the origin; the
result is

). (5.30)

1
nzx

<54 fm ad .
netx* Jiare L0 — 1)L 4+ 1)

The integral in (5.31) is convergent and is smaller
than a constant times In (a/x). Hence, we have

A(1f1. B)

1
nfax3

(5.31)

I7<

After this preparation, we can proceed to estimate
D,¢ for x < 2R and for x > 2R.

Theorem 5: For x < 2R, | D& < A(lf1l, R).

Proof: Using (5.21), we have the following esti-

mates. Replacing, in [L], [f(x)| and |f(y)| by |f]
and p by R, one finds

L] < 367 [ f15

a similar result holds for |/,]. Using the Holder
continuity of f(x) in [l gives |I3] < 4nH, (5R)?/«.
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Replacing, in |7,], [f(y)| by K/y* and p by R gives
\I) < 47K/3R?.

Theorem 6: For x > 2R, x*|Dy&(x)| < A(||f1l, R).

Proof: In the proof of Theorem 4 we have shown
that
X* | De€[fu()] — Do [f G

can be made arbitrarily small by choosing n large
enough; since the expression for D,&[f,] is valid, the
expression for D,&[f] given by Theorem 4 may be
used for the purpose of proving the present theorem.
In the surface integrals of (5.25), {f(y)| is replaced
by K/(x — a)*, and polar coordinates are introduced.
As a result one finds that |Jy|, |/, [Js, and |J,| are
smaller than 4,(|| /|, R)/x®. The integral J; is written
as the sum of an integral J;; over the interior of the
sphere with radius R, and a remainder J;. By re-
placing, in Jg,), | /(3] by |1, and p by x — R, one
finds

sl < 4nR® IAI/3(x ~ R)3~
The remaining integral |J,| is estimated by replacing
[f(y)l by K[y* and using polar coordinates; the
result is
sal < A1 f15 RY/XP.

Jg is estimated by using the a — G property of f(x)
and replacing the integration domain by the region
y £ 2x + a; the result is

Ul < A5l F1, R)fox®.

Replacing, in |Jy|, |f(y)| by K[y*, and using polar
coordinates, we find
47K J ® dl
X s = DC+ 1)
The integral in (5.23) is convergent and is smaller
than a constant times In (a/x). Hence, we have

Vil < ACIF 1L R/ i

Equipped with the estimates for &, D&, and D&,
we can now proceed to show that the operator L?
maps B into B. This is done in the following theorems.

|Jal < (5.32)

FiG. 1. Choice of point z for
the case x < R.

HENDRICUS G. LOOS

X

y

z FiG. 2. Choice of point z for
the case x > R.

Theorem 7: E[f(x)] is a-Holder continuous.
Proof: We will show that

16(x) ~ E < AUS 1L R) x — yI*
separately for the three cases: (1) x < R, y <R,

2)x<R,y>R,and (3) x > R, y > R. (1) Using

Theorems 1 and 2, we have
[&(x) — &(y)| < |x — y| sup | D,¢}
<Alx—~yx -y
< AQR)*|x —y]* for x<R,y<R.

(2) For x £ R, y > R, let z be the intersection of the
straight line through y and the origin, with the sphere
R (Fig. 1). Using Theorems | and 2, one has

1§(x) — &(y)] < 18(x) — &(=)] + |6(z) — &(y)]
Ydr
SAIx—zl+AJ; 5
Aly — 1
YR
<Al —z*QR' " +

=Alx—1z| +
Aly — 2z

RH—a ’
(5.33)

since (x — z| < 2R and |y — z| < y. Because [x — z| <
[x — yl and |y — z| < |x — y|, (5.33) implies

[6x) — EMI < A([If1, R, o) Ix — y[*
(3) For R < x <y, let z be the intersection of the
straight line through y and the origin, with the
sphere of radius x (Fig. 2). Writing &(x) — &(y) as
the line integral of D, £ along the circular arc from x
to z and along the straight line from z to y and using
Theorem 2, one has

mA Aly —z
100 ~ 69 < T [x — 2 + A=
2x xy
T4 a —a 4 «
= e (2x)' Rl 2
(5.34)

since |x — z] < 2x and |y — z| < y. Because

Ix -2z <|x—yl and ly—z{ <|x—Yl
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(5.34) implies
16(x) — W < ALl f 15
Theorem 8: DyELf (X)) is a-Holder continuous, and
x*|D,E(x) — Dy&(y)l < A1,

R,o) |x — y[|*

R’ “) IX - yla’
R<x<y.
Proof: (1) x < R, y < R; using Theorem 35, we
have
|Dyé(x) — Dy&(y)| < Ix — y| sup | Dy
LAl —yl <QRYAx —yl"
(2) x < R,y > R; let z be the point shown in Fig. 1.
Using Theorem 5 and 6, we have

1,60 = DEWI S Alx ~ 2l + 4 &

< Alx — |z —
LAlx zH_szl yl

< Aflif1 R

(3) R < x £ y; let z be the point shown in Fig. 2.
Using Theorem 6, we have

> o) |x — z|*

ID&x) — D@l < 75 lx —2+4) Tdr
< m;(zsx) Ix — z|* + e 2ly -z

< A1, ,)lx_zla_
X

Lemma 5: The by'(x) are «-Holder continuous and
have an «-G property: R< x <y,

x2 [b(x) — b(y)| < A(B, R, @) [x — y|*.

Proof: The proof is constructed in the same way as
the proof of Theorem 8.

Theorem 9: The operator L maps B into B;
IL[fi(x)]ll is bounded by a number which depends
only on || f|i, R, and B.

Proof: The functions L'[f*(x)] of (3.6) are sums
of terms of the type bD,&, (9,b%)&, and b2 On
account of (2.1) and Theorems 1 and 2, [b], (3,%)|£],
and | D, £] are bounded by a number depending only on
I7ll, R, and B. Hence, the same holds for L[f7(x)].
Since b(x) is bounded and «-Holder continuous and
since, by Theorem 1 and 8, D& is bounded and «-
Hélder continuous, dD;& is a-Hélder continuous.
Similarly, the «-Holder continuity of terms of the
type (0,6)¢ and b*¢ follows from the boundedness
and «-Holder continuity of b, 04, and &. Since all
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the bounds and Holder coefficients referred to above
are bounded by a number depending only on |||, R
and B, the Hélder coefficient of Li[f7(x)] is bounded
by such a number.

The -G property of Lf is proved by showing

that this property holds for L, = bD\§, L, = (04b%)¢,
and L, = b2E. We have
[Ly(x) — Li(y)| < [6(0)] [D1€(x) — D, &(y)i
+ (DY) 16(x) ~ b(y)l. (5.35)

Using Theorems 1, 2, and 8 and Eq. (2.1), we conclude
from (5.35) that for R< x <y

A(IfI, R, B X
L) — L) < —(U”x——) ix — ¥~

Similarly, we have
|Lo(x) — Ly(y)] < 195b°(x)] |&(x) — &(y)]
+ 18] 195b%(x) — 0,05 (y)I;

using (2.1) and Theorems 2 and 7, we conclude that

L) — Ly(y)| < M’—’) X — ¥ (5.36)
Finally, we have
ILy(x) — L] < [bOOI* 16(0) — &)

+ [6(X)EM)I |b(x) — b(y)|
+ 16(0EW)! 1b(x) — b()I

A(lfI, R, B .
< ——xr——) x —yl, (5.37)
on account of Theorems 1, 2, and 7.
The asymptotic property
LI S AUfIL R, B), x> R,

follows from the asymptotic properties of b, (9,b%)¢&,
and D¢ [(2.1) and Theorem 2].

We are now prepared to prove the following
theorem:

Theorem 10: The operator L' is completely con-
tinuous.

Proof: Consider any infinite set!® {f,} =< B for
which || £,il < C. We must show that the set {L*[f,]}
is compact. Since we already know that B is com-
Pplete, it suffices to show that every infinite subsequence
of {L[f,1} contains a Cauchy sequence with respect
to the norm (3.11).

From | f,!| € C and Theorem 9 it follows that
ILI[f7(x)]l < A(C, R, B). Since the 3-dimensional
Euclidean space is separable, the bounded sequence
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of functions {L‘[f,’(x)]} contains a weak Cauchy
sequence®® {L’[f, /(x)]}:

ILTfo (0] = Elfn/ (N <, 11, m; > Ny(e).

(5.38)
For Theorems 1 and 2 it follows that

[E[f, (]| < A(C, B)
and
x |E[f,,)(0)]] < A(C, R), x> R

In the same way as we arrived at (5.38), it follows that
there exists a subsequence

{for'} = '}

€0/0,] — Elfm 1l <

x lf[fn;] - g[fmzi:” < €, n2’ m2 > N2(€)a X > R
(5.39)

such that

From Theorems 1 and 2 we have

and

x* DyE[f,, Nl < A(C, R), x> R
Therefore, a subsequence {f, ‘} < {f,,7} exists such
that

ID1E Sy ] — Diblfu) 1l <&
x* |D1§[fn:] - Dlé[fm;f“ <€, nz,mz> Ny(e),
x> R. (5.40)

Similarly, from Theorems 5 and 6 it follows that there
exists a further subsequence {f, ‘} < {f,, '} such that

IDo£fn] — Doblfn 1l < e
x3 |D2£[fnqi] - D2§[fm41], < €, n4’ m4 > N4(€)s
x> R. (5.41)

By the method used in the proof of Theorem 7,
(5.39), (5.40), and (5.41) have the consequence

H 8011~ ElfmT1 < eA(R,0)  (5.42)

and
H,ID:&[f, 1 — D:E[f,,1] < €A(R, ). (5.43)

From (5.39), (5.40), (5.42), (5.43), Lemma 5, and the
fact that b and 0,bf are bounded by a number which
depends only on B, it follows that

HIL'[ [,/ — L fn,1] < €44(B, C, R, 0). (5.44)
In a similar manner it follows that

GILf1 — L[ fn 1] < €44(B, C, R, o)  (5.45)
and

KL [f,J) — L fu,1] < €45(B, C, R, ). (5.46)

HENDRICUS G. LOOS

From (5.38), (5.44), (5.45), and (5.46) it follows that

ILELf = Lf/Nl < €4y(B, C, R, a),
fly, m4 > N4(€)' I

The existence of solutions f(x) € B of the functional
equations (3.5), for nondegenerate b and for any
values ¢™ in (3.7), follows from the complete con-
tinuity of the operator L’ on B, and the nonexistence
of nonnull solutions of the associated homogeneous
problem (4.1), (4.2), for nondegenerate b, by appli-
cation of the determinant-free Fredholm alterna-
tives.®4 The solution £°(x) has the property D,&i(x) =
O(x~%), on account of Theorem 2. Furthermore, the
solution & satisfies (3.3), which together with (3.9)
shows that 0,08&" = O(x*). Hence, the solution
£(x) of the boundary-value problem (3.1) satisfies
the asymptotic conditions (3.2). Hence the orthogonal
isospin transformation theorem (Sec. II) is proved,
and it follows that the Yang-Mills field with configura-
tion space €} has physical states with a nonvanishing .
isospin component.

6. TRANSVERSE POTENTIALS

The second existence problem which has bearing
on the configuration space concerns potentials b
which can be transformed to transverse potentials by
a local gauge transformation

S(x) = exp n(x)L,; (6.1)
such potentials are here called normal potentials. The
question arises whether all potentials b€Q are
normal; this would be desirable if one wants to use
transverse potentials in calculations. In the present
paper, we do not solve this existence problem, but
we reduce it to a simpler uniqueness problem. This is
done by using a method of Boulware® which reduces
the nonlinear problem to a linear problem and by
proving the complete continuity of the relevant
operator occurring in the equivalent functional
equation. Boulware’s method® amounts to finding the
conditions that in  all potentials b 4 6b infinitesi-
mally close to normal potentials 4 are normal. For a
finite local gauge transformation (6.1) one has

I; = S7'T%S ~ 57%9,S, (6.2)

where

T, = bsL;, T =b,L,, (6.3)

and the L’ are constant basis elements of the Lie
algebra of SU(2). For transverse potentials by#* one
has

d3bs" =0 (6.4)
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and, therefore, also

When considering local gauge transformations which
are not infinitesimal, it is easier to work with the I,
than with the b,’. Suppose that the I'; € Q are normal,
i.e., there exists a transformation S of the form (6.1)
with 7%(x) subject to the asymptotic conditions (2.3)
and (2.4), such that

I = SIS — 5719%s, (6.6)

where the I'# satisfy (6.5); i.e.,

9,(STI*S — 5719%S) = 0, 6.7)

Let 6I'* € Q be an arbitrary infinitesimal change of
'8, Let the associated change in S which keeps (6.7)
valid be S = SX; X then must satisfy the equation

where V#X is the covariant derivative of X, belonging
to the potentials I'7#:

On account of (6.2) one may write

STOIES = oA, (6.10)

where 61# is the change in ['z# due to 617, keeping
S fixed. Clearly, if I' and oI" belong to Q, and § is
a local gauge transformation, then 6I' belongs to Q
as well. Therefore, with

oI"? = 8b'#L,, (6.11)

the db°Fi(x) satisfy conditions (2.1). 7 + X must be a
local gauge transformation, and since X is infinitesi-
mal, we may write

X = (0L, (6.12)
where the 7" are subject to conditions (2.3) and (2.4).
In terms of #*(x) and 8b'%, (6.9) reads

AV = 8,0b"F" (6.13)

Since 0b'%¢ € Q, the right-hand side of (6.13) satisfies
the condition (3.9) and therefore lies in the Banach
space B defined in Sec. 3. Writing out the covariant
derivative in (6.13) gives

0,0"n' — c;'brP0m" = 0,067, (6.14)
We will introduce the functions /* defined by
0,0%" = h’; (6.15)
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using the asymptotic condition (2.3), we may write
the solution #* of (6.15) in terms of A as

o 1 o1
] = — — | d®yhi(y) = =|x —y. (6.16
7'lh’] 47deyh(y)p, p=Ix—yl. (6.16)

With (6.16), the boundary-value problem (6.14), (2.3)
may be expressed as the functional equation

W — M'[h] = 9,06, (6.17)
where

M) = ¢, b 9,mF[h]. (6.18)

As shown in Sec. 5, the operator L’ of (3.6) is a
completely continuous operator on B. M? of (6.18)
is proportional to the first term of L?, and from the
proof of complete continuity of L’ it can be seen
that M? is also a completely continuous operator on
B. Since 0,067 belongs to B, it follows by applica-
tion of determinant free form of the Fredholm
alternatives®* that the boundary-value problem
(6.13), (2.3) has a solution in B if the associated
homogeneous problem

Vet =0, (6.19)

with asymptotic condition (2.3), only has the null
solution in B. Moreover, if the boundary-value
problem (6.13), (2.3) has a solution in B, it follows
from (6.15), Theorem 2, and (3.9) that property (2.4)
is satisfied for the solution. Hence, if for all b, € Q,
(6.19) and (2.3) has only the null solution in B, the
boundary-value problem (6.13), (2.3), (2.4) has
a unique solution in B, and then all potentials b € Q
infinitesimally close to normal potentials are normal.
Since there certainly exist some normal potentials in
Q, it would follow that all potentials & € €2 are normal.
Hence we have the result:

Reduction Theorem: 1f the homogeneous problem
(6.19) and (2.3) only has the null solution, for all
bp €, then for every b e there exists a unique
local gauge transformation b— b’ such that &’ is
transverse.

7. TENTATIVE CONFIGURATION SPACE
The configuration space considered in this paper
is the metric space of all real-valued spatial Yang-
Mills potential functions b*(x), subject to conditions
(2.1), taking as the distance! between b,'(x) and
bgi(x) 4+ Abgi(x)

( f d*x Abj(x) Ab”i(x))%. .1
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For ease of reference, we separately show the condi-
tions which make up (2.1):

|b] < B, (1.2)
|Db| < B, (7.3)
IDib(x) — Dib(M| < Bjx—y°, 0<a<1; (74)
x > R,
x*|b] £ B, (7.5
x*|D;b| < B, (7.6)
x* 9,6 < B (1.7)
R<x<y,

x* 9,07 (x) — 9,b" (V)] K Blx —yI*. (7.8)

Conditions (7.2) and (7.3) ensure that the space-

space components of the Yang-Mills field

By = dyb, — 0,b," — c;,'by’bf (7.9)
are bounded. The asymptotic condition (7.5) ensures
that the distance (7.1) between any two points b and
b 4 Ab of Q is finite.

Adopting the asymptotic electromagnetic identifi-
cation,” which amounts to identifying, in the world
where there exists only the Yang-Mills field, the far-
away Yang-Mills field as electromagnetic, we allow
a nonvanishing total magnetic moment by the
asymptotic condition (7.5) for b. Photons at spatial
infinity are excluded by (7.5), and this may seem
objectionable. However, in considering scattering
problems which involve photons in the in and out
states, one can take these states at times such that the
photons do not appear at spatial infinity, if the
photons are taken as localized packets. This amounts
to considering the S matrix between large negative and
positive times + T, instead of Fco. In a calculation
based on absence of photons at infinity, a definite S
matrix may be obtained by letting T go to infinity as
a final step. In the asymptotic electromagnetic
identification, the different / components of the
expectation values for By’(x) and B, (x) must be
proportional for all values of g, y, and x/x, as x — oo,
since there is only a single electromagnetic field. To
achieve this, further restrictions may have to be
imposed on the configuration space, but this problem
must be studied considering the state space and the
development of states in time as well.

