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The transport of radiation in a turbulent, refracting medium is studied. It is shown that the conven­
tional transport equation must be generalized. Path integrals are taken along curved ray trajectories. 
When these ray paths have torsion, a rotation of the polarization vectors needs to be taken into account. 
Two derivations of the transport equation are given. One is phenomenological and one is based on 
Maxwell's equations. Some discussion is given of cross polarization of radar backscatter. 

1. INTRODUCTION 

Earlier papersl - 3 in this series have presented a 
derivation from Maxwell's equations of th~ radiation 
transport equation for scattering by a turbulent 
medium.4.5 A transport equation of conventional form 
was derived making two kinds of approximations. The 
first of these amounted to treating the scattering from 
a single "turbulent eddy," or a single correlated 
cluster of scatterers, in the distorted-wave Born 
approximation (DWBA). The second approximation 
made was the assumption that coherent propagation 
in the refracting medium could be treated in the 
eikonal approximation and, furthermore, that the 
ray paths of the eikonal approximation could be 
replaced by straight lines. 

It was observed in I that the restriction to straight­
line ray paths is quite unnecessary for deriving the 
transport equation. In the present paper we drop 
the restriction to straight ray paths. The resulting 
transport equation differs from the conventional one 
in the appearance of a rotation operator acting on the 
polarization indices and depending on the radius of 
torsion of the ray paths. 

To make our discussion definite, let u.s consider the 
physical situation studied in I and illustrated in 
Fig. 1. The scattering medium is of finite extent and 
surrounded by empty space. The source of the radia­
tion is at a great distance from the scatterer. Thus, 
the incident radiation at the scatterer can be considered 
to be a plane wave, with wavenumber vector (say) k. 
The detector is also at some distance from the scatterer. 

for the formal derivation of a transport equation, 
seems necessary to obtain the conventional form with 
its usual geometrical interpretation. In Sec. 2 some 
required properties of the eikonal approximation are 
reviewed. A phenomenological derivation of the trans­
port equation, generalized for curved ray paths, is given 
in Sec. 3. In Sec. 4 the same equation is derived from 
Maxwell's equations. (The corresponding quantum 
form can be obtained, as was done in Ref. 4.) Several 
applications, including a discussion of cross polariza­
tion for radar backscatter, are given in the final 
sections. 

Before considering the generalized transport equa­
tion, let us review briefly the conventional form of 
this and the derivation given in I and III. In the 
classical theory the quantity 

lex, p, w) dOp dw (1.1) 

represents the flow of radiant energy per unit area, 
per unit time, having angular frequency w within dw, 
and propagating parallel to p within the element of 
solid angle dO il • When the shift in frequency due to 
scattering may be neglected, w appears as just a 
parameter in the transport equation. If, in addition, 
the bandwidth of the radiation is sufficiently narrow 
that frequency dispersion in the scattering may be 
neglected, the transport equation may be expressed 
in terms of the quantity 

lex, p) == L"I(X, p, w) dw. (1.2) 

Evidently, this particular choice of boundary con- It is for this case that the derivation in I was given. 
ditions is incidental for the derivation of the transport The equation for I(x, p, w), including frequency 
equation. shift, was obtained in III. 

In I the scatterer was assumed to be a plasma. This To describe polarization,it is necessary to generalize 
is evidently easily generalized to other scattering (1.1). As described above, we suppose that an 
systems by replacing the Thomson scattering amp li- incident plane wave with wavenumber vector k 
tudes by those appropriate for the system of interest. illuminates the scattering medium. At a point along 

The eikonal approximation, although not required a ray path we suppose the tangent vector is p. Two 
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FIG. I. Illustration of 
the conditions for scat­
tering considered in this 
paper. 

more unit vectors are then defined as 

ep(2) = C(p)p x k, 

ep(1) = ep(2) x p. (1.3) 

For curved ray paths we take p as the local tangent in 
Eqs. (1.3). 

The electric-field vector for a wavelet propagating 
along the given ray path is therefore of the form 

and the generalized intensity is [here (i,j) = 1, 2] 

Iu(x, p, w) = const X [Et(i)Ep(j)]. (1.5) 

The "const" here is chosen so that 

I = III + 122 , 

[The constant is given an explicit form in Eq. (3.6) 
below.] 

The radiation transport equation obtained in I was 
of conventional form6 : 

(1.6a) 

where 

B;;(x, p) == '~l f dOil,WI M Ist)Islx, p'). (1.7a) 

Here the derivative in (1.6a) is taken along the straight 
line parallel to p, I-lex) is the absorption coefficient, 
and WI M(p,p') 1st) is the scattering function. In 
more compact matrix notation we write Eqs. (1.6a) 
and (1.7a) in the form 

.!!.. I(x, p) + 1 I(x, p) = B(x, p), 
ds 1 

(1.6b) 

B(x, p) = f dOIl,M(p, p')I(x, p'). (1.7b) 

Equations (1.6) and (1.7) are applicable when the 
frequency change with scattering may be neglected. 

The case specifically considered in I was scattering 
by a plasma containing N electrons with coordinates 
Zl' Z2, ... , ZN' The probability distribution for these 
coordinates was written as PN(Zl, ... ,ZN)' normal­
ized so that 

A set of distributions 

PI (Zl), P2(Zl, Z2), ... ,PN - 1(Zl, ..• , ZN-l) 

may evidently be obtained from PN by integration, 
and P2 , P3 • •• were developed in terms of 2-particle, 
3-particle, ... correlation functions. In particular, P2 

was written as 

P2(Zl, Z2) = P1(Zl)P1(Z2)[1 + g(Zl' Z2)]' (1.8) 

We shall here assume, as was done in I, that the pair 
correlation function g has the approximate form 

g(Zl' Z2) ~ g(Zl; IZI - Z21). (1.9) 

This assumption is not necessary for the derivation 
of the transport equation, but does simplify the 
equations by leading to a scalar, isotropic refractive 
index. 

The quantity M was then obtained in I in the form 

M(p, p') = auCp· p')m, (1.10) 
where 

and 

a/p. p') = p2(x)a(p. p') f d3Rg(x; R) 

X exp [inrCx)k(p' - p) . R]. (1.12) 
Here, 

(1.13) 

is the electron density and a is the appropriate cross 
section for Thomson scattering: 

a(p. p') = r~/(1 + '/I~/W2), (1.14) 

where ro is the classical electron radius and '/Ie is the 
electron collision frequency. (Evidently the theory 
may be adapted to other elementary scatterers.) 
Finally, n.(x) is the real part of the refractive index 
given in first approximation by [see Eq. (4.13)] 

n~""'" 1 - w!/(w2 + '/I~), (1.15) 

with w'" the electron plasma frequency. 
The absorption coefficient has the form 

1 1 1 
- = - + - = 2kn· 
I 1 1 .. e t 

(1.16) 
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where ni is the imaginary part of the refractive index, 

s~ f dO~,(ij1 M(p, pi) Iss) 

= oij (t f dOp,aip . p')[l + (p . pl)2]) 

The approximations required to derive the transport 
equation from the wave equation are given in detail 
in I and III. We briefly review these here: 

(I) It» Re, where Re is the correlation range, or 
the characteristic distance over which correlations 

and 
(1.17) contribute to ag • As noted in II, for plasmas this 

condition can often be replaced by the condition 

1;-1 = [w;/(w2 + 'V~)]('Ve/c) (1.18) 

(c is the speed of light). 
As an alternative to Eq. (1.12), we may suppose the 

medium to be characterized by a dielectric constant, 
depending on certain random variables, and at time t 
and point r to have the value fer, t). This may be 
written in terms of its fluctuations o€ as 

(1.19) 

where "(- . ')" represents an average over the random 
variables. 

In this case Eq. (1.12) may be rewritten in the form 

afl = (::rI d3
R(0€(x, O)o€(x + R, 0» 

X exp [inrCx)k(p' - p) • R]. (1.20) 

The transport equation for the case that frequency 
shift must be considered was obtained in III. This has 
the form 

d 1 
- I(x, p, w) + - I(x, p, w) = B(x, p, w), (1.21) 
ds I 

where now 

B(x, p, w) = i'X) dw' I dOp,M(p, pi; w - Wi) 

x I(x, pi, Wi), (1.22) 
and 

M(p, pi; 0) = aip . p', Q)m. (1.23) 

For the case corresponding to Eq. (1.12) we have 

ag(p. pi, 0) = l(x)a(p. pi) L: dr I d3Rg(z; R, r)eiClr 
X exp [inix)k(p' - p) . R]. (1.24) 

Here g(z; R, r) is the time-dependent pair correlation 
function for a stationary random process. Alterna­
tively, for the case corresponding to Eq. (l.20) , we 
have 

aip. pi, Q) = (::Y 

where k = w/c. 