In preparation for comments on the asymptotic
condition (7.7) for d;b#*, we consider in Q the decom-
position of an arbitrary infinitesimal vector db* at b
into a vector 0,b orthogonal to the gauge-invariant
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manifold x at b and a vector d;b along y:

84 = 8, bP 4 8 b¥. (7.10)

In the same way as we derived (2.16), it can be shown
that

V8, b% = 0. (7.11)

Since 6, b#" is due to a local gauge transformation, we
have

8,b* = —Vhy', (7.12)

Taking the covariant divergence of (7.10) and using
(7.11) and (7.12) gives

V, Ve = —V45b,". (7.13)

The existence proof given in Secs. 3, 4, and 5 applies
to the solution 7*(x) of Eq. (7.13) subject to the
asymptotic conditions (2.3) and (2.4). Also, the con-
siderations of Sec. 4 apply to the homogeneous
problem associated with (7.13). Consequently, we
have in  existence and uniqueness of the decomposi-
tion (7.10) at every nondegenerate b € Q.

If the asymptotic condition (7.7) for d,b# were
dropped, then (7.6) would set the asymptotic behavior
of 0,b%, which would be O(x~®) instead of O(x%).
Since

9705(x In x) = O(x™®),

there would then exist a displacement b, (x) in Q
and a *(x) = O(x! In x), for which (7.13) is satisfied.
For nondegenerate b€, the solution 7'(x) of
(7.13) is unique; this follows from the argument of
Sec. 4, which goes through here because the surface
integral in (4.4) vanishes for x — 0o, if %' = O(xInx)
is taken instead of & Hence, if condition (7.7) were
dropped, there would exist a displacement 0b%%(x) in
Q such that the solution #¢ of (7.13) is of order
O(x'1n x); for that solution 7’ the §,b#" calculated
from (7.12) would be of order O(x! In x), and there-
fore the displacement 6, 6%° would not lie in €.
Dropping (7.7) would also have consequences for
the reduction theorem and for the orthogonal
isospin transformation theorem. The right-hand
side of (6.13) would be of order O(x~?®), which is
outside B. If B were modified to include func-
tions Ai(x) of order O(x~?) instead of O(x™%), then
n'{A’] calculated from (6.16) would be of order
O(x' In x) for certain A*(x); the vector db calculated
from (2.2) would then be of order O(x~21n x) and
therefore would not lie in Q. The second term on the
left-hand side of (6.14) cannot bring relief because it
is of order O(x™), if # is of order O(x™?) as desired.
Hence, if (7.7) would be dropped, there would exist
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potentials b € Q, which cannot be transformed to
transverse potentials. Dropping (7.7) would have a
similar effect on the considerations regarding the
existence of a solution of Egs. (3.1) and (3.2). As a
result, the orthogonal isospin transformation theo-
rem would read: The set 9 includes all nondegenerate
potentials b € Q for which 9,b%* is of order O(x™).
Since this set has a nonvanishing measure in L, it
still would follow that the Yang-Mills field (with this
modified configuration space) has physical states with
a nonvanishing isospin component.

The undesirable factor which would result from
dropping (7.7) is only logarithmic; hence, a restriction
weaker than (7.7) may be sufficient to avoid the
problems discussed. However, if one allows only
asymptotic restrictions expressed by an integral
power of x, then (7.7) is the weakest restriction with
the desired effect. Instead of including a restriction
like (7.7), one could attempt to enlarge Q such that
potentials of order O(x~*In x) are allowed. However,
there does not seem to be a physical need to include
such configurations; on the other hand, the condition
(7.7) does not seem to constitute a physical restriction.
Hence, we see no merit in such a modification of the
configuration space.

The o-Hélder continuity condition (7.4) is a
minimum smoothness condition. In practice, we
need second derivatives of b, in the theory, and we
would demand

| Dbl < B; x— o, x*|Db| < B. (7.14)
If still higher derivatives of b are required, similar
conditions for the higher derivatives would be im-
posed on the configuration space. Conditions (7.14)
imply the Holder continuity (7.4); the purpose of
imposing (7.4) instead of the stronger condition
(7.14) is to state the orthogonal isospin transforma-
tion theorem and the reduction theorem in as sharp
a form as we know, i.e., with the weakest conditions
on the b,i(x). A similar comment applies to the
«-G condition (7.8) for d,b%.

8. THE CONSTRAINT EQUATION FOR
THE CLASSICAL THEORY

The existence of solutions {* of (2.16), subject to
the boundary conditions (2.8) and (2.9), has bearing
on the constraint equation

V,B% = 0 (8.1)

of the classical theory. The “electric” part B of the
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Yang-Mills field may be written’
BY! = Vg’ 4 V o, (8.2)

where 9#'% is antisymmetric in 8 and y. The decom-
position (8.2) gives, for the constraint equation (8.1),

Vﬁvﬁ‘l’i = %Ciﬂc Bﬂyj ’/’ﬂyk, (8.3)
if use is made of the identity®

Equation (8.3) for ¢ is of similar form as (2.16),
which with (2.8) may be written
Vﬂvpfz = _Vﬂvﬂci; (85)
only the source terms on the right are different. For
B¢ in (8.2) to be of order O(x~2) we take
@t = O(x7Y), (8.6)
and yf7* = O(x™); then, ¢*(x) is restricted asymp-
totically by the same condition as &i(x). In order that
our existence theorem applies to (8.3), the right-hand
side $¢’;, By, w#?* must lie in the Banach space B. It
can easily be seen that this is the case if the y#7(x)
are bounded and «-H6lder continuous, p??* = O(x),
and if p#*{(x) and b,’(x) € Q satisfy the modified
asymptotic Holder conditions

x lp(x) — p(W < G, Ix — y|%
x*|Dyb(x) — DI < G, |x —y]", R<x<y.
(8.7)

Then, Eq. (8.3) subject to the asymptotic condition
(8.6) has a (unique) solution ¢‘e B, if the homo-
geneous equation associated with (8.3) has only the
null solution; in Sec. 4 it is shown that this is the case
if the holonomy group of the 4,'(x) is the full SU(2).
Only the covariant-longitudinal part VAg? of (8.2)
contributes to the isospin.’

* Work conducted at the Douglas Advanced Research Labora-
tories under company-sponsored Independent Research and Devel-
opment funds.
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We consider an irreducible representation of a semisimple Lie algebra L. When restricted to a semi-
simple subalgebra K of L, this representation can be reduced with respect to K. We derive a general
formula for the multiplicity of a certain irreducible representation of K, which occurs in it. The result is an
extension of Kostant’s formula for the multiplicity of a weight, where the subalgebra K is the Cartan
subalgebra of L. Using Kostant’s formula, we write down a set of equations, containing the required
multiplicity, completely analogous with the usual formula involving the characters. We rewrite these
equations using some properties of the partition function (used in Kostant's formula) and of the Weyl
groups. Finally we solve them with the help of an “orthogonality property.” We illustrate the applica-

bility by working out two nontrivial examples.

I. INTRODUCTION

Some of the most important rules in the application
of semisimple Lie groups and their Lie algebras in
particle, atomic, and nuclear physics are the so-called
branching rules. In the reduction of an irreducible
representation of a semisimple Lie algebra L with
respect to a semisimple subalgebra X, the different
irreducible representations of the subalgebra K which
occur, together with their multiplicities, are then given
by these rules.

A general closed formula, valid for finite-dimen-
sional representations, was obtained by Straumann!
and by Delaney and Gruber.? This formula involves
the knowledge of the multiplicities of the different
weights in the considered irreducible representation
of L.

In this paper we present another closed formula
which does not make use of these multiplicities. It
contains a formula of Mandel'tsveig® as a special
case. The result is similar to Kostant’s formula* for
the multiplicity of a weight. Moreover, it is an
extension of this formula because, in the special case
where the subalgebra K is the Cartan subalgebra, the
different irreducible representations of the subalgebra
(which are all 1-dimensional) are given by the different
weight, together with their multiplicities.

In fact, our starting point is Kostant’s formula. We
consider the multiplicity of a weight in an irreducible
representation of the semisimple Lie algebra L.
We restrict this representation to the subalgebra X,
and we derive a formula for the multiplicity of a weight
(with respect to K) in this (usually) reducible repre-
sentation of K.

On the other hand, this multiplicity equals the sum
over the irreducible representations of K of the
product of the multiplicity of a weight in an irre-
ducible representation of K times the multiplicity of
this representation in the restriction to K of the
considered representation of L. Modifying the two

results, we can use a property of the considered
partition functions—closely related to the orthogo-
nality relations of the characters—to extract the re-
quired multiplicity.

But, before we can start, we are forced to give a few
introductory notions and some properties of the
considered partition functions. We also prove two
lemmas, related to the commutant of the Cartan
subalgebra J of K in L. These two lemmas are essential
in the interpretation of an important factor in the
formula. In the Appendix we treat two examples.

II. BASIC CONCEPTS

We consider a semisimple subalgebra K of a semi-
simple Lie algebra L over the field of real numbers.
If Jis a Cartan subalgebra of K, we can find a Cartan
subalgebra H of L such that H contains J (see Ref. 5,
p. 149).

We denote the real vector spaces, generated by the
roots of L, by H* and of K by J*. Thus, the elements
of H*(J*) are linear functions on H(J). We denote by
A4 and C the set of positive roots of L and K, respec-
tively. (Positivity in H* and J* will be introduced
later.)

The partition function Pg(4), where 1 € H* (respec-
tively J*) and B is a finite subset of H* (respectively
J*), is defined as the number of nonnegative integer
solutions of the equation in x,, « € B,

A=Ya-x,.

ac B

The special function dp is defined as % Y,.p ¢,
where B is as before. The Weyl groups of K and L are
denoted by Wy and W.

We can now formulate the problem in mathematical
terms. The multiplicity n(A, 1) of a weight 1 € H* in
the irreducible L-module with highest weight A € H*
is given by Kostant’s formula

n(A, 2) = 3 (det SYP,(A + 6,)S — (4 + d)),
Sew
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so that the muitiplicity (A, m) of a weight m e J*

in the restriction to K of the irreducible L-module of

highest weight A € H* equals
A, m)= 3 (1)

Aa(D=m

where we denote by A(J) the restriction of a function

Ae H*toJ.

On the other hand, if we denote by N[A, M] the
multiplicity of the irreducible K-module with highest
weight M, which occurs in the restriction to K of the
irreducible LZ-module with highest weight A, we have
the equality

(A, m) =M§,1‘N[A’ Min(M, m),

n(A, 2),

where the summation runs over those weights M € J*
which can be the highest weight of an irreducible
K-module.

These two expressions of 7(A, m) yield an equation
for every m € J*. In order to solve this set, we rewrite
both sides, and we use a property of the partition
function to get rid of the summation over M. The
result is an expression for N[A, M].

HI. PROPERTIES OF THE PARTITION
FUNCTIONS
We first prove three properties of the partition
function.

Property 1: If A;, Ay, and A are three finite subsets
of H* such that 4, WA, =4 and 4, N4, = &,
then we have for all 4 € H* that

P4 = 51 Pa(d — )P 4 (p).

(This property is closely related to the recursion
formula for the partition function of the algebra 4,
of Radhakrishnan.®)

Proof: Consider the two equations in x,, x, > 0:

A=p+ Do x,

acAdy

y=20t'x,.

acds

The number of solutions of the set equals the product
of the number of solutions of the first times that of the
second. So, it is

P4 — WP, ().
Eliminating the 4 in the equations, we get
A= x,.
acAd

So, we have here Y, P, (A — wP ,,(u) solutions. On
the other hand, this number is P 4(4) and the property
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is proved. Clearly, the same result holds if H* is
replaced by J*.

Property 2: If A is a finite subset of H* and B the set
of restrictions of the elements of A to the subspace J
of H, then for every m € J* we have that

Pym) = 3 P
Z(J)}—I:m

Proof: Consider the two equations in x,, x, > 0,
and 4:

A=Y a:x,,
acAd
MJ) = m.

For every 4 such that A(J) = m, we have P(4) solu-
tions. Thus the number of solutions is

2 P,
A i J)=m
Eliminating 4, we get the equation
m=x, x(J).
acd

By the definition of B, the number of solutions of this
equation is Pg(m), and it follows that

2 P4

A, MJT)=m

Py(m) =

Property 3: If C is a finite subset of the positive
elements of J* and if, for every m € J*,

> Pon—m)X,=0, X,eZ,
neJ*
then it follows that either all X, = 0 or that there
exists an 7, such that X, # 0 and there are infinitely
many elements of the form

n=ny+dx"x,, x>0

acC
with X,, 5 0.

Proof. Suppose that there exists an np with X, 7 0.
Consider the following equation with m = n,:
2 Po(n —n)X, =0.
neJ™®
Since Po(n — ny) = 0,if n < ny, and Pe(n — ny) = 1,
if n = ny, we can rewrite the equation as
S Poln — n)X, = —X

n>ng

ng *

The left-hand side must be different from zero since
X,, # 0. Thus there exists an n > n, of the form

n=ny+ Yo%, x,>0,

aeC
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with X, # 0. It follows immediately that there are
infinitely many elements of this form with X, # 0.

IV. THE COMMUTANT IN L OF THE CARTAN
SUBALGEBRA J OF K

Let us consider Property 2 of the partition function,
and suppose that there exists an element « € 4 such
that its restriction to J, «(J) is zero. It follows that B
contains zero as an element, and so Py(m) is always
infinite or zero.

Indeed, Pg(m) is the number of solutions of

m=f"x,.
pen
Clearly, if 0 € B and if there exists a solution {xs},
then, for every positive integer n, we have that
m=Yp-x;+n-0,
B€B
and so {x; + nd(B, 0)} is also a solution.

Now we want to use Property 2 to work out the
sum over A with A(J) =m in formula (1). Since
n(A, 1) contains the partition function P, where 4
is the set of positive roots of L, it is clear from these
considerations that the subset of 4, {« € 4, a(J) = 0},
will play an important role in our treatment, and since
o(J) = 0 means that the corresponding generator E,
in L commutes with J, E, belongs to the commutant
of Jin L if « is an element of this subset.

Therefore, we prove two lemmas concerning this
commutant and its Weyl group.

Lemma 1: If J is a subalgebra of a Cartan sub-
algebra H of L, then the subalgebra L, of L, con-
sisting of elements commuting with H, is the direct
sum of a commutative and a semisimple part.

Proof: Consider the set of roots in L, according
to the Cartan subalgebra H, and the corresponding
basis {E,, « a root} in L. Suppose that an element
d.A E,€L; and so commutes with all elements
heJ. Thus,

(S 4Eer ) = S il 1
= > Aa(h)E, = 0.
Since the {E,} constitute a basis, we have for every h

and « that
Ax(h) = 0,

which is equivalent to saying that
A, =0 if a(h) #0,

and so {E,, « a root, «(J) = 0} is a basis in L,.
We now introduce an ordered basis in J* and H*
such that the corresponding sets of positive elements
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have the following properties, « € H*:

x>0=a(l)2>0
and
a() > 0=a > 0.

Consider a basis in H*, {A;, i = 1,1}, and consider
the restrictions to J, {4,(J)}. We can rearrange the
indices so that the first restrictions constitute a basis
in J*. If k is the dimension of J, then we may suppose
that {4,(J), i = 1, k} is a basis in J*.

We can now write the restrictions A/(J) with ¢ =
k + 1, lin terms of the basis in J*,

k
AW =2a(), k<q<l,
=1
and redefine the basis in H*,
k
dg=24—Yaid;, if k<q<],
=1

=14, if 0<q<k.

An element of J*, written as Y  p,A,(J), is called
positive if the first nonzero coefficient is positive; an
element of H*, written as >'_, p,A;, is called positive
if the first nonzero coeflicient is positive. The inclusion
properties can easily be verified. Having defined the
positive roots in L, we can associate the corresponding
simple system of roots in L, and we denote it by
7= {oty, &, """, %}

Let us consider a positive root § such that §(J) = 0.
Since {«,} is a simple system, we can write

B=2ka;,, Yk, >0.
Restricting to J, we have

pU)=0=3 ki“z‘(D-

Since a,(J) > 0, we have that k;, = 0 if «,(J) > 0.

If we call =’ the subset of 7 for which «,(J) = 0,
then every positive root 8, f(J) = 0, can be written as
a sum with nonnegative coefficients of the basis roots
=’. We may conclude that =’ is a simple system for the
roots with zero restriction to J (see Ref. 5, p. 121).

Next we consider the canonical generators {4, e, , f;}
according to the system =, and we define L, to be the
subalgebra of L generated by the subset {,,e,,f;
with a, € 7'}, It is easy to see that L, must be semi-
simple. If «; € 7', then the e; and f; commute with J
and so do the h;, and it follows that L, is contained in
L.

Next we consider the subalgebra H, of H defined as
the set

{h,he H ¥V a, € v’ = a,(h) = 0}.

It is now possible to show that L, is the direct sum of
H, and L,. Indeed, if « is a nonzero root and if the
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corresponding generator E, commutes with J, we can
write

a=> ko,

aen’

and E, is generated by {e,, f; with «; € 7’} and hence
belongs to L,. On the other side, if # € H, then we
can solve the set of equations («; € 7" and summation
over those indices such that «; € 7')

a,(h) = Z ko, (h;)

because a«,(#;) is the Cartan matrix of L,, which is
nonsingular. It follows that a,(h — > k;h;) = 0 for
a,€n’, and so h — Y k;h; € Hy. Furthermore, it is
clear that H, commutes with L,.