X L:dr I d3R(0€(x, t)o€(x + R, t + r» 
X emT exp [inr(x)k(p' - p) . R], 

(1.25) 

where ~ is the relative mean-square fluctuation in 
electron density. 

(2) ni « nr • This assumption is interpreted as 
permitting us to neglect ni in Eqs. (1.12), (1.20), 
(1.23), and (l.24), where only nr was kept in the 
exponentials. That is, we assume that (Re/l)« I in 
these equations (this is convenient, but not, of course, 
essential to our discussion). Assumption (2) is used 
also in the next section [see Eq. (2.17), for example]. 
In addition to the above condition, we shall require 
that IVn;/ be small, a restriction made more precise in 
Eq. (2.29). 

(3) The eikonal approximation may be used to 
describe coherent wave propagation. We express the 
condition for validity of this approximation in the 
form 

IVnrl « kn; . 

(4) The bending of eikonal ray paths may be 
neglected, and these may be considered to be straight 
lines. 

(5) kl» I, which we interpret as meaning that 
successive scatterings occur in the wave zone. This 
assumption is necessary if we are to use the eikonal 
approximation to describe wave propagation between 
scatterings. 

The purpose of this paper is to obtain the transport 
equation without making assumption (4). 

2. THE EIKONAL APPROXIMATION 

In this section we review several aspects of the 
eikonal approximation which will be needed for 
obtaining the transport equation. We shall follow the 
treatment of Born and Wolf,7 generalizing this to 
obtain the Green's function and to include a complex 
retractive index. 

For an electromagnetic wave of frequency w = kc 
propagating in a medium of finite extent and having 
a refractive index nCr), the Maxwell equation for the 
electric field E(r) is 

[k2n2(r) - VxVx]E(r) = O. (2.1) 
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Let us suppose that in the absence of the refractive 
medium the field is Eo(r), where 

[k 2 - VxVx]EoCr) = O. (2.2) 

As illustrated in Fig. I, we suppose the source of Eo to 
lie far outside the refractive medium. 

The field E may be expressed in terms of Eo and 
the dyadic Green's function GO(r, x) for infinite 
spaces; 

E(r) = Eo(r) + J d3xGO(r, x) • E(x) 

X {(k 2/47T)[n2(x) - In. (2.3) 

Here GO satisfies the equation 

where J is the unit dyadic. That is, 

GO(r, x) = [J + k-2VreV"J(eikR/R) - J[47T/(3k2)]6(R), 

(2.5a) 
with R == r - x. For kR» 1, we have 

and Wolf): 
(VS)2 = n2 , (2.11) 

[(\7 2S) + (VS)(V In n2) + 2(VS)· V]e = O. (2.12) 

In addition, we have 

in the first order. 

h = (VS) X e, 

(VS). e = 0, 

(VS)· h = 0, 

(2.13) 

The time-averaged Poynting vector is (following 
Ref. 7, we are using unrationalized Gaussian units) 

J = ..E... [Re (e x h*)]e-2kS, 
87T 

= ..E... (VSr)e • e*e-2ikSi. 
87T 

(2.14) 

The real and imaginary parts of Eq. (2.11) lead to 
the two real equations 

(VSr )2 - (VSi )2 = n; - n;, 
(VSr)·(VSi ) = nTn;. 

(2.15) 

(2.16) 

where 

(2.Sb) Because of our assumptions that n;« n;, we look 
for a solution to these of the form 

(2.6) 

Finally, we desire the dyadic Green's function 
G(r, x) for the refracting medium. This satisfies the 
equation 

Let us now write the electric- and magnetic-field 
vectors in the respective forms 

E(r) = e(r)eikS(rl, 

H(r) = h(r)eikS(r), (2.8) 

where the eikonal S is expressed in terms of its real 
and imaginary parts as9 

S = Sr + is,. (2.9) 

Since G and E satisfy the same differential equation, 
except for boundary conditions, we may write 

G(r, x) = e(r, x) exp [ikS(r, x)]. (2.10) 

Now we consider e to be a dyadic satisfying the same 
differential equation [Eq. (2.12)] as the vector e. 