Lemma 2: The subgroup W, of the Weyl group W
of L, defined as the set

{S,Se W,V ieH=AS(J) = AMJ)},

equals the Weyl group W of the algebra L, (as
defined in Lemma 1).

Proof: It is easy to show that W; < W,. Suppose
that « is a nonzero root of L,; then the mapping
S,: H* — H* is defined as

AS, = A + [(4, &)/(a, a)]oe  (see Ref. 5).
If we restrict to J, we get
AS(J) = A(J) since «(J)=0.

This holds for all A€ H* and all the nonzero roots
of L,, and, because W, is generated by the reflexions
S, , where o is a nonzero root of L,, we may conclude
that

Wi, € We.

To prove that W, < W , we show that, for every
S € W,, there exists a S; € Wi, such that SS; leaves
the simple system 7 of L fixed, and so (see Ref. 5,
p. 242) S5, =1 and Se W;,. Given S W,, we
first construct such an element S, of W, . We consider
the simple system =’ in L,, contained in = (as in
Lemma 1) and we show that #'S is again a simple
system in L,.

Take an arbitrary nonzero root g of L,; S is
again a nonzero root of L, because S € W,. Thus it
can be written in terms of the simple system 7':

ﬂs—l = 2 kB,
Bien’
with ¥V k; > 0 or V k; < 0 (see Ref. 5, p. 121).

It follows that 8 = Y k,(8,S) with the same condi-
tion for the coefficients, and, since § was arbitrary, the
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set 7" = 7'S is a simple system for L,. Hence, by a
property of the Weyl group, there exists an element
S; € Wi, such that

'S, = .

We can now show that #SS; = #. Clearly, =SS, is a
simple system because SS; € W.
Consider a simple root o, € w\#'. We have that
o;(J) > 0 and
0,88, (J) = a,(J) > 0,

and by the construction of the positive roots oSS, >
0. On the other hand, we have that »'SS; = =, so
that the set 7SS, consists of positive simple roots. It
follows that =SS, == by a property of simple
systems. QED

V. A FORMULA TO DERIVE BRANCHING
RULES

Theorem 1: The multiplicity of a weight m € J* in
a K-module, which is the restriction to K of an
irreducible L-module with highest weight A (€ H*) is

A(A, m) = 3 (det SYPH((A + 6.)S(J) — (m + dp))

Sew
x dim [(A 4+ 68 —d,4,], (2)

where A is the set of positive roots of L, B the set of
nonzero restrictions of 4 to J, 4, the subset of 4,
having zero restriction to J, dim [A] = 0 if 4 is not
dominant (with respect to L,),” and dim [A] =
dimension of the L,-module with highest weight
equal to the restriction of 4 to L,, if 4 is dominant.

Proof: Clearly, the considered multiplicity
A, m)y= 3 n(A, ),

ialT)=m
where n(A, 1) is the multiplicity of the weight 4 € H*
in the irreducible L-module with highest weight A.
Thus by Kostant’s formula

S 3 (detS)

A, AJy=m SeW

X P(A+6)S — (A4 dy).

To prove the theorem, we must evaluate the sum over
A. However, we are not allowed to commute both sums
since, if e.g., « € 4 and a(J) = 0, then

> PAAF+0)S—(A4+6Y)

2,AJ)=m

a(A, m) =

might be infinite, as we already mentioned in Sec. IV,
Therefore, we introduce the subsets of A4,

Al = {OLEA’ O(.(J) = 0}5
Ay, = {a e A4, a(J) > 0}
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We already saw in Lemma 1 that 4 = 4, U 4,.
Clearly, 4, N A4, = ¢, and so we can use Property 1
to get

Aa(A, m)
= 3 2(detS)

A MJT)=m SeW

X > *PA;»(/‘ — DP (A +68)S — (u+9y)

neH
A(J)=m u
XSZW(dCt S)P (A + 89S — (u + d4).

Now
> Pl — )= PguJ) — m)

LMT)=m
by Property 2, and, because B is a set of positive
elements, the result is finite. Thus we may commute
the sum over 4 and u and use Property 2.

Hence,

A(A, m) = 3, Py(u(J) — m)
X > (det )P (A + 6,908 — (u + d).

Sel
We have that P, () =0 or A =Y, X, and so
MJ)=0.
It follows that we may replace u(J) by

(A + ,98U) — 040),

and then we find

A, m)=3 3 (det PH(A + 6,)S()

u SeWw

— (m + )P4 (A + 89S — (u + 4.).

The last factor is a partition function over the ele-
ments A;, which are the positive roots of the algebra
L,; since u occurs only in this term and we sum over y,
we only miss a summation over the Weyl group of
L, in order to have a dimension of an irreducible L,-
module. But we know from Lemma 2 that this Weyl
group is the subgroup W, of W.

So we introduce this subgroup, and we split the
sum over W, into a sum over the left cosets and over
W, itself.

Since (A + 6,)SS,(J) = (A + 6,)SWV) if Sy € W,,
we get

A(A, m)
=Y 3 (detS)P((A + 0,)S() — (m + 6p))

W SeIWo
X D (det SP (A + 6.)SSo — (1 + 6.0)).
SoeiT

W, is the Weyl group of L, by Lemma 2, and the 4,
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are the positive roots of L,; thus we have that

> > (det S)P 4, (A + 0SS, — (u + 6,)

u W

=3 > (det Sp)P (A + 6,)S — 04, + 6,4)S0

"Wy,
— (1 + 94)]
(we may replace 04 by 0, because we sum over u)

= dimension of the L,-module with the restriction
to the Cartan subalgebra of L, of (A + §,)S —
9.4, as highest weight, if this weight is dominant
with respect to L,.

It is easy to see that there is only one S in every coset
such that (A 4 6,)S — 4, is dominant with respect
to L,. Suppose that

(A+06)S—3, and (A+8,)SS,—d,

are both dominant; then so are (A + ¢,)S and
(A + 6,)8S,, and it follows that S, =1 (Ref. 5,
p. 262).

As a result of the preceding considerations, we may
write

A(A, m) =S€ZW(det S)PR((A + 6.)S(J) — (m + d5))
x dim [(A + 6,)S — d,4,]
provided that we define dim [A] =0 if 1 is not
dominant: otherwise,
dim [7] = 3 3 (0t SOP.((2 + 0450 = G + 8.)
QED

Theorem 2: The multiplicity of the irreducible K-
submodules with highest weight M €J in the restric-
tion to K of the irreducible L-module with highest
weight A equals

N[A, M] =92 (det S)Pp((A + 6.9S(J) — (M + d5p))
SeWw
x dim [(A +6,)S — 6,1, (3)

where D = B\ C, C the positive roots of K, and
B, A, A,, and dim [2] are as in Theorem 1.

Proof: As we already mentioned in Sec. II, the
equation

AA,m)= >  N[A, MIn(M, m),

M dominant

4)
with
n(M, m)

-3

SyeWy

(det SR)PA(M + 8c)Sx — (m + 6¢)),

holds for all m e J*. Theorem 1 provides us another
formula for 7(A, n1), but we are not yet able to use
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Property 3: On the one hand, we have a partition
function over B and, on the other hand, a partition
function over C. Obviously, C is contained in B
because an element § of B is a positive solution of the
set of eigenvalue equations

[h, x] = B(h)x,

and an element of C is a similar solution, but with
x in the subspace K of L.

This suggests that we should use Property 1 again,
to arrive at the same partition function on both sides,
and then use Property 3. So let D = B\ C and let us
rewrite formula (2) using Property 1:

A, m) =3 (det S)dim [(A + 8,)S — 8,,]
SeW
X 2 Pp((A + 8,)S(J) — m)Pe(my — (m + d)).

mi

Vheld, x€eL,

By a redefinition of m, and a re-ordering of the terms,
we get

2 Po(m, — (m + 6¢))
x 3 (det S)dim [(A + 8,)S — 8]
Sew
X Pp((A + 8,)S(J) — (my + 0p)).

Here we have a summation over n, € J*, in formula
(4) we have a summation over M dominant and over
S € Wx. In fact, both are summations over the
whole space J*: Consider the subset

D = {(M + 80)Sk, Sk € Wy, M dominant}.

All these weights are different; suppose that two
of them are equal:
(M +00)Sg = (M’ + 60)Sk .
Then
(M + 0)SgSK" = (M’ + 0¢)

and, because M and M’ are dominant,

SkSE' =1 (Ref.5,p.262)
so that
M+ 68c=M + 6.

It follows that with every element m; € D we can
associate a unique Sy (m,) and M(m,) such that M(m,)
is dominant and

my = (M(m;) + 3c)Sk(my).
Now we can rewrite formula (4):

Aa(A, m)
i)PC(ml — (m + dp)) det Sx(m)NA, M(m,)),

mie
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and we can extend the summation over the whole
space, because, if m; ¢ D, then we may put

N(A, M(my)) = 0.

Equating the two results for 7i(A, m), we have

> Po(my — (m + 80))X(my) = 0,

with
X(my) = [det S(my)IN(A, M(m,))
— z (det S) dim [(A + 6,)S — 04,1
SeWw
X PD((A + 0)8(J) — (my + 0p)).

We can now use Property 3. Therefore, we first
suppose that X(m,) 5 O for an element m, = n,, and
so there are infinitely many points of the form n =
No + D gec Xas X, 2> 0, such that X(n) 5 0.

On the other side, we know that N(A, M(m,)) is
only different from zero for a finite set of points M
and so for a finite set of points m, . Therefore, there
should be infinitely many points such that the second
part of the sum is different from zero, and, since W
is finite, this should be true for some element S of
W. But P((A + 6,)8(J) — (m; + dp)) can only be
different from zero if

(A + 0)SWJ) — (my + dp) = 3 x,2
aeD
It follows that there are infinitely many points m; of
the form
m; = Ry + zxaa = (A + 6A)S(J) - 6D - zxa“,

acC aeD

and so we have infinitely many solutions of

ny + zxaa + Zxaa = (A + 6A)S(J) - 6D'
acC aeD

Thus, Pp((A + 8,)S(J) — (ny + dp)) would be in-
finite, which is impossible since B is a finite set of
positive roots.

We conclude by Property 3 that X(m,) = 0 for all
my, and, if we take a point m; with Si(m;) = 1, we
get

NA, M) = 3 (det S)dim [(A + 9,)S — d4,]
Sew
X Pp((A + 09S(J) = (M + 6¢ + dp)),
and, since ., + 8, = dp, we have proved formula (3).
Remarks:

(i) In formula (3) the sum over S € W runs effec-
tively over those elements such that

(A + 6,8 — 4, is dominant with respect to L,
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and
(A + 8)S() — 85 > M.

Because A + 8, > (A + 6,)S, we have that
AW) 2 (A + 0,)S() — b5

Therefore, there is, in fact, only summed over a subset
of the cosets W/W, a subset, which is, in many
cases, small with respect to the whole W. This is,
of course, a great advantage.

(i1) Applying formula (3), one should take care of
the fact that 4, the set of positive roots of L, when
restricted to J must yield positive or zero weights
with respect to the ordering in J*.
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APPENDIX

As a first illustration of the applicability, we treat
the nontrivial case of the subalgebra A4, of the simple
Lie algebra G,, encountered in nuclear and atomic
physics (see, e.g., Ref. 8, p. 106).

We first determine the various elements that are
to be used in the formula. We consider the canonical
generators of G,, {h;, e;, f;; i = 1,2}, and we denote
the elements A of H* by

(11 ’ )'2) = (A(h1), A(hz))-

In this notation we have that d, = (1, 1), and the
different possibilities for (4,, 4,)S and det S are (see
Ref. §, p. 235)

(415 A)*, (=4p, 4 + 324,
(2}*1 + Ay, — g — 311)+,
(=24 — Ay, 30 + 225,
(A + Ao, =30, = 20)Y, (=24 — 2y, +7; + 34D,
(_Al - 22, )hz)_, (}']J —2.2 - 3)\1)—, ("}-1, —12)"_.
(The plus or minus sign indicates whether det S'is +1
or —1.)

In this special case, the adjoint representation of G,
reduces with respect to 4, into a 3- and 11-dimensional
representation. It follows immediately that the commu-
tant of the Cartan subalgebra J of A, contains only
one element apart from J itself, so that it is commuta-
tive, and that the factor

dim [(A + 6,8 ~ d,4,] is always equal to 1.

Knowing the different roots of G,, one can find that
the canonical element 4 of J is 10k, + 6h,, and, if
we denote the elements M of J* by I = M (h), we find

(Vg + 25, =245,
(=2 — 45, 34 + 24,)",
(A, + Ay, =324, — 24y),
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that the restriction of a weight (4, 4,) of H* to J is
(A1, () = 54, + 34,.
In this notation we also find that
B={54,3,2,1,1}, D={5,4,3,2,1},
so that 65 = 8.
The different possibilities for the weight
(A + 0.)8() — 6p)
and det S, such that this weight can be positive, are
(5A; + 34,)", (@A, + 34— 1D, (54 + 24, — 1),
(4 + 224, — 5)*, (44 + 4, — 3)t,
e—2 — 87, (14 — 4| —8).
Using all these results and the fact that Py(n) = 0 if
n < 0, we-are able to write down our formula as
nl(Ay, A), 1] = Pp(52; + 34, — )
—Pp(8h + 3% —1—=1)
—Pp(54 +24,—1 =)
+PD(}‘1 +212—5—'1)
+ Pp(ddy + A —3 1))
— Pp(idy — Al — 8 — ),
and the first few values of P, are as follows:

n0 1 23 45 6 7 8-
Ppm:1 1 2 3 5 7 10 13

18- -.
Having done all this preliminary work, we now find
it easy to decompose an arbitrary irreducible G-
module with respect to 4;. Consider, e.g., the
Gy-module of highest weight A = (1, 1) and dimen-
sion 64. Our formula becomes

nl(1,1), 1] = Pp(8 — 1) — 2P,(6 — 1) + Pp(2 — I).

The result is
I=0 1

2 3 45 6 7 8,
nf(1,1),1=0 0 1 1 1 1 0 1 1,
in agreement with Ref. 8, p. 147, where the irreducible
representations of G, are labeled by (4, + 4,, 4,).

As a second example, we take the chain 4; © 4; @
A, (SU,> SO, in group theoretical notations). If
{hy, e, f;, i =1,2,3}is a set of canonical generators
of 4;, we denote the elements A of H* by®

[}'1 }~2 As 0] = [A(hl + hz + ha)A(hz + hs)A(hs)O]-

In this notation we have that 6, = 3, 2, 1, 0], and, if
we define [u, uy ys 4]l = A + 04, we find that the
Weyl group acts by permutations on the indices of the
u’s.
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For every permutation (P, , Py, P3, Py)of (1, 2, 3, 4)
we have a possibility for (A + é,)S, namely
lp, = #pys pp, = fp,s B, — Hp,> 0L

In order to satisfy the relations between the positive
elements of H* and J* (see Lemma 1), we choose the
canonical elements of J, the Cartan subalgebra of
A, ® Ay, as

hl + 2h2 + h3
and we denote the elements M of J* as
(my, my) = (M(hy + 2hy + hy), M(hy + hy)),

so that the restriction of an element A of H* to J
becomes

and A, + hg,

(h+ 2o — 4g, 4 — Ay + 49).
The sets B and D are
B = {(2» 2)a (2, 0)7 (29 O)a (2; _2)9 (05 2)’ (Oa 2)}7
D= {(25 2)7 (Za 0)7 (2, _2)9 (0’ 2)}>

and we have that d; = (4, 2).
Clearly, the dimension factor is always equal to 1,
so that our formula becomes

N{[2,2,4501, (m;, m,)]
= g("l)PPD((HP, + up, — Up, — hp, — My — 4,

Hp, — Up, + Up, — Up, — My — 2))’
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where (—1)!"is +1 or —1 whether the permutation P
is even or odd.

We only require results for those multiplicities
N[A, M] such that M is dominant, which means that
m, and m, are not negative, and from the knowledge
of D we may conclude that only those permutations
must be taken into account for which either

bp, + pp, — fp, — pp, —4=k>0
and
Bp, = Mp, + pp, ~ pp, — 22 —k
or
pp, + pp, — pp, — pip, = 4
and

tp, ~ pp, + pp, — pp, —2 2 0.

Let us now turn to an explicit example: Consider the
regular representation of 4; with A = [2 1 1 0]. We
have that A 4+ 6, =[5 3 2 0]. The only possible
permutations satisfying the above restrictions are

(5320], [3520], {5302}, {5230],
so that the result is
N[[2 11 0}, (my, m,)]
= Pp((2 — my, 2 — my)) — Pp((—my, 4 — my))
— 2P5((2 — my, —2 — m,)).

And we get by a simple calculation the following
table.