Substitution of (2.8) into Maxwell's equations give 
the two differential equations of the eikonal approxi­
mation for Sand e (we are using the notation of Born 

(VS
T
)2 "-' n;, (2.17) 

with (VSi)2 « (VSr)2. 
Following the discussion of Ref. 7, we write the 

equation of a given ray path as r = res), where s is the 
path length measured from some reference point on 
the ray. We let 

dr per) ==­
ds 

(2.18) 

be the tangent vector to the given ray path at the 
point r and write 

(2.19) 

Equations (2.18) and (2.19) permit us to "solve" 
(2.17) in the form? 

dp 
- = V.l,ln nr , (2.20) 
ds 

Sr(r) = inr ds, (2.21) 

V.l, == V - pp. V. (2.22) 

Equation (2.20) determines a given ray path, and (2.21) 
permits us to construct S,' the integral being taken 
along the ray path passing through r. 

Equation (2.16) may now be rewritten in the form 

(2.23) 
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This may be integrated to give 

S; = in; ds + IJSi , 

where IJSi is subject to the condition 

p. VIJSi = O. 

Thus, IJSi is constant along each ray path. The 
boundary condition HE becomes equal to Eo if we 
follow a ray path backwards outside the medium" 
tells us then that IJSi = O. For the Green's function 
the boundary condition at r ~ x, implied by Eq. 
(2.7), also then specifies that IJSi = O. We therefore 
have 

Si = ini ds. (2.24) 

We now turn to Eq. (2.12) for e. Let us write, e in 
the form 

(2.25) 

where A is the magnitude of e, e is a unit vector, and 
IX is a phase. 

The discussion given in Born and WolF permits us 
to obtain directly the equation 

dA = _ (V'2
Sr)A. 

ds 2n r 

(2.26) 

For IX and e, we obtain the equations 

(2.27) -= -
ds 2n r 

and 

de A(V I ) A - = -p n n • e. 
ds 

(2.28) 

To check the consistency with Eqs. (2.13), we use 
Eqs. (2.20) and (2.28) to obtain 

!£ (e· p) = e· V.lln nr - e· V In n. 
ds 

This vanishes if we can consider the contribution 
from ni in Eq. (2.28) to be negligible. This will be the 
case if 

Ii IVnil ds I « 1 
" nr 

(2.29) 

The same approximation lets us set IX = 0 in Eq. 
(2.25). 

If r and x are two points along a ray path, we may 
integrate (2.30) to give 

e(r) = Per, x) • e(x), 

Per, x) = exp ( - fp(V.l In nr ) dS), (2.31) 

using a somewhat terse notation. 
We are particularly interested in the eikonal 

representation for the Green's function G(r, x). To 
simplify the appearance of some of our equations, we 
shall use interchangeably two notations for G, A, etc. 
For a set of coordinates Zl' Z2, ... , zs, we write 

Gap == G(Za, Zp), (2.32) 

with IX ¥= f3 = 1, 2, ... , N. The unit tangent vectors 
p = p(x) in Eqs. (1.3) satisfy Eq. (2.20). These will be 
written as Pa == p(za), etc. The eikonal is written as 

In matrix notation we use the representation (1.3) 
to write, for i, j = 1,2, 

UI Gap Ii) == epocU)· Gap· ep/i) 
= Aap exp (ikSap)epa(J) • Pap· ep/i), (2.33) 

using Eqs. (2.25) and (2.31). We emphasize that Sap 
and Aap here are determined by Eqs. (2.21), (2.24), 
and (2.26). We may also write 

(2.34) 
where 

Gocp == G(zoc' zp) = Aocp exp (ikSap). (2.35) 

The expression (2.35) represents the eikonal approxi­
mation to the scalar equation 

[V'~ + k2n2(z)]G(z, x) = -47TIJ(Z - x). (2.36) 

The observation that Eq. (2.26) does not depend on 
ni lets us introduce the Green's function, expressed in 
the eikonal approximation: 

G(r, x) = A(r, x) exp [ikSr(r, x)]. (2.37) 

This is the eikonal approximation to the solution of 

(V'; + k2n~)G(r, x) = -47TIJ(r - x). (2.38) 

everywhere along a given path. We shaH assume that It is known10 that 
the condition (2.29) is satisfied and that we can write 
(2.29) in the approximate form G(r, x) = G(x, r), (2.39) 

de = -il(V.lln nr ). e. 
ds 

(2.30) 
from which we obtain the important symmetry relation 

(2.40) 
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FIG. 2. A narrow tube 
of ray paths all passing 
through the point lo. 

Let us now choose three points zo, Zl' and Z2 all on 
a given ray path. We construct a flux tube of ray 
paths all passing through Zo and enclosing the original 
path on which Zl and z21ie. We suppose the solid angle 
M10 formed by the tube at Zo to be very small. The 
respective cross-sectional areas of the flux tube at 
Zl and Z2 are O~l and b~2' This geometry is illustrated 
in Fig. 2. 