TaBLe Al
(my, my) P2 —m,2 —m)) Py((—my, 4 — my)) Py((2 —my, =2 — my)) N
2,2) 1 0 0 1
2,0) 1 0 0 1
0,4) 1 1 0 0
0,2) 2 1 0 1
©,0) 3 1 1 0

We can easily check the relation between the dimen-
sions:
15 =73 (m, + 1)(m, + 1).
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We investigate a class of nonrelativistic, self-interacting model field theories, assuming the existence
of field and momentum operators that satisfy the canonical commutation relations (CCR’s). The large
symmetry that we assume permits us to determine explicitly all the relevant CCR representations and
Hamiltonians. For each irreducible representation there exists only one Hamiltonian, which describes
no interaction. Hence every model with interaction requires a reducible CCR representation. We expect
a nontrivial S operator to exist for many of these models. We examine how close our models can come

to relativistic theories.

1. INTRODUCTION

No models describing interacting particles and
satisfying all the Wightman axioms are known at the
present time. Recently Glimm and Jaffe constructed
a model that fulfills many of the axioms but violates a
fundamental one: Their space has one dimension,
not three. There is not much hope that this short-
coming can be overcome with their techniques. To
get a better insight into the difficulties and to find the
best approach to our goal of finding realistic theories
of interacting fields, it is imperative to look also for
interacting models in three space dimensions that
satisfy some of the Wightman axioms. This paper is
a contribution to this program.!

We start by writing down a set of basic assumptions
containing a symmetry requirement that we illustrate
before by considering a class of classical Hamiltonians.
This symmetry is the only manifestly unrealistic as-
sumption that we shall make. It permits us to find
all models that satisfy the assumptions, and this is so
even though our list of axioms is much shorter than
Wightman’s. The solutions are found by mathematical
techniques that avoid boxes, momentum space
cutoffs, and divergencies. They are simple compared
to the sophisticated ones employed by Glimm and
Jaffe in the construction of their model.

This paper is based on work by Klauder on “rota-
tionally symmetric” models.*?® It avoids a number of
their unphysical features while preserving the possi-
bility of deriving strong and explicit results by simple
methods. Rotationally symmetric models have Hamil-
tonians with a discrete spectrum only (leading to a
trivial § matrix) and with interactions involving the
relation between the values of the field at points with
equal time, yet arbitrarily large spatial separation.
Our models will not show these undesirable features.

The noninteracting ones among our models are
similar to some that have been considered in statistical
mechanics.*®

In Sec. 2, after stating the basic assumptions, we
give our main results, grouped into two theorems.
We discuss their physical interpretation and a special
model, which shows how close solutions satisfying our
assumptions can come to realistic theories. Sections
3 and 4 are devoted to the proofs of the two theorems.

2. FORMULATION OF THE PROBLEM,
SUMMARY AND DISCUSSION OF
THE RESULTS

A. The Classical Models

We want to find the quantum theories corresponding
in some sense to the classical theories with Hamil-
tonians of the form

H(f, &) = (L) + Vilgi, gD})s ey

where the classical field g and momentum f are
elements of some linear manifold, which we shall
finally choose as L2(R;), the space of real-valued
square-integrable functions with arguments in the
3-dimensional Euclidean space R;. (f, f) denotes the
scalar product in L2(R;). V depends on infinitely many
arguments, labeled by two triples of integers, i,
i€Z;. We have

(hi, by) = f WG+ 9hG + x) dx, K, h e IXRY),
@

where ¢ denotes the integration over the unit cube
whose center is at the origin of a Cartesian coordinate

system in R; and whose edges are parallel to the
coordinate axes.

As an illustration, consider how close such a
Hamiltonian can be to the one for the relativistic
scalar field with quartic self-interaction,

H(f g) =} f dx[f*x) + (Vg)(x)
+ mg(%) + 2800 ()
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We have to approximate (Vg)(x) by (g(x + ¢,) — g(x),
g(x 4 €;) — g(x), g(x + e3) — g(x)), where e, is a
unit vector parallel to the ith coordinate axis. Choos-
ing a very small length unit, we should get a good
approximation:

H(f, 8)
- %[(f,f) + 2(; (81238 — Giver — Bivey — gma))

+ e g) + 13 (& gi)z]. @

Notice that the interaction is no longer local, but, by
choosing a length unit of 1071 cm, relations between
the values of the field g at points more than ,/3x
1071 cm apart will have no effect, in agreement with
experiment. Later I shall return to this example.

We denote by I’ the group of real linear trans-
formations T that satisfy H(f,g) = H(TIf, Tg) for
all H of the form (1). T’ does not contain transla-
tions. In agreement with our division of space into
cubes, we content ourselves with invariance of H
under the group T of “lattice” translations, whose
elements T,, n € Z;, are defined by

SO = TNHx+n),

This requires
V{(gi’ gi)} = V{((Tng)i’ (Tng)l)} for all n EZa- (5)

If we restrict the set of H(f, g) by imposing (5), then
H(f, g) = H(Tf, Tg) will remain true for Te T =
I ®TI". H(f g is also invariant under ‘‘time
reversal,” i.e., under the replacement f — —f, g — g.

B. The Basic Assumptions

1. Cyclic Representations of the Canonical
Commutation Relations

For all fe L%(R,), there exist two self-adjoint
operators ¢(f) and =(f) acting on a separable
Hilbert space $ with positive-definite metric and
satisfying

$(ef) = cb(f),

such that
ULf, g] = exp {il$(f) — m()]}

nl(cf) = en(f), forall ceR, (6)

)]

fulfills

ULf, g'1ULS, gl = exp (3(f'. ) — (&', )1}
xUlf"+f,g +gl (8

There exists a vector ®, € 9, ||Py]| = 1, such that the
set o of vectors

®[f, gl = ULf, g%

HANS GRIMMER

is total, i.e., the finite linear combinations of vectors
in o are dense in §.

Since the U[f, g] are unitary, no domain questions
arise in (8), which is the Weyl form of the CCR’s. One
easily deduces from (8) the Heisenberg form of the
CCR’s, [¢(f), n(g)] = i(f,g). We shall avoid the
use of $(x), which can formally be introduced by
writing  ¢(f) = § $(x)f(x) dx, because only the
smeared quantities ¢(f) and =(g) are operators, a
term that we shall reserve for densely defined linear
transformations. The last assumption does not imply
that every bounded operator that commutes with all
the U[f, g] is a multiple of the identity; i.e., besides
the irreducible representations of the CCR’s, some
reducible ones are also cyclic.

2. Existence and Uniqueness of an Invariant Vector
For all T € T there exists a unitary transformation
U[T] with the property

UITIOLf, g] = D[IF, Tgl, ©)

and there exists an antiunitary transformation J such
that

IO[f, gl = O[~f, g). (10)

Up to a constant, there is only one vector that is
invariant under all the U[T] with Te X',

3. Properties of the Hamiltonian

There exists a self-adjoint operator J& > 0 such that
under suitable domain conditions

[U[TL,¥]=0, forall TeZ, (11)
and
[$(/f), ] = im(f). (12)
Up to a constant,
X0 =0 (13)

has a unique solution.

Equation (11) expresses the assumed symmetry of
X, and Eq. (12) was gained by the usual replacement
of the Poisson brackets of the classical theory by
commutators. The ground state of J€, which we
introduced in (13), coincides with the vacuum state @y

Proof: 0 = X® = U[T}KP® = XU[T]1P. Hence
Ul[T]® = «(T)?,

where «(T) is a complex number. Equation (7)
requires U[T|U[T'] = U[TT’']. The «(T) form there-
fore a 1-dimensional representation of I’. However,
T’ has only the trivial I-dimensional representation.
According to the last of the assumptions in sub-
section 2B2, this implies ® = c®,.
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The above axioms suffice to determine all solutions
without too much difficulty. Instead of adding other,
physically motivated assumptions, we shall first search
for the solutions and then single out special cases
with additional welcome properties.

C. The Main Results

The first theorem deals with the vacuum expectation
value of U[f, gl, (@o, UL, gl®) = (@, O[f. gD):
which we shall call the reproducing kernel. It deter-
mines (®[f’, g'], @[S, g]) because of (8). For f(x) €
L*(Ry), we define a partial Fourier transform f(x, k)
by

fx+D= fdef(x, k)e™, (14)

where xec, 1€Zy, f, =7 7 f7,, and dk =
(2m)-3 dk.

Theorem 1: For a solution of assumptions 1 and 2
(Sec. 2B), it is necessary and sufficient that

(@0, 0L, g])
= exp (—4 fde [iteaoma0 1765, o

+ m(k) |§(x, k)m), (15)

where® C1 < m(k) =m(—k) < Candl < &k) =
£(—k) < C for some constant C. Two CCR represen-
tations are equivalent if and only if their corresponding
pairs {m(k), £(k)} are equal. The representation is
irreducible if £(k) = 1 and reducible otherwise.

The second theorem deals with the Hamiltonian.
I have found that, for the irreducible representations,
there exists one and only one J€ satisfying assumptions
3 (Sec. 2B); for the reducible ones, there are infinitely
many. In general, an equivalence class of representa-
tions will therefore not uniquely determine the func-
tional (®[f’, g'], KX®[f, g]). For its form, I have
derived only a necessary and a sufficient condition,
which do not coincide. In formulating the results, we
shall make use of the following abbreviations:

Rk, h(k)) =£dxﬁ'*(x, k)A(x, k) (16)

and

Gix, k) = 3mE)E®) — 1K)} s, K).

Notice that G(x, k) = 0 for irreducible representations.

Theorem 2: The o matrix elements of the Hamilto-
nians J belonging to a reproducing kernel (15) and
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satisfying assumptions 3 have the form

(O[f', &'}, XO[f, gD
= }(@[f", &'l OLf. D)

x ( f (FK) — imOZ (k). Fk) — im(ZK)
D

+ 260 K), G)] dk + F{G'K), G(k»})

17
with
F{(G'(K), GK))}
=3 2(11 [, [ ax@ . o)
a=2 n!\iz1 JDJD

* b(kl/’ | ST k;w k"), (18)
k. k,)
5Ky, kln)

bky, kg, oo,

= b*(k,, k], - (19)

= bk, Ky, e, k) - 2 S a(zwl + 3K - k)
i=1

leZy
(20)
and
e(k) > 0 forall k with &(k) > 1.

I can prove that such X exist if e(k) < C and if

FIG®), G0} = 5 b | [ s dpideai
x exp [IM(k{ — k)I(G'(K}). G(ky)

x f ABRBH K] + K — ky)
D
X (C'(kp), Glki + K — k) (1)

with |8(k)| < C and 0 < by, = b_y < C for some C.

The necessary conditions above do not ensure
J > 0. On the other hand, it can easily be shown
that we may have terms of higher than fourth order in
G’ and G.

Given a classical Hamiltonian H(f, g), one usually
replaces f and g by operators 7 and ¢ satisfying the
CCR’s and imposes normal ordering. We shall call
this prescription the correspondence principle (CP).

Then’
(@[f. gl, XD[f, g]) = H(f, &)

An argument due to Araki’ shows that, for reducible
representations, the Hamiltonians of Theorem 2
cannot be constructed as functions of ¢ and = alone.
The CP gives JC expressed in terms of ¢ and =, thus

22)
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restricting us to the rather trivial irreducible repre-
sentations. We abandon therefore the CP despite its
important role in the historical development of quan-
tum mechanics. That the CP is often a too strong
requirement is indicated also by the work of Arens
and Babbitt.? Our basic assumptions show that we
maintain the connection between commutators and
Poisson brackets of ¢ and = and of ¢ and J. We
maintain also (22). The right side of (17) has, for
diagonal matrix elements, the form

HOALN + VEE), g,

which is equivalent to the right side of (1). The
restriction (20) ensures that (5) is satisfied. Not all
classical theories satisfying (1) and (5) have a quantum
counterpart that fulfills assumptions 1-3 because
these assumptions lead to further properties of V,
e.g., ¥V = V* We shall not investigate further the
relation between classical and corresponding quantum
theories. This could be done along the lines described
by Klauder in an article on the weak correspondence
principle (WCP).? The relation (22) explains why, for
the smearing functions of the field (and momentum)
operators, we found it convenient to use the same
letters f (and g) as for the classical momentum (and
field).

23)

D. The Two-Point Function
If J¢ has the form (17) with F = 0, one finds

©@[f", '), e *OLf; g])
= N'N exp( dk 'S emaW(i), ﬁa(k»), (24)
D

o=—,+
where

N' = ((I)[f’s g,]’ (DO)’ N = ((DO’ (D[f’ g]),
my (k) = 3(m(k) + e(k) £ {[m(k) + e(k)]*
— 4mK)e(k)E1(K)), (25

ha(x, k) = [1p.0mz 0PRLAx, k) — im (K)E(x, )],
(26)

and

po(k) = £m (K)[m., (k) — m_(K)]™*

X [1 — &RmKm @] 27

We use this result to calculate the two-point function

(@0, $(f' ' + DS, 1)De) = (Do, (e H(f)Dy)
= ((DO: ¢(fl’ l)d)(f)(bo),
(28)
where

$(f, 1) = TP E. (29)
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Setting g = g’ = 0 and equating terms that are linear
in f* and f, we conclude from (24)

(Do, $(f Ve Hh(£)Dy)
= Dcik S bpm K)e *mM(f(k), f(k)). (30)

a=—,+
This holds even if F # 0 because F does not affect the
two-point function. To bring (30) into a more familiar
form, we formally calculate it for f'(x") = é(x" — x)
and f(x") = 0(x’ — y):

O $(x, )$(y) |0)
= ((DO’ ¢(x9 t)¢(Y)(D0)

=f‘ikeik(x—y) z+%pa(k)ma—l(k)e-~itma(k)' (31)

Here the integration extends over all of R;; p,(k) and
m,(k) have been extended to functions with period
D defined for all k € R;. In the case of an irreducible
representation of the CCR’s, (31) reduces to

O g, 00 10) = [ B Qe

If we replaced m(k), which is periodic in k;, k;, and
ks, by o, = (m? + |Kk|2)}, we would get the two-point
function of a relativistic free field.

E. Physical Interpretation

The way in which k and m_ (k) enter (31) allows us
to consider them as momentum and energy. Consider
a state with definite energy and a definite momentum
k,. Two such states with different energies m..(k)
are created by the field with relative strengths
p+(Kg) > 0and 0 < p_(ko) =1 — p, (ko) if &(kg) > 1,
but only one is created if £(k,) = 1. One can write

(O[f", &'}, PLf, gD
= NN exp ( | i 0. .00) + (0. B o))
(32)
As we shall discuss later in more detail, this implies

that the abstract Hilbert space $ can be realized as
follows:

$=D8%.,
n=0

where §, is the symmetrized direct product of n
factors 9,; 9o = Cis spanned by ®,. The component
of D[f, g] in $, is N(h,(x,k) ® h_(x, k)). The two-
point function, (¢(f’, 1)@, ¢(f)P), is the scalar
product of two vectors in $,. We can consider 9,
as the n-particle subspace of $. Our models describe
two kinds of particle for those values of k for which
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&(k) > 1. A wavefunction describing two or more
particles will be left invariant if we exchange simul-
taneously the coordinates and the labels indicating
the type of any two particles.

A problem of great interest, which is still under
investigation, concerns the S operator. We write JC =
3 + U, where ¥, is the operator whose ¢ matrix
elements are given by (17) with F = 0. Note that X,
and U act in the same Hilbert space as JC. Therefore,
we may try to define

S = lim lim ¢¥nemiKugifimyifots
t1o+w g2~
Preliminary results indicate that for many nonzero
U’s the limit S exists in the strong sense, is unitary,
and describes scattering and exchange of particles.
Our models cannot describe production because J€
leaves each $, invariant.

F. A Special Model

We want to discuss the models satisfying assump-
tions 1-3 that correspond to H,(f, g) of the form (4).
Before looking at the general case, we take 1 = 0.
Then H, approximates the Hamiltonian of a relativis-
tic free field. We shall show that, as in the relativistic
case, there exists an irreducible CCR-representation
whose Hamiltonian has the required diagonal ¢ ma-
trix elements. Theorem 2 gives, for irreducible repre-
sentations,

(O[f, g, OIS, g))
=%mﬂ+L&W®@uam)

This becomes equal to (4) if we choose

m*(k) = m? + f(k)
with
f(k) = 2(3 — cos k; — cos k, — cos k),

where k,, k,, and k; are the components of k. m(k)
has the properties required in Theorem 1 if m? > 0.
For |k| « 1, we obtain

m*(k) ~ m* + [K[?,

i.e., the relativistic energy-momentum relationship.
We may take the momentum unit so large that
|k| « 1 is satisfied for all momenta in the experi-
mentally accessible range just by choosing a very
small length unit.

If we take a reducible representation, we shall
desire p,. to be independent of k and m_ (k) to have
the relativistic form for |k| < 1. In the relativistic
case, the energy is uniquely determined by the mass
and the momentum. In analogy, we require m? (k) =
m?% + f(k). Elementary calculations yield the follow-
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ing beautiful results. Theorems 1 and 2 guarantee the
existence and uniqueness of a quantum theory with
F =0 for given values m_, m,, and p, that satisfy
0<m_ <m, and 0 < p, < 1. The corresponding
classical model has the form (4) with m®* = p,m? +
p_m? and A = 0. More specifically, the quantum
theory is given by

m(k) = p.m, (k) + p_m_(k),

o(k) = m, (k) + m_(k) — m(K).
and

£(k) = m(k)e(k)[m  (Kym_(K)]™".

This result holds also for other forms of f(k),
except that the classical model will no longer have
the form (4).

Let us turn to the case of arbitrary 2. We can write

JZ(gj»gj)z =J;) L dic; i, Bk)B(G(K?), Glk,))

xL&wmwm+m—ko

x (G(ky), Gk; + k; — k),
where
B = (BmW[ER) — 1167} L.
|B(k)] < C is easily verified. Therefore, if 2> 0,
Theorem 2 ensures the existence of a quantum theory
corresponding to H,(f, g) with m(k), e(k), £(k), and
A(k) given above, and Sy = A0y -

3. THE REPRODUCING KERNEL

In this section we prove Theorem 1 as follows. We
begin by deriving some of the restrictions on the
functional (®,, ®[f, g]) that follow from our basic
assumptions. Many of the methods we use have been
suggested by Ref. 2. A theorem due to Araki, which
we shall state as Lemma 35, will help us to find further
necessary conditions, strong enough that, for each
functional that fulfills them, there exists a representa-
tion of the CCR satisfying assumptions 1 whose
reproducing kernel is equal to the functional in
question. It remains then to check whether the
assumptions 2 are satisfied by these representations.

Functional Form and Continuity of the
Reproducing Kernel
In the following we shall often label the unit cubes
by elements of Z_, the set of positive integers. (h;, k)
tells us to replace / and j by the corresponding i and j
and to apply (2).

Lemma 1: ®[f+ of’, g + Bg’] is strongly con-
tinuous in the real parameters « and f§ for all £, g, ',
and g’ in L2(R,).
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It suffices to prove continuity at « = § = 0. We
introduce the abbreviations WI[f]= U[f, 0] and
Vgl = U0, g]. Using the unitarity of the Uff, gl,
which follows from assumptions 1, we find

IDLf + o«f’, g + Bg'] — @[, gl
S MWL+ of T = WIDO||
+ (Vg + B&'] — VIgD®LS, 0]
+ |ei§(f+af’.y+ﬁg’) _ eh}(f,y)l

=T3+T2+T1.

There exists, for each givene > 0,2 0,(f, g,f'g) > 0
such that T, < 1eif |¢| + |8] < ,. We have

T, = |(V1fg'] — DVIgI®LS, O]l

Because V[cg] = e~**"@) implies that V[cg] is strongly
continuous in the real parameter c, there exists
0x(f,8,8) >0 such that T, < e if || <9,
Similarly, one shows that there exists ds(f, f') > 0
such that T3 < %e if |a| < 03, which completes the
proof of the lemma.

We shall apply this lemma to the investigation of
(@[f', g1, @[, g1). Since

(@[f", '], ®[f, gD
—_ —i%[(f'.g)—(ﬂ',f)](q)o,(D[f_fl, g - g/]), (33)
it is sufficient to consider the following:

(@, OLf, g]) = (y, O[Tf, Tg]), forall Teg,

(34)

because U[T]®, = ®,. It follows, even if we restrict
our attention to T € I', that (®,, D[f, g]) can depend
only on (f;,f), (fi» &), and (g;, &), i, j€Z,. We
write

(Do, O[f, D) = K{oyy; = (fi, f2)s
Bii = (fi> 8>

Let us prove that the reproducing kernel is continuous
in each of the arguments appearing in K. We shall
write f1, g' ~ f2, g? if there exists a T'€ I’ such that
f? = Tf'and g* = Tg'. Consider f, g and, § such that
(fi. /) = (F;.]) and (g, g,) = (&, g,) for i < j and
(fi»g) = (fi» &;) for all i and j with the exception
that one of the scalar products with carats is € larger
than the corresponding one without a carat. I shall
prove that there exist L2(R,)-functions with the
properties

I/t —f2 + lgt — g2l + If* —F21
+ 18 — 8%l < 4e

Vi = (&> &)}
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and
fe~figh fAge~ite fLé~ie

It follows from Lemma 1 that (®,, ® f, £]) comes as
close to (@,, ®[f, g]) as we like if we choose € > 0
small enough. If (f;, /) = (fi, f) + € for a certain
k, then we can take f2 = f'+ ek, g? =g and
fr=f1=7, gt = g = g, where h, lies in the subspace
L%(k) of L2(R,) whose elements vanish outside cell k,
(e, i) =1, and (fhy, f)) = (I, g) =0 for ieZ,.
If we insisted on the fact that f! = fand g' = g, h;
would not always exist. The situation is similar if
(&x, £x) = (8x» gv) + €% but a little more complicated
in the other cases. Take, e.g., (fk, &)= (fr-g) + €,
consider 4, h,, h, and A, such that

(e, i) = (s b)) =1, (hy, ) = 1,
(h;, ) = (h;, g;) = 0,
(., ilk) = (ﬁz: i’z) =1, (h, ﬁz) =0,
(hi, fi) = (h;, 8;) =0,
fori=k,landjeZ, .f*=f1+ ey, g* = g' + ehy,
fr=f1+ eh,, and §* = g' + ¢h, have the required
properties. The argument is similar in the remaining

cases.
The reproducing kernel has the further properties

(@, ULS, g]@)* = (@,, U[f, g]®y)
= (0, U[—f, —g]®y)

(D, ULS, g10o)* = (3D, 3U[, g1Py)
= (Do, UL, g]Dy).

We collect the results in the following.

and

Lemma 2: Every reproducing kernel (®,, ®[f, g])
satisfying the assumptions 1 and 2 has the functional
form

Koy = (fis f3)s Bis = (fi> 8> vis = (8i5 8D}

K is a continuous function in each of its arguments
and satisfies

K*a,;, Bijs visy = Klogs, Bis» vis}
= K{a;;, —Biss Vi

Determination of All Reproducing Kernels

(35)

In the beginning of this subsection, we shall con-
sider the reproducing kernel for the slightly different
set of assumptions 1’ and 2’ obtained by replacing
L2(R;) by L everywhere in 1 and 2. L is the subspace of
L2(R;) whose elements have compact support. Lemma
2 can be proved as before.
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Consider two sequences f* and g, k € Z_ , satisfying

(@) (f*,g)— 0 and (g%, /) — 0 as k — oo for all
fgeL;

(b) U[f*, g*] converges weakly to a bounded
operator A.

It follows from these two assumptions and

ULf*, g*1ULf, gl = exp [i(f*, g) — i(g", /)]
x ULf, glULf*, g*]

AU[f, g] = UL/, glA. (36)

We call 4, which depends on the sequences f* and g*,
a tag operator, [4] < 1.

In the sequel we shall repeatedly use the following
theorem?:

that

Lemma 3: Let B, be a sequencgff of uniformly
bounded operators. If lim (®, B,¥) as n — oo exists
for all ®, ¥ of a total set, the B, will converge weakly
towards an operator B and

(@, BY) = lim (D, B,Y).

n—w

This tells us that it is sufficient for establishing (b)
to prove the existence of lim (®[f’, g'], U[f*, g*] X
®[f,g]) as k— oo for all f', g’, f, g € L. Because of
(a) and (8), we only have to look at

(@, Ulf+ /" g+ £"1®)
= K{(f; +ﬂ'c’f;‘ +f7§), (fi +f?.~ g + g?),
(8: + & g + g} (7)
To define appropriate sequences, choose f’, g’ € L.
Let i1<i2<"'<im and im+1<"'<im+n be
the numbers of the cells in which f” and g’, respec-

tively, do not vanish identically, and let i, be the
coordinate of the center of cell /.. We can write

Fim) =3 piu'lx = iy
j=
and
£ =2 pjuitx — i),

where uw/(x) € L%(c) and (', u’) =4, for i, j =1,
2,-++,m+ n. Complete this set of vectors to an
orthonormal basis in L%(c). We choose the sequences

FE0) = 3 puttHx — i)
and =
g =3 puttx — 1). (38)
j=1

It is obvious that they satisfy (a), but they satisfy also
(b), since the finite number of arguments in (37) that
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do not vanish for all &£ all converge:

(@0, ULf +f*, g + £'190)
= K{(fo. /) + (f0. /D (fis 8D
+ (fis 80 (85 &) + (815 &)}
= (@, ULf; g1AD,). (39)

Because the replacement f— Tf, g — Tg does not
change the arguments in K, we get

(Do, U[—f, —glADy) = (DI, g], AD,)
= (D[Tf, Tg], AD,)
= (O[f, g], UT'[T]ADy).
Since the @[f, g] form a total set and since only
multiples of ®, are invariant under the U[T] for all
T e X, we conclude that
A(DO = aq)m (40)

where a is a number, called the tag, which can easily
be determined by putting f' = g = 0 in (39):

a = K{(fi./3), (fi, 8D (&} g7)}-
Using (39) again, we find

K{(fi. ) + (f1. 0D, (s> 8))
+ ([ g9 (8:» 89) + (g1, 85}
= K{(f;. £ (fi» &8s (2:> 83)}
X K{(f1,./): (fi> £3): (86> 8D}
By a lengthy but elementary argument, one shows!!

first that K is always positive and then, by making
use of (35), that

K{(ﬁ 9fj); (f;’ gj)’ (gz'a g:)}
= K{(./z’fi)’ (gi’ g:)}

= exp (— 3 Ao frf2) + Conln: gm),

with4,, =4,, =4y andC, =C, =C* . So
far, we have exploited our assumptions for Te I’
only. Using (34) also for T € X" and labeling the cubes
by the coordinates of their centers, we find

K{(ﬁ’f]‘)’ (gl’ gi)}

= exp (_z [Am(f;l’fm+n) + Cm(gn’ gm—(—n)])v (41)
with

An=A_n= A% and C,=C_, = C*.

S Au(fysfutn) =0 for all feL because K < 1.
Therefore, Y’ Ap ,cmc, > O for each sequence {c,|n€
Zy, ¢, = 0 for all but a finite set of m € Z;}. Hence,
we can apply the following variant of Bochner’s
theorem.
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Lemma 4%2: If 3 B, .cxc, > 0 for each sequence
{ca| nE€Z;, ¢, = 0 for all but a finite set of n € Zy},
then By = BY, |B,] < B, for n € Z,, and the B, are
the Fourier coefficients of some positive measure on
D: B, can be written as a Riemann-Stieltjes integral,

B = f du(x)e™,
D
where [}, du(x) is finite.

It follows that the reproducing kernel must have the
form

exp (= [ 17097000 dutt) + (210, 200 b))
(42)

Using (33), we see that this gives for (®[f', 2],
D[f, g]) the form

K(f'.¢:f 8
— N'Nexp (——i% fD AKI(F(K), §(K)) — (g'<k),f<k))1)

X exp (z fnuf'(k),f(k» du()

+ @), 51 dv(k)l) . 43)

To see under what conditions this is, in fact, equal
to (@[f',g'],®[f,gl) in a theory satisfying our
assumptions, we shall make use of a theorem due to
Araki,’® which can be stated as follows:

Lemma 5: The necessary and sufficient condition
that a functional K(0,0;f, g), f, ge L for LX(R)],
equal (@, D[, g]) of a theory satisfying (1)’ [or (1)]
is that, for all f;, g, € L [or L2(R,)],

K(0,0;f,g)* = K(0,0;, —f, —g), K(0,0;0,0)=1,

K(0, 0; sfy + f2, tg; + &) is separately continuous in
s, t, and

n

2 cre;K(fis g S5 8) 20

i,i=1

for all integers # and for all sets of complex numbers
¢;, where

K(fis 85 f55 &) = exp{—i4[(f:, &) — (&, /1
X K@©,0;f; — fi,8; — 8-
Expression (42) satisfies the first three conditions.

For a large class of u(k), »(k), it will also satisfy the
last one.
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We shall now return to our original assumptions.
If o is total in $, the set o, consisting of the @[f, g]
with f, g € L will be total in some subspace $; < 9.
Because all the other assumptions 1 and 2 imply the
corresponding assumptions 1’ and 2, the restrictions
we have found for the reproducing kernel will also
apply if we use 1 and 2. It remains to find the addi-
tional restrictions that have to be imposed on u(k)
and »(k).

The requirement that K(0, 0; sf, 1g) be separately
continuous in s and ¢ for all f, g € L2(R,) requires that
the exponent which appears in (42) be finite for all
f> g € LA(R,). This implies that

[ duwo [ax 17 w08 < e k[ ax 1765 10

for some C € R and for all fe L%(R,). We can apply
the Radon-Nikodym theorem! because for any
F(k) > 0 in L1(D) there exists f'€ L2(R,) such that

F(k) = f dx | f(x, k)%

The theorem states that du(k) = A(k)dk, where
A(k) is positive and bounded. A similar result holds
for dv(k) = C(k) dk.

The first three conditions of Lemma 5 are now
satisfied for all f, g € L2(R,). The fourth one is easy to
discuss in this case. Putting A(k) = in(k) and C(k) =
Im(k), we can write (43) as

K g'ifi0) = NN oxp (4 chik[n(k)(f%k),f(k))
+ mE®), §K) — (7K, 5)
+ i(g“'(k)f(k»])

and the fourth condition as

N

SL S (NN N4 2 0
1

n n!m‘—-—

with
Ay=1 chk[n(k)(ﬁ(k),ﬁ(k)) + mANE ), §,(K))
), £ + iE®), FED]

If two Hermitian matrices A and B are positive semi-
definite, then the matrix C, whose matrix elements are
C;; = A;B;; in some fixed orthonormal basis, is also
positive semidefinite.’ The assumptions of Lemma 5
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are therefore satisfied if £ > 0, where

N
T =3 (@N)eN )y

7,j=1

= fdeJ;dx
3 aNL2mEAx K) + mk)g(x, k)]

2

2
X

+ [n(K)m(k) — 1]

3 N [2m)] (%, k)

This shows that X > 0 is satisfied if m(k)n(k) > 1.
On the other hand, it is not difficult to prove that the
fourth condition is violated if n(k)m(k) > 1 does not
hold. Because there exists C such that m(k) < C and
nk) < C, it follows that C' < m(k) < C and
1 < &(k) < C?, where &(k) = m(K)n(k).

We have shown that the reproducing kernel of a
theory satisfying 1 and 2 has necessarily the form
given in Theorem 1. To complete its proof, it remains
to verify that the assumptions 2 and the reducibility
and equivalence properties are satisfied.

Verification of the Required Properties

We can write
(@[f, g’ PIfs gD
= N'N exp (LJk f Jx[ﬁ;*(x, k)ﬁl(x, k)

+ Ir0 K)(x, k)]), (@4)

where

Fy(x, ) = 2m(R)] 7 (x, k) — im(K)3(x, K)],
ho(x, k) = [2m0T (0 f(x, K),
(k) = &k) — 1.

Because of (9), it follows from this that

(@', &', UITI®[f, 2]
= (UITM®LSf, g'], LS, g]), (46)

which can hold only if U[T] is linear. Equation (9)
determines therefore how U[T] acts on a dense set in
9, i.e., U[T] is an operator. Equation (46) tells us
that UT[T] = U[T-'] and (9) that

O[f, g] = UITWUITI®[f, g] = UITIUIT1®[f, gl.

Hence UT[T)U[T] = U[T)U"[T] = 1. One shows in
very much the same way that (10) defines an anti-
unitary operator J.

Let us show that only multiples of @, are invariant
under the U[T] for all T € T'. We expand f € L2(R,)

(45)
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in terms of the orthonormal functions u(x) that we
used in (38):

f60 =33 pul(x = i),
Define T, € T’ by ’

@0 = 3 (Sphawtx =D+ 3 pix—1).

i =T+

Calculating the quantities (®[f', g'], U[T:]®[/, gD,
we find that they converge towards (®[f”, g'], @) X
(®y, O[f, g]) because T, converges weakly to zero
for k — oo. By Lemma 3, we have

AY) = (A, uirJv) — (A, D) (Dy, )

for arbitrary A € § and ¥V invariant under all the
U[T,]. Therefore V' = (®,, VD,

Next we shall prove that the representation of the
CCR is irreducible if £(k) = 1. Define

F(x, k) = m (k) f(x, k)
and
G(x, k) = m¥(k)g(x, k).

The sets of all /(x, k) and of all F(x, k) coincide. If the
Ulf, gl satisfy 1, the Uy[F, G], defined by U,{F, G] =
UL, gl, will fulfill 1, too. Equation (15) yields

@y, U[F, G1y)
= exp (—1 fpo?k f (e | Pix W + 1601 1011

For &(k) =1, this becomes e il(F.-FIHG.M1  the
reproducing kernel of the Fock representation.!®
The groups of all Uy[F, G] and of all the Uy[f; g] for
the Fock representation must therefore be isomorphic.
However, the sets of all U[f, g] and of all Uy[F, G]
are the same. Hence, every bounded operator that
commutes with all the U[f, g] is a multiple of the
identity. This is what irreducibility means. If (k) 3 1,
the representation will be reducible.

The proof that two representations with the same
reproducing kernel are equivalent has been given by
Naimark.}” To show that two representations with
different reproducing kernels are inequivalent, we
use the tag operators. By (36) and (40) we have
AULS, g1®, = UL, 14D, = aULS, gl®, for all /, g €
L. Therefore 4 = al on ;. Assume there exists a
unitary operator V such that

U'lf. gl = VUI[f, glv™" forall f, geL%Rs).

The existence of a weak limit 4 for U[f*, g*] implies
that the U’[f*, g*] converge weakly towards an
operator A’ in the image of §; under V and that

A =VAV1=q,
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Looking at

2 = exp ( 3 fpcik[s(k)m-l(kxf(k),f(k»
+ m(k)EK), g(k»]),

we recognize that it will always be possible to find f,
g € L such that a and 4’ are different unless m(k) =
m'(k) and é(k) = £'(k).

4. THE HAMILTONIAN
Exponential Hilbert Space
Consider (44) and (45). It is convenient to put
h(x,K) = h(x, k), hy(x,k) = k(x,k + (27, 0, 0))

and to define a domain D’ by ke D" if ke D or if
(k — (27, 0,0)) € Dand &k — (2w, 0, 0)) > 1. Hence

OUf' ¢ 017 gD = N'N exp ( [ dkor 0, ).
47)

This suggests a realization of $. We introduce the
abbreviation b for the Hilbert space L2(c, D) with
elements ¢(x,k). Call 9, the symmetrized direct
product of n factors ), and let

n=0

% is called the exponential space of h.® For ¢, y € b,
we have

e = é ) Hedred

and (e?, e¥) = e'®¥), § is realizable as a subspace of
$, 9 < 9, if we put
®[f, g] = Net.

We claim $ = $. It is not difficult to see that the
vectors of the form (®A)" span $,. It remains to
prove that (®h)»ec $ for all n, which we do by
induction. @, spans H,. We have

lim s~"(n 1)} (N"(I)[sf, sg] — %:al(m !)‘%@sh)m)

0
= (®h)™
If the sequence , converges weakly to peb,
we have forall ¢ e b

(e?, e¥") = glown) _, oldw)

Since the e? span $§, this implies that the e¥» converge
weakly to e¥ € H.
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Operators that Commute with the U[T]
for TeZI or TeX

Using the realization of § that we have just intro-
duced, we shall now consider classes of operators of
which the Hamiltonians are special cases. From

(L. g'l, VITI®[f, g) = N'N 3 (ny ™K', Th)",

it follows that each $,, is invariant under U[T] for all
Ted,

wn=§mm.

The representations U,[T'] are disjoint. By this we
mean that, for p 5 ¢, no representation of I’ in a
subspace of $, can be equivalent to a representation
in a subspace of $; i.e., PU,[TIP = VQU,[T]QV!
for all Te X', where P and Q are projections and V is
unitary, implies P = Q = 0.

Proof?: Consider a sequence T,, T, €T, that
converges weakly to cl. To see that such sequences
exist we choose an orthonormal basis in L3(c). The
matrix shown in Fig. 1 determines how T, acts in
L*c) and, because elements of I’ act similarly in
each cube, how it acts in L2(R;). We have

(¢%, UIT,Je") = 3 (n))'(k/, T,.h)" — (", e™).

Lemma 3 states that U[T,] converges weakly to
w_o €I, where I, is the identity operator in $,,.
Pe?] P = VQciI,QV-1 holds for p # q and |¢f 7 1
onlyif P=Q = 0.
The set of all bounded operators that commute
with U[T] for all T€ ¥ is called the commutator of
the U[T] and is written as {U[X]}".

c -s
c -s
. m rows
c -s
s c
s c
s c
e e
c -s
m columns
c -$
c
s [
s c

FiG. 1. The matrix determining 7T, . ¢ stands for cos 8 and
s for sin 6.
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Disjointness implies that B e {U[T']}’ has the
structure

B=0DR,.

n=0

9, can be considered as a direct integral:

@ -
5= diow.

Because each Hilbert space h(k) carries an equivalent
irreducible representation of T’, $B,4(x, k) must have
the form

[B.h(x, K)](x', k') = 6(x' — x)b(K', K)A(x, k),
which we abbreviate to
[B,A(x, K)IK') = b(K', K)A(x, k).

b(k', k) must be understood in the sense of distribu-
tions, e.g., to B = I corresponds b(k’, k) = d(k’ — k).
B, acts as follows?:

(ﬂsn 1T fitx, k,-)) &, K

= b(k{’ kl’ T klns kn) ]._.[ E(xi’ ki)'
i=1

Therefore
(@Lf", g'], BOLS; g])
= NNS (I || dwidugi, R

X b(ky, ki, -5 ky, k). (48)
We may require
b(kla 1:“ k)—b(k“, 11"' ’ 1na ,”)
for all permutations i;, -+, i, of 1,---, n without

restricting the generality. A straightforward calcula-
tion shows that for B e {U[T]}', the b must satisfy
(20); (19) is fulfilled for symmetric B.

Construction of Hamiltonians

In this subsection we shall prove Theorem 2,
beginning with the part that gives necessary conditions.
The sufficient conditions will be verified by construct-
ing the operators in question first for irreducible and
then for reducible CCR representations.

We could replace &, and &, in the preceding dis-
cussions of this section by

A, (x, k) = h(x, k) cos 0(k) — hy(x, k) sin 0(k),
Hy(x, k) = hy(x, k) sin (k) + Ay(x, k) cos 6(k) (49)
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for any choice of 6(k) with sin 6(k) = 0 or cos 6(k) =
0if &(k) = 1, because

3 (R, R = 3 @10, A(k))

The following choice of 6(k) will prove useful for the
construction of Hamiltonians:

sin (k) = &¥(k),

cos (k) = [£(k) — 1% k) = ().
It leads to
d(x, k) = d(x, k) = —ilim)1HK)z(x, k)
and
d(x,k + (2, 0, 0)
= dy(x, k) = [2mK)EK)]H

x [EK)f(x, k) —
Since e* € {U[Z]}’, we may put
@[, gl e olfe)
= N'N A{(d'(K'), d(k))} 3
= (O[f', g'], DL, ghC{(d'(K'), d(k))}.
If ®@[f, g] belongs to the domain where X is defined,
we shall therefore be able to write
@118, 0L/, g) o
= (P[f", g'], PIf, gDG{(d (X)), d(K))}.

We use an adaptation of the method used in Ref. 2
to derive restrictions on G that follow from (12). Com-
puting 0(®[f", g'l, ®[f, g + 7e])/0r at 7 = 0, where
ee LX(R,) and 7 € R, we find

= @[f", ¢'l, 7L, &)
— }OLf", g, OLf, &) f K[m()

X [LAEK), di(k) + dy (k)
+ EHKR)@(K), dy(k) + dik))].
Because of (12) we have

imK)g(x, V)], (50)

a ’ —irgle irg(e
M =2 @ g) NS AL, g]), .

Calculating this and comparing the two expressions
for M, one finds

(@Lf, g'), HOLS, gD
= @[S, '], DI, gD

x ( fp(ﬂk) — im(0FK), (k) — im()Z(k)) dk

+ E{&®), a‘n(k))}). 1)
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The domain conditions that validate the above
calculations and guarantee that (12) holds will be
satisfied for all 3 that we shall construct. X0, =0
implies

E{(d/(K), d,(K) = 0} = 0.
Using [U[T], ] = 0 for all Te I, we find

LE{(di(K), d(k))}

=n_1n!(r f f dx, dk(di(K), dl(k.)))

X b(klakl’” n’k)
We complete the proof of the necessary conditions
given in Theorem 2 by remarking that e(k) > 0 for
all k with &(k) > 1 is necessary for a nonnegative
Hamiltonian with a unique ground state.
Next we shall construct the Hamiltonian for’ the
irreducible representations of the CCR. We define*

K'(@h)"(@h)"™"

= é m(k;) 'i®1 ﬁl(xi’ ki)'zéuﬁ2(xi k). (52)

By linearity and continuity we can extend the domain
of definition to $,,. ' is a positive bounded symmetric
operator on each 9, . We may consider it as a positive
symmetric operator on $ and extend it by the method
of Friedrichs® to a self-adjoint operator.

0lf gl = N D)t & (”)%

X z m(k ) @ h1(x1a k) ® }ZZ(Xn k)
lies in §, .

(@[f", g'), K'OLf, gD

= @17, 1. 917 gD | dm(IFEQR. R,
Similarly, one determines the ¢ matrix elements of
e~itJ€':
o[f’, g'l, D[S, g))

= (®[f, '], PIf, gD

X €xp (fpa?k(e_“’"(k) — D), ﬁl(k)))'

In the case of irreducible representations, J¢ has the
¢ matrix elements required for the Hamiltonian JC.
Equation (11) is satisfied because

UITH®h) (@h)"~? = (@Th)*(©Thy)""?,

and (12) because JX' has the ¢ matrix elements of the
form (51). That X'® =0 has only the solution
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® = ¢®, follows for irreducible representations from
(52).

There remains to construct the Hamiltonians for
reducible representations that fulfill the sufficient
conditions. Let

(e ®d ) (®dy)"™"
= z e(k ) ® dl(xu z) @ d2(xza kz)

i=p+1
with e(k) < C and e(k) > 0 for all k with £(k) > 1.
This determines, similarly as (52), a positive self-
adjoint operator on § with

(@[f", g'], X(e)D[ £, gD

= (Q[f", ¢'}, DL, g])L dke(k)((K), dy(K)).
¥ = XK' + K(e) satisfies assumptions 3. A straight-
forward calculation yields that the operator O
defined by

O(®h,)(®h_)? = (2 mk)+ 3 m

i=p41

_(k,-))

X ®/1+(Xz,k) ® h_(x;, k)

i=p+1
coincides with JC,. This result can be used to derive
(24).
To construct operators U with ¢ matrix elements

(@17, g'1,VOLS, g])
= D[S, g1, OLf, gD FUG' (K), GK))}, (53)

where F satisfies (21), it is useful to introduce smeared
“creation”” and “annihilation” operators. Let

A()(©d)"(@dy)"?
lp (O(, 1) ® d (Xz ’ kz) ® d (X,, kz)

i=p
where « € L%(R;). This determines a linear operator
with bound N? [«f on $@® = M $. and there-
fore a linear operator on J. A(«) is closable: If we
take a sequence V', such that each ¥, is in some $H
and that ¥, — 0 and A(«)¥', — ©, then ® = 0.

Indirect proof: Assume @ # 0; let [ be the smallest
integer such that the projection P, of ® on &, is
different from zero, |P,®|| =c¢ > 0. Then there
exists N such that [P A()¥,.| > ic for all n > N.
Hence [P ¥, > $c(/ + 1)~ a2 for all n, which
contradicts ¥, - 0. Because V' € $ implies A(x)¥' €
9, it follows that O = A(e))» ++ - « A(x,) is de-
fined for each vector in any £, H» < D(O). An
argument similar to the one for A(a) shows that O
is closable, too; hence OF exists. One proves then
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$ < D(O+). Hence O' = At(ay)+ ++- « AF(xy)
A(ttpsy) * -+ + A(w,) is an operator with ™ <
D(0).% Because

A@)O[f, gl = (2, G)P[f, gl,
we have, e.g.,
(D[S, g1, A+(on) AT (o)A () A ()P, g)
= (G,’ O('1)((;,a O{'2)(01'2’ G)(O(]_, G)((D[f/’ g’]’ (D[f: g])

Notice that the closure of the operator in this equation
is positive and self-adjoint because it is of the form
O+0 and O = A(a,)A(x,) is closable.?* We introduce
an orthonormal basis «,(x), n € Z; in L*(c). Parseval’s
theorem states for g’, g € L*(c) that

> f %' g (X Youlx) f dxg(x)o(x) = f dxg {(x)g(x).

For the e,(k) = ¢™, m € Z;, one has also such a
theorem. Let B,(k) = B(k)e,(k), where |B(K)| < C.

We have
z ((D[f,a g/:la A+(an1ﬂm+M)A+(°(ng.Bm)

1
32 bm
M m,ny,ng

X A0, Bm) Ao, B ) PLS, 81
= }(O[f", g'}, DS, gD

x Sow [ [ B dpIDB UG k), Gl

X f f Ay daBp)B* )G (kD). Glks))
D JD

x exp {i[m(k] + k; — k; — ky) + M(k{ — k,)I}.
This coincides with the right side of (53). If by, =
C > 0 for all M, it becomes
1C(Q[f, g'), DLf g]) Ltfkl 1Bk)I* (G'(ky), G(ky))

x f dk, (k) (G'(ky), Glky)
D

= C@[f", g'l, BE(BI LS, g].

LC[X(pIH is positive and self-adjoint because
JE(|81?) is self-adjoint, and it has ¢ in its domain. To
prove the existence of U for the sequence by men-
tioned in Theorem 2, we shall make use of the follow-
ing lemma, which is a weakened form of a theorem
given by Kato.®

Lemma 6: Let O, be a nondecreasing sequence of
positive self-adjoint operators that is majorized by a
self-adjoint operator O,. Then there exists a positive
self-adjoint operator O with the property

(©,0%) = lim (D, 0,¥)

nN—o0

for all ® and ¥ in the domain of 9,,.
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The assumptions of this theorem are satisfied by

0o = 3CLX(BIM)
and

On = 7‘% z bMA+(anlﬂm+M)
(n)

X A+(O(nzﬁm)A(angﬂm)A(“nlﬁm+M)a

with 0 < by =b_y < C, where (n) stands for
M, m, n,, n, with M|, Im|, |n,|, |ny] < n. Because the
domains of the three positive, self-adjoint operators
¥, ¥(e), and U have a dense set in common, their
sum will be symmetric and can be extended to a self-
adjoint operator X. It is easy to verify that JC satisfies
our assumptions.
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It is shown that Kerner and Sutcliffe’s derivation leading to a unique quantum mechanical Hamiltonian
from its classical counterpart is indeed not unique. This is done by using the same method as Kerner
and Sutcliffe to derive different quantum Hamiltonians from the same classical Hamiltonian. It is also
shown that other ordering rules besides that of Born and Jordan can be derived with the same technique.

INTRODUCTION

In a recent paper' the Feynman path integral
formulation of quantum mechanics was used to
derive a rule for obtaining the quantum mechanical
Hamiltonian operator from its classical counterpart.
It is further shown that the rule of Born and Jordan
is a consequence. It is claimed that, since the derivation
is unambiguous, the ordering rule derived should
hence have a fundamental position in quantum theory.
There have been many rules proposed since the
beginnings of quantum theory, e.g., the Weyl rule,
the rule of Born and Jordan, and the symmetrization
rule. The author?? has obtained a method of gener-
ating all possible rules and has shown that no rules
can be consistently used to derive quantum operators
from their classical functions. We demonstrate below
that the derivation of Kerner and Sutcliffe does not
lead to a unique rule and indeed that their method
can be used to derive other rules.

In Feynman’s path integral formulation the
propagator K(X", X’,t" — t') is given by

g ei/hA(C)’ (1)

where > signifies summation over all paths between
X" and X' and A({) is the action calculated along a
given path. Kerner and Sutcliffe consider the case
where the time difference t” — ¢’ is infinitesimal. They
calculate the action

A=fde—Hdt @)

by taking the set of paths between X" and X" such that
X’ and X" are connected linearly with time

XII —_ XI
t” — tl

X=X+ t—=1. 3)

This relationship is used in the calculation of the
action. It is then shown that from

w(Xll’ tll) =fK(XII’ XI, t” —_ t/)w(X/’ tl) dXI (4)

follows
op(X", t

that_) =fk(X”’ Xl)w(Xl) dXI, (5)
where

k(X”z X/) = _1__ fdpﬁei/ﬂp(X"—X’) (6)

2nh
and H is the averaged Hamiltonian
o
= 1 - f H(X, p)dt. 7
— t’

Therefore,
®

where H is the quantum mechanical operator corre-
sponding to the classical Hamiltonian. Since v is
arbitrary, it is then straightforward to derive the
ordering rule between H and A which for the above
yields the rule of Born and Jordan. By taking two
examples we show that there are other k’s which
satisfy Eq. (5) and yield different quantum mechanical
operators. This relies on the freedom of choice in the
calculation of the action for infinitesimal time differ-
ences. The examples were chosen to produce the
two other well-known rules, the Weyl rule and the
symmetrization rule.

EXAMPLES

Example 1: Suppose in calculating the action we
estimate the Hamiltonian by HG(X' + X"), p). The
action is then

A= pX" — X)— (" — HHGHX'+ X"), p). (9)

By use of the momentum as a parameter to define
the set of all paths, the propagator becomes

Ay = f KX, X )p(X") dX,

K, = L dpei/h[p(X"—X')-(t"—t')H]_
27h
By expanding in powers of t” — ¢’ and using (4), we
have in the limit

ih aa—’:’ = f k(X" X)p(X', Y dXT (10)
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and

Ap(x”) = f (X", XWX, 0 dX', (1)

where now
(X7, X) = = [HOO + X0, e
.

(12)

Equations (11) and (12) [also (18) below] correspond
to Egs. (6) and (5) of Kerner and Sutcliffe’s paper. In
general, they will give different answers for the
quantum mechanical Hamiltonian operator even
though the same classical Hamiltonian is used.

If we take H in the form f(X)p*, then

ﬁtp(X”, 1)
—_ _1_ ihp(X"—X") ’ ” % ’
- f f e PG + X)X dp (13)
= (iR} f X" — X)fGX + X)) dX',  (14)
. k ZX 0 \k~1

Ap(X, 1) = (~ik)' S (")M (35) w0 a9

=0 \l/ 2! \gXx

Specializing further to the case f(X)= X™,
quantum mechanical operator becomes

A=z ') (7) g

which is the Weyl rule of ordering.

the

(16)

Example 2: Approximating the Hamiltonian by
#{H(X") + H(X")] and following the same procedure,
we have

in aa—';’ = f kX", X'yp(X') dX' a7
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with
k2(X”, X’) =f%[H(X,) + H(X”)]e"/"”(X"—X"dp. (18)

For a classical Hamiltonian of the form X™p*, this
yields

em () () smeet o

which is the rule of symmetrization.

CONCLUSION

One can find other approximations to the action
which would give other rules of ordering besides these
well-known ones. The whole set of rules given in
Ref. 2 can be so derived. The reason for this vast
choice is that the value of the Hamiltonian between
the infinitesimally close points X’ and X" is not critical
since the limit will eventually be taken. The only
requirement is that the H(X', X", p) chosen must be
such that, when X" approaches X”, H goes to H(X', p).
It is worth noticing that, if the classical Hamiltonian
is of the form f(X) + g(p), then all the rules give the
same answer.

As is well known, the Schrodinger and Heisenberg
formulation does not force a unique H or a unique
ordering rule from the classical function. We have
shown that the Feynman formulation does not either.
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The behavior of a quantum-mechanical system with a slowly modulated oscillatory Hamiltonian is
characterized by an adiabatic theorem similar to that for a system with a slowly changing “static”
Hamiltonian. Quasiperiodic states—solutions of the instantancous Schrodinger equation with an
oscillatory Hamiltonian—play the same role as eigenfunctions of the instantaneous Hamiltonian do in an
adiabatic theorem for a nearly static Hamiltonian. As an example, the theorem is used to establish the
correct wavefunction to be used in computing the refractive index of atomic hydrogen.

1. INTRODUCTION

Consider an isolated system in a stationary state.
If an off-resonance oscillatory field is slowly turned on,
into what state does the system go? In a different
context, Noziéres and Pines! have dealt with this
question through first order in time-dependent
perturbation theory, using a particularly simple form
for the modulated field. Since the conventional
(variation-of-constants) time-dependent perturbation
theory converges rapidly only for short times, it does
not seem an appropriate tool for investigating the
behavior of the system when the field is turned on
very slowly.? Furthermore, it would be useful to have
an answer to this question which does not depend
on the exact way in which the field is turned on.

This paper is concerned with the general question
of the time development of a wavefunction for a
system whose Hamiltonian is a slowly modulated
oscillatory function of time. Separate consideration is
given to finite-basis (e.g., spin) problems and to
infinite-basis (e.g., atomic) problems. Modifications
needed to adapt the present treatment to the resonant
absorption of energy are outlined in Sec. 5.

An oscillatory Hamiltonian may depend on a
number of parameters, such as the strength, direction,
or frequency of an applied field. When the Hamil-
tonian is modulated, these parameters become
functions of time; the course of the modulation may
be described by their dependence on a single variable
o which specifies a point on the modulation path.
The effect of the modulation rate may be studied by
traversing a fixed segment of the path, say from
g =0 to ¢ =1, at a rate inversely proportional to
a time scale T,

o= T, )

and by observing the limiting behavior of the system
as T becomes large.

An oscillatory quantity is characterized by its
fundamental frequency « and the values it assumes
during one cycle of its oscillation. Thus a modulated
Hamiltonian can be written as

I = Klg; 0), (2
where ¢ is the phase

(1) =J:w’ dt'. 3)

{For convenience, complicated expressions like
w[o(t')] are abbreviated throughout this discussion.
For example, w[a(z)] is written w; w[o(z’)] is written
w’. That is, w is given the value it has at time ¢; ' is
given the value taken on by w at time ¢'. Other quan-
tities are abbreviated similarly.}

2. ADIABATIC THEOREM FOR A
FINITE-BASIS SYSTEM

Consider first a system whose description involves
only a finite basis set. If ¢ were constant, there would
be a complete set of solutions to the Schrodinger
equation (quasiperiodic states) of the “normal-mode”
form®¢ *y(g; o) exp [—i*8(o)t], where the “Bloch
state” *y satisfies the equation

(J€ — & — iwd,) *y(g; 0) = 0. @)

A modulated Hamiltonian is not exactly periodic and,
strictly speaking, has no quasiperiodic states. Over a
short period of time, however, such a Hamiltonian
may be very nearly periodic, so that it makes sense
to discuss the problem in terms of ‘“instantaneous
quasiperiodic states”’

t
kyp(g; o) exp (—if kg dt’).
0

From the totality of such states, one may select a
subset S (which might consist of only one state) to
serve as a basis for an approximate solution of the
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time-dependent Schrodinger equation. A general
time-dependent linear combination of these,

¥ =k§ékc(z) exp (—iJ:kﬁ' dt') “olg; o), (5)

is most nearly a solution of the Schrédinger equation
if the coeflicients are obtained by “solving the Schro-
dinger equation within the limited basis™ 5:

(s 0)| 3e(t) — id, [P (1)) = 0,

0<t< T, all /eS8, (6a)
t

dife= =T '3 exp (z’ [(’8/ — *§" dt’) el | a2, Fy).
keS JO

(6b)

Equation (6b) preserves the norm of (7). From (6b)
it follows that

(¥ — id)¥

t
= —iT™(1l — P)Y exp (—iﬁkfi’ dt’) k¢ 9, %, (7a)

keS8
P= Zsllw(tp; o)) (p(e; o). (7b)

The mixing coefficients vary slowly when T is long:

ld,te| < T_lkESK’w | 9, ") = 'B(p; T (8)

Theorem: Let the system be initially (+ = ¢ = 0) in
an arbitrary linear combination ¥ (0) of quasiperiodic
states belonging to S

F(0) = 3 c(0) *1(0; 0). 9)

keS

Then, when ¢ reaches 1 (r = T), the system will be in
the state P(7) as given by (5) and (6b), with an error
that vanishes as 7-! when T becomes large, provided
that, for all r € [0, T]:

(i) ¥(p; o) is continuous in both variables; w(o)
and the (o), k € S, are continuous in o;

(ii) the *y(@;06) and the auxiliary functions
¥(g; 0), k €S, defined by

[¥#(g; 0) — *6(0) — iw(0)8,]*{(p; o)
= (1 — P)d,*p, (10a)
(g + 2m; 0) = *{(p; 0), allg,  (10b)
My |*)y =0, all /eS8, (10¢)

and all their partial derivatives are continuous in both
variables. (See below.)

Since the end points of the interval are arbitrary,
this theorem amounts to the assertion that, as the
time scale becomes long, the exact solution to the
Schrédinger equation tends to W(#).
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Proof: Let
t
D) =TP(t) + T X cexp (—i f kg’ dt’) k¢, (11a)
keS 0

(Je — id)® = —iT Y exp (—ift"S’ dt’)ad("c k),
* (11b)

and let W(¢) and ®(r) be true solutions to the Schrd-
dinger equation based on Y(0) and ®(0). Then,
according to Appendix C,

—~ T -~
umn—owmsLMW—mwwm:am

and by use of the triangle inequality it follows that
(T — ¥(T)]
<773 (16 20: O + (D) 2T 1)
ke

-+j;uaa<c cnldc) (13a)

< T“IZS (llkC(O) *(0; 0l + sup "¢ DI

S@<2nm

+[ sup 1B(s 0) 293 0

+mmwmwﬂ' (13b)

It is a straightforward matter to see that the
continuity conditions advanced are indeed sufficient.
Thus |W(T) — ¥(7)|| is bounded by a constant
multiple of T7%

The existence and continuity properties of the *{
may be based on the properties of the *p themselves.
The following conditions are sufficient (but perhaps
more restrictive than necessary) to establish that the
k¢ exist, are continuous, and have continuous first
partial derivatives:

(a) w(o) and all the *&(o) are continuous and have
continuous o-derivatives,

(b) the 'y, 1 ¢S, are continuous and have contin-
uous derivatives with respect to both variables,

(c) 0,y and 0%%yp, all k€S, are continuous in
both variables,

(d) no *&(0), ke S, differs by only an integral
multiple of w from an '6(¢), / ¢ S,

(e) w(o) is never zero, for all t € [0, T).

If ¥ is expanded in terms of the 'y, /¢S, the
expansion coefficients are readily obtained; again, it
is not difficult to see where each of conditions (a)-(e)
is applied.



3300

3. ADIABATIC THEOREM FOR AN
INFINITE-BASIS SYSTEM

As discussed previously, it is not expected that an
infinite-basis system subjected to an oscillatory
perturbation will possess true quasiperiodic states.®

Nevertheless, it is generally possible to obtain oscilla-

tory functions, involving truncated perturbation
series for the Bloch states and quasi-energies, which
are good approximate solutions to the time-dependent
Schrodinger equation for an oscillatory Hamiltonian:

L
kw[L]((p; 0) — zﬂlt k'/)m(‘% 0)’
o

p0p;0) = 3 p. (o) exp (ing), (14b)
n=d4

L
kg[L](o.) — z Al kg(l)(a)

=0
(see Appendix B). A modified version of the preceding
adiabatic theorem holds for such states. For simplicity
the present treatment is restricted to a Hamiltonian

having the form

(14a)

(14¢)

2

®(p; 0) = X 28 g; 0), (15a)
=0
*9(g;0) = 3 H,9() exp (ing),  (15b)

such as appears in a treatment of a system under the
influence of nearly monochromatic radiation. It is
further assumed that Hy'® is not modulated. (These
restrictions are easily removed.)

Consider the approximate wavefunction

Pt) = 3 %c(t) exp (—if"ﬁm(a') dt’) EylLl - (16a)

keS
It turns out to be convenient to choose the “c some-
what differently from (6b):

dtk(! = — T 2 lc<k’f,0 l aa lw>%L]
1eS

X exp (i L () — (g dt’), (165)

where (*p |0, 'y)il1 is the zero-frequency Fourier
component of the overlap expression, truncated at
Lth order. Thus

[%e(p; o) — idJ¥
i
= 3% exp (_,- f kLI o) dte)(thL} _ T kL
xeS 0
{(17a)
FRILI = (Je — *6LE — i) ytE) = O(AFH), (17b)
—i gl =, Fylld — 2;3 Wy | 9, Fpikt,  (17¢)
lg

(B | BBy = 0(AFY), all j,keS. (17d)

R. H. YOUNG AND W. J. DEAL, JR.

To obtain bounds on *¢(¢) and d, *c, we regard (16b)
as a Schrodinger equation for the vector ¢(¢) whose
elements are the *c(¢):

ide = Me,
IclM = _iT~1<kw ! 8,, lw>%L]
¢
X exp (lf (k61 (6"y — HYe")] dt'). (18b)
0 -

It is possible to arrange for the *ylZl to be zero-
frequency orthonormal through Lth order [cf. Eq.

(B3)]:

(182)

<jw ' kw%L] = éik’
from which fact it follows readily that M is Hermitian
and that |c|l is conserved. Equation (16b) can again
be used to obtain bounds on d, *c; for instance,

%
Id, ¥l < [e(O)] (lzs“l”’ |2, "w>5“12) = *B(o). (19)

It will be necessary to introduce quauntities analogous
to the *{ of the preceding discussion:

L
Y p; 0) = 3 AR (g; o), (202)
I=1
B(l!
W @; 0) = Z( fé.“.n‘“(a) exp (inp),  (20b)
n=4%4
(3@ _ kg[L] — iwaq,) kZ[L] = k,[L] + kV[L]
FLLY = (AL, ¥3)

Their existence and properties will be discussed after
the modified adiabatic theorem is discussed.

Theorem: Let the system be initially in an arbitrary
linear combination ¥'(0) of the *yptLl, k € §:

F(0) = 3 *e(0) *4'7X0; 0).
%es8
Then when o reaches 1, the true state of the system,
W(T), will be approximated by ¥(T) [Egs. (16)]
according to

W@ - FMISXTH+ Y+ 2T (23)

[X, Y, and Z are constants given in (30)], provided
thats:
(i) the quantities H,(¥ %y 00 H (W[ W) g ky 01
and 9,%(,', k € S, are continuous functions of o,
(ii) o and the *&MX are continuous functions of o,
(iii) the exact solutions to the Schrédinger equation,
¥(t) and ®(r), based on the initial conditions (22)
and (24),

®©0) = F(©0) + T3 *c *1Y0; 0),
kES

(22)

(24)

have continuous total derivatives 4" and 4,9.
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Proof: Let
- _ . . ! LY . ’ 1L}
=YD+ T lkgs"c exp ( i fo el (6") dt) k§(25,)

1
(B —id)® = exp (——if tELLY(5") dt’)
keS 0
% [kc("R[L] — T leplLl _ iT"za, kC[L])
— iT%0, *c) (1], (26)
Then, according to Appendix C,

10(T) — (D)) < f I — id )P ', @7)

I¥(T) — ¥ (D)}
< W(T) — o)
+ |&(T) — ®(D)| + |D(T) - F(D (28)
< 19©0) — FO) + 1D(T) — T(D)|

+ f @ — id, )8 ar 29)

< XT' 4+ Y+ 27T, (30a)

X=3 [u"c(O) 5L, 0)
keS8
+ [c©] sup [F(F(g; 1)

0<Zep<2r

1
+ f (uc(O)n sup 113, *F(; )|

0<gp<27
+ *B(o) sup [H{Eg; a)u) da], (30b)
0<ep<2r

1

Y "—‘kZSHC(O)” vo jugz [*VIE(@; 0)|| do = O(AL™),
) (300)

1
Z=3 ) | sup R o) do = O
) (30d)

Tighter bounds which depend on T are readily
obtained.

The crucial question, of course, concerns the
existence and continuity properties of the *{{%). Con-
sider the perturbation equations for the *ylL! them-
selves:

(HO(D) . iwa¢ _ kg(ﬁ)) kw(O) =0, (313.)

(Ho(m — jwd. — k8(0)) kw(l)
L4
i
= — Je(l’) — kg(l’) 3 (l——l’! 31b
pY )iyt (31b)
These equations are Rayleigh-Schrodinger perturba-
tion theory in a Hilbert space h(4'%', B?) composed

3301

of periodic functions of the form’

B(L)

2, fnexp (ing), (32)

where the f, are elements in the Hilbert space b of
phase-independent functions conventionally used to
describe the physical system. The appropriate inner
product in this space is the zero-frequency Fourier
component of the overlap, (| ). The unperturbed
operator Hy® — iwd, is self-adjoint in this space,
and the perturbations J¢®* and ¥X® are symmetric
(assuming that Hy® is self-adjoint and the XV, [ =
1, 2, are symmetric in f)). The unperturbed eigen-
functions and eigenvalues are the *»(® and *§(,

The perturbation theory of the *yi1 is discussed
in more detail in Appendix B. Suffice it to say that the
kylLl come in families which are degenerate in
h(A4%), Bty at zeroth order (that is, that have the
same ©§(9)),

The perturbation equations for the *{iL3,

(Hoto) . lwa¢ . kg(O)) kg(o) = kx(O),
(HO(O) _ iwa¢ _ k8(0)) kC(l)

I
= kx(l) —ZZI(JG(” _ kg(l')) k{(l—l’), (33b)

(33a)

(B Iy = 0(2F™), all jeS, (33c)
kx(l) e b(Am’ B(l)) < b(A(L)a B(L)), (33d)

are of the same form as those that have recently been
discussed in connection with the adiabatic theorem
for pseudo-eigenfunctions of a nearly static Hamil-
tonian. It is safe to assume that the individual Fourier
components of the rhs of (33a) and (33b) are square
integrable through as many orders / — 1 as are pos-
sible to carry the perturbation theory; the entire rhs
then has finite norm and also satisfies the frequency
criterion for belonging to h(4F, BL)). It follows
from the discussion referred to that these equations
possess solutions through Lth order provided that the
set S contains all members of a family corresponding to
a single *&\, if it contains any one, and that none of the
numbers *§©0 — pw, AL < n < B, Jies in the
continuous spectrum of Hy\®. It is possible for there to
be solutions even if the second condition is not met.®
The more difficult investigation of the continuity
properties of the *{{X1 will not be attempted here. For
real physical cases involving the interaction of a
material system with a modulated-monochromatic
light beam, there is every reason to believe that the
provisos of the theorem are satisfied. A preliminary
investigation suggests that it should be possible to
establish these continuity properties directly on the
form and continuity properties of the Hamiltonian.
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4. COROLLARIES

The following corollaries apply to the finite-basis
case.

Corollary 1: When the conditions on the *{ are
violated at a constant number of points during the
interval [0, T), then |W(T) — W¥(7T)| vanishes as T
becomes large (although the exact manner in which
it does so may vary from case to case). The proof is
virtually identical to that of Corollary 1 in Ref. 5.

According to this corollary, adiabatic behavior is
not precluded by the presence of points where con-
dition (d) is violated and points where w goes through
zero (e.g., a point at which an oscillatory perturba-
tion is turned on). In order to insure that nonadia-
batic terms vanish at 77, it still seems necessary to
require that w not pass through zero. A corresponding
experiment might begin at zero intensity and nonzero
frequency, rather than vice versa.

Corollary 2: Suppose that the "¢, k € §, are identical
or differ by a constant multiple of w throughout the
modulation. Then the mixing coefficients *c(7) become
independent of T, with an error which vanishes as
T-! provided that the following (probably unduly
stringent) conditions hold:

(i) *p, 0,%p, and 0,2 *y, all k € S, are continuous
in both variables,

(ii) @,w is continuous in &,

(iii) w(o) is never zero.

Since an arbitrary multiple of w may be added to a
quasi-energy, with a compensating redefinition of the
corresponding Bloch function, the case of quasi-
energies differing by a multiple of w throughout the
modulation readily reduces to the case of identical
quasienergies; without loss of generality, one may
restrict consideration to the latter case.

Equation (6b) may be rewritten in the form

(h — id)e =0, (34a)

where ¢ is a vector whose components are the *¢(f) and

“h(p; 0) = —il'y | 0, %p). (34b)

The average of h(p; o) over one cycle (with ¢ held

constant) defines its zero-frequency Fourier com-

ponent hy(o), which figures in another “Schrodinger
equation”

(hy — id)f(o) = 0. (35)

A more precise statement of the corollary is that, if

£(0) = ¢(0), (36)

R. H. YOUNG AND W. J. DEAL, JR.

then ¢(7") — f(1) vanishes as T—! when T becomes
long.

The matrices h and h, are Hermitian. Thus, if
z(@; o) is defined by

z(p; 0) = —w_lﬁp[h(w; o) — hy(o)lf(o) dg’,

¢ = const, (37)

one may use the error bound in Appendix C to obtain

le(T) — 1))
< T—l(uz[sv(T); 13 + {2(0; 0)]

+ f Ib(g; o) — id,J2(e; )| da), (38a)

< T-l( sup ll(o; DIl + [2(0; 0)f

+ f sup | [h(g; 0) — 2,1y o) da). (38b)

If o passes through zero, [c(T) — f(1)| can be
shown to vanish, but not as 7-1. (See Corollary 1
above and Corollary 1 of Ref. 5.)

Corollary 3: The following simple but rather
restrictive conditions are sufficient for the validity of
the theorem and Corollary 2:

(i) the dependence of J€ and w on o is

K =X(g; ), o=, p=po),

(ii) X(p; ) and w(u) are analytic functions of
their (real-valued) arguments,

(i) (o) possesses a continuous first and piecewise
continuous second derivative, 0 < o < 1,

(iv) at no time does a *§(u), k € S, differ from an
®6(u), [ ¢ S, by an integral multiple of w,

(v) w(u) is nonzero at all times,

(vi) the *¢(T) are determined by integrating (6b).
Corollary 1 holds if conditions (4) and/or (5) are
violated at a constant number of ¢ values.

(39)

With a fixed value of u, one can solve the Schro-
dinger equation to obtain an evolution operator
U(t, 0; ). This operator is analytic in both variables
[conditions (i), (ii), and (v)].? It follows that the
¥p(@; u) and the ¥&(u) are analytic functions of their
arguments.1?

From this analyticity follow conditions (a), (b), and
(c), with the exception that 0,%*y is only piecewise
continuous. It is readily seen that this degree of
discontinuity does not prevent the *{ from satisfying
condition (ii) of the theorem. For details, see Ref. 11,
where a rather different approach is followed.
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5. DISCUSSION
The finite-basis adiabatic theorem, if its require-
ments are met, provides a complete characterization
of the behavior of a finite-basis system with a modu-
lated oscillatory Hamiltonian in the limit of slow
modulation:

(a) Quasiperiodic states whose quasi-energies differ
by a multiple of w at most a fixed number of times
during the modulation do not mix, and

(b) the mixing of quasiperiodic states whose
quasi-energies are identical throughout the modulation
depends only on the fraction of the modulation path
traversed.

In particular, when the modulation path is such that
one quasi-energy never differs from any other by an
integer multiple of w, the corresponding quasiperiodic
state becomes an exact solution of the time-dependent
Schrédinger equation (provided that the phase of the
Bloch function is appropriately chosen as a function
of 5). At intermediate time scales, the theorem can be
used to describe the way in which the states in one set
mix with one another while adiabatically not mixing
with those in another set.

The conclusions of the infinite-basis theorem must
be expressed in a somewhat different fashion. Their
major application is to the interaction of matter with
a classical radiation field; in that context, one may
not consider a variable time scale because a vector
potential of the form A (r; o) exp (ip) + A _(r; o) X
exp (—i¢) can generally satisfy Maxwell’s equations
for only one value of 7. The theorem nevertheless
establishes an ‘“‘adiabatic approximation” to the
solution of the Schrddinger equation for matter
subjected to a slowly modulated classical radiation
field. The error bound (30) contains terms of order
T, 2L+t and ALFLT, where L is the order at which
the perturbation series terminate. The first represents
deviation from adiabaticity; the second and third
result from using truncated perturbation series. When
no two 6@k € S, differ by an integer multiple of w,
the first is actually of order A/7T, rather than 771,
because the 9, *p'® may be arranged to be zero. In
applications, one must choose L on the basis of the
physical situation: that L which yields the smallest
error estimate is probably the best approximate
expression for the time-dependent wavefunction.

The quality of the “adiabatic approximation™ ()
may be illustrated by the example of a hydrogen atom
irradiated with blue light (4860 A). Let the amplitude
of the oscillatory vector potential grow from zero at
¢t = 0 to a maximum at 7/2 = 1 nsec (10° cycles of the
field) and decrease back to zero at 7. (This “rise time”
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would be necessary if the frequency spectrum were
to be pure within 1 ppm.) Let the maximum amplitude
correspond to a moderate intensity, 1 W/cm* The
perturbation equations admit of a solution through
third order based on the unperturbed 1y ; the four-
photon resonance at 4w precludes a fourth-order
solution. (A higher-order perturbation treatment
would have to treat 1s, 2s, and 2p as degenerate in a
larger Hilbert space of periodic functions.) If the
system is initially in the Ls state, »!3] is a reasonable
approximate wavefunction through the period of
irradiation. One may estimate the orders of magni-
tude of X/T, Y, and ZT as 10714, 1022, and 1014 at
times between 0 and 7. Thus the error bound on the
wavefunction is considerably smaller than [4? s¢®)|
(10712) but is larger than |[A3 Lp®|; 13pl2 js thus a
demonstrably good approximate wavefunction. Note
that it is necessary to include 23 3y in the approxi-
mate wavefunction to obtain this estimate.

There is a limitation on the scope of the theorem
in cases involving resonance. Suppose S contains the
members of a family of *ypiX) corresponding to a
particular *6' and that there is an eigenfunction of
Hy®, ¢, which has energy “6© — mw,, m = 4%,
ALAD e Dor BB If w passes through w, at some
point in the modulation path, ¢ exp (img) there
becomes degenerate in h(4'~), BH)) with the “p'® in
that family. As a rule the perturbation series gt will
diverge as w approaches w,, and the theorem becomes
inapplicable. The corresponding problem in static
perturbation theory appears when the splitting
between two manifolds of degenerate unperturbed
functions is small compared to a perturbation—
a zero-order eigenfunction ‘“should” be a linear
combination of functions belonging to both manifolds,
but perturbation theory constraints it to belong to one
or the other; large higher-order corrections are needed
to compensate for this weakness in the perturbation
theory. The difficulty in the time-dependent problem
might be resolved by slightly altering the unperturbed
operator so as to render the two manifolds exactly
degenerate throughout the modulation path and com-
pensating for this change by adding corrective terms
to the perturbation. In the present example, the new
unperturbed Hamiltonian would be H,®,

1‘70(0) = HO(O) + mfw, — ()] |$) (4], (40)

under which ¢ exp (img) would always be exactly
degenerate with the former *'®. The compensating
term might be added to JC®:

T = A mlo(e) = wdl 14) (41
or to JC2):

A = Hy® + 3*mlo(o) — wol 14 (1. (42)

(41)
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The choice between (41) and (42) would be based on
comparison of mlw(e) — w,] with the effects of
AJED and 223, [It is no great problem to render the
appearance of 1 in (41) or (42) consistent with the
use of A as a formal perturbation parameter.] With
the unperturbed Hamiltonian thus modified, there
would be no more *§©-crossing points, and the
present adiabatic theorem would be applicable. It
should be mentioned that no modification of the
Hamiltonian is needed for a modulation process
which can be described in terms of modulated field
amplitude, phase, and direction but constant fre-
quency (exactly at resonance). Further treatment of
the resonant case is planned.

APPENDIX A: EXISTENCE OF SOLUTIONS TO
RAYLEIGH-SCHRODINGER PERTURBATION
THEORY!?

The conclusions of this appendix are prerequisite
to the treatment, in Appendix B, of the existence of
the functions *yltZl,

Consider the Rayleigh-Schrodinger perturbation
problem associated with an operator H,

A
H = llH(l);
2
let truncated perturbation expansions of an eigen-

function and eigenvalue of H be

(AD)

L

,y)k[L] — lgollwk(l), (A2a)
L

E[M = 3 VE. (A2b)
1=0

Then, through as many orders / as possess solutions,
! and E Y satisfy

(HY — By =0, (A3a)

(H(O) — Ekﬂ)))wk(ll = _[(H[l] — Ek[l])wk[l~1]](l)’
1>1, (A3b)

where the superscript / on the rhs denotes the /th-
order part of the bracketed quantity and HI®1is H
truncated at /th order. It is assumed that H® is self-
adjoint and the H'?, / > 1, are symmetric.

Suppose Eqgs. (A3) possess solutions through some
particular order /=m — 1; is there a solution
through mth order? Let § be the set of all indices j
such that u,( is a discrete eigenfunction of H'® with
the same eigenvalue as ¢, /¥, £, = E @ and let &
be the linear manifold spanned by the y,¢, je 8.
Then (A3b) definitely possesses solutions at order
! =m if (i) the rhs is square integrable and (ii)
orthogonal to A and if (iii) £,/ is not embedded in
the continuous spectrum of H. [If E{® is embedded
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in the continuous spectrum, (A3b) may still possess a
solution.®} It is safe to assume that condition (i) is met;
the remainder of this appendix concerns condition (ii).

If E,'® ijs nondegenerate, the requisite orthogonality
is trivially achieved by appropriately choosing E, ‘™.
If E,'9 is degenerate, there are more general solutions
based on A, q'}j[”“”, of the form

B =yl g Y

PES l=m—Mpj—1

<o -1
[4 [m—1-~
Aay 'y, s

(A4)
where M; is either the highest-order s at which
E® =E® or m—1if E, and E; are identical
through (m — 1)th order, for

(H[m"‘ll _ Ej[m——l]),.p’j[m—l] — 0(17’!)‘ (AS)

It is desired to choose the coefficients a,,¥ and the
E;tm so that

@ H — EfM {5 In0m =0 (A6)
for all i, je 8: these §[™1 can then become the
starting point for an mth-order solution of (A3b).

After some algebra involving the fact that the
analogs of (A6) at lower orders must have been
satisfied, it is possible to convert (A6) to the form

> pOLH™ = By )0, 4 6,)

»
B ™ (@, + 6, for ie§’, (ATa)
- (Ej(l‘l;;+1) — Ei(ﬂlij+1))aij(m—31ij_1) for i ¢ S,,

(A7b)
(ATc)

For each subset 8’ for which the E,I™~1) are identical
(some such subsets consisting of just one member),
(A7a) is an eigenvalue equation for the matrix

{(w_(o)l H[m] — E [m~1] I'P [m—1]>(m)}

1 P F *

Because (HU™) — E; .. U™ ')y Im=11 js5 already of mth
order, one may add higher-order terms to ¢, without
affecting the value of the matrix element; written in
the form

8'={plp€8,MM-=m—l}.

{<,%[m—1]l H[m] - Ei.j, 0Pﬂ[m-l] ',wp[m—U)(m) , ie 8'},
(A8B)

the matrix is manifestly Hermitian and therefore
possesses a complete set of eigenvectors,!® After all
the E;' and a,,' (p € §') have been determined by
(AT7a), the g,im—¥ =11 can be chosen to satisfy (A7b);
(A7a) remains satisfied since these coefficients do not
appear in it.

Thus condition (ii) can always be met. If £,/ is not
embedded in the continuous spectrum of H®, the
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Rayleigh-Schrddinger perturbation equations (A3)
have solutions through as many orders / as the
quantities [(H(1 — E;l-)y,-1]" are square integ-
rable for all j such that E;® = E ‘9. According to
arguments presented previously,® it may further be
arranged that these solutions be orthonormal through
as many orders as exist at all.

APPENDIX B: EXISTENCE OF THE *y(L]

As mentioned earlier, Eqs. (31) are Rayleigh-
Schrédinger theory in h(A~, BX). The %y, are
eigenfunctions of H,!®:

[HO(O) + nw — kg(O)] kwn(o) — 0,
for A <n < B?. (Bl

The set 8 of functions *y, exp (ing) corresponding
to solutions of (Bl) defines a linear manifold A in
p(A4D), BL) which is degenerate w.r.t. the unperturbed
operator Hy® — iwd,. One may base a set of solu-
tions *ptll e h(4'L), BL) on M only if h(4L), BIL)
contains no other eigenfunctions of Hy® — iwd,, that
is, only if (B1) has no solutions with 4 < n < 4©®
or B® < n < B,

The rhs of the higher-order equation (31b) has finite
norm if all its Fourier components are square inte-
grable. The number *6(% does not lie in the continuous
spectrum of Hy® — iwd, in H(A'L), BD) unless one
of the numbers %6 — nw, AL < n < BV, lies in
the continuous spectrum of H,{®. Thus the arguments
in Appendix A guarantee the existence of solutions
through as many orders as the Fourier components
mentioned are square integrable if none of the
numbers *§® — nw, AL <n < B lies in the
continuous spectrum of H,®; and there may yet be
solutions if this second condition is violated.

In consequence of the particular form for J€ given
in (15), it is easily seen that A) and B may be
taken to be

A(L) — A(O) —L, B(L) = B(O) + L. (BZ)

The condition on square integrability of the rhs of
(31b) can probably be taken for granted; thus, if one
desires to construct perturbational quasiperiodic
states on the basis of H,®-eigenfunctions with
eigenvalues *6(® — nw in a particular range, 49 <
n < B® (none of these eigenvalues lying in the
continuous spectrum of Hy®), there is assurance that
such *ylLd exist if the spectrum of Hy'® includes none
of the numbers *6® — pw with n = A® — [, 410 —~
L4+1,-+,A® — 1 BO 4+, BO 42 ... BO 4,

Again, if the *plZ] exist, it may be arranged that
they all be orthonormal through Lth order. In the
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present case, this orthonormality reads

(B FytLhy = 5, + O(AF), (B3)

APPENDIX C: ERROR BOUND FORMULA

Let ®(¢) be an exact solution to the Schrédinger
equation and ®(r) an approximate one. If $(0) =
®(0), it has previously been shown that®

-~ t ~
(1) — d(r) = —if U(t, O)[X(t') — id,JD(t") dt'.
0
(C1)
The derivation was rigorous only for the case of a

finite-dimensional space. In the previous application
of (Cl),? the weaker formula

ld(r) — By < f I3t — id @) dr' (C2)

could have been used instead. This appendix offers a
rigorous proof of a somewhat stronger version of (C2).

Theorem: Assume throughout the time span of
interest, [0, T, that JC(¢) is self-adjoint with a domain
that includes ®(¢) and ®(¢) and that d,® and d,® are
continuous® and satisfy

dd = —ikd,
dd = —ifed — iy,

(C3a)
(C3b)

with y again a continuous function of time. [It is not
required that ®(0) = ®(0).] Then

10(T) — (7))
~ T ~
< 12(0) — 2(0)| +L I — id JO() dt. (C4)

Proof: When @(t) # ®(r), application of the chain
rule gives

d|® — @ = 2|0~ )@ - B | O — B)

(C5)
=|® - ®|Im (x| ® — D), (C6)
ld 1@ — &) | < lxll. (€7

Ifd %« ® throughout [0, T, then

~ - T
[1(T) — DD — 1D(0) — DO)|| SL 21l dt,
(C8)
I(T) — &(T)|

— T ~
< 19(0) — 20 +L 1[3(e) — id ] ®()] dt. (CI)
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If ®(t) = ®(¢t) somewhere in the interval, (C6)
breaks down there; even so, |® — ®| is still contin-
uous there. Let 7 be the largest r-value at which @ = .
Then it is easily shown that

10(T) — ()|
T
< [ it a
-~ T ~
< 12(0) — @O)lf + L 13(0) — id JO(®)] dt. (C10)
An identical result holds in unitary space.
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Erratum: Lattice Dynamics of Cubic Lattices with
Long-Range Interactions
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Equation (19) is valid only under the condition
that the short-range forces extend to nearest neighbors
only or that, if they extend beyond nearest neighbors,
the short-range forces between like particles are
independent of k. The above condition is not men-
tioned in the paper. The validity of Eq. (22) and of
the second-order terms in Eqgs. (30), (34), and (36)
are subject to this condition. The form of Eq. (20)
does not depend upon this condition. None of the
other results in the paper are subject to this condition
except those in Sec. VI, where the condition is ex-
plicitly stated.

Equations (22), (30), (34), and (36) are easily
modified to become valid for short-range forces
arising from central potentials not subject to the
above condition. In the lower right submatrix in
Eq. (22), replace the constants b, ¢, and d by &', ¢/,
and d’, respectively. The long-range contributions to
corresponding primed and unprimed constants are
the same, but the short-range contributions may
differ. In Eqs. (30) and (36) replace g(b, f) with
g, b, pyandglc +d,y + d) withg(c +d, ¢’ +d’,
y + 6), where g(x,y,z) =x + u?y + 2uz. Corre-
sponding replacements are to be made in Eq. (34).
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