We assume for the moment that ni = O. Then we 
can represent the Green's function G by G, Eqs. (2.37) 
and (2.38). The condition that energy is conserved 
[i.e., n i = 0] in the flux tube [see Eq. (2.14)] leads us 
to the relation 

(2.41) 

Here we have written nr (l) == nr(zl), etc. If we choose 
Zl to lie sufficiently close to zo, we have 

and 

where 

(2.42) 

Thus, we obtain from (2.41) the result 

for two arbitrary points z., and zp we have 

A.,p = [(nr(P») (a~a)-lJ!. 
nrCoc) anp 

(2.43) 

Since Eq. (2.26) does not involve ni , we can cqnsider 
Eq. (2.43) to be valid even when ni =F 0 (but, of course, 
subject to the conditions imposed on it). 

Equations (2.34), (2.35), (2.43), etc., provide the 
eikonal representation of the Green's function which 
will be required for our applications. 

3. HEURISTIC DERIVATION OF THE 
TRANSPORT EQUATION 

In this section we give a phenomenological deriva­
tion of the transport equation for the case that curva­
ture of the ray paths must be taken into account. 
Consistent with our assumption [see Eq. (1.9)] that 
mean properties of the medium do not change 
significantly over a correlation distance Rc , we shall 

assume that the scattering strength B in Eq. (1.6) 
and the scattering function M are not modified. 

Let us assume that the dielectric properties of the 
scatterer are described by the dielectric constant € 

[see Eq. (1.19)] which depends on certain random 
parameters. The electric field E, which depends 
parametrically on these same parameters, satisfies the 
equation 

(k 2
€ - VxVx)E = O. (3.1) 

Remembering that "( ... )" is considered to represent 
an average over these random variables, we introduce 
the coherent field at x as 

(3.2) 

The coherent field satisfies the wave equation (2.1); 
that is, as was shown in I,u 

(k 2n2 - VxVx)Ec = O. (3.3) 

The field E may be written as 

(3.4) 

where the sum runs over scattering from different 
fluctuations in € and includes Ec. We suppose that 
these terms are so chosen that the different E), are 
mutually incoherent. Thus, 

(E),E),.) = 0, for A =F A'. (3.5) 

An expression is required for the radiation intensity 
Ii;(z, p) [Eq. (1.5); we do not write explicitly the 
frequency dependence here]. Referring to Fig. 3, we 
consider a flux tube of ray paths all passing through a 
given point Zo within a small solid angle bno. The 
electric field at Zo associated with these ray paths will 
be of the form (3.4). The index A is assumed to refer 
to a scatterer at the point z). contained within the 
volume of the flux tube. At the point z), the area of 
the flux tube is b~.l' 

If we write each E.l in (3.4) in the eikonal form 
(2.8) and use Eqs. (2.14) and (3.5), we see that 

c 
Iij(zo, Po) = - (nr (0)/600) 

8?T 

X < t exp [-2kSlzo, z;)]epo(i) . e1e.l • epo(j). 

(3.6) 

FIG. 3. The intensity 
at zo results from sources 
at points z), in the flux 
tube. 
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The unit vectors here are defined by Eqs. (1.3) with 
Po == p(zo)· 

Using Eq. (2.43), we have 

bn = (dL.;.)-115L. 
o dn

o 
;. 

_ A2 nr(A.) OL. 
- ;'0 nr(O) ;. 

- A2 nrCA-) OL. (3.7) 
- 0;' niO) ;.. 

To obtain the final form here, we have used Eq. (2.40). 
Equation (2.25), with oc = 0, lets us write 

e;. = Ao;.e;.(zo)s;., (3.8) 

where S;. is the source intensity at Z;.. Finally, (3.7) and 
(3.8) let us rewrite (3.6), replacing Zo by a general 
point z, as 

l;i(z, p) = n~(z) exp [-2kSlz)] 

/ "'" C A (.) A A (.) A \ (3 9) X \ f ;.ep I • e;.ejl ] • e;. /' . 

where the C;. are independent of z. 
To obtain the transport equation, we consider the 

change in I if we displace the point z by a small 
distance 15s along the ray path. First, let us assume 
that in the interval Os there is no energy added by 
scattering from other ray paths. (This will later be 
accounted for by including the scattering strength B.) 
Use of Eqs. (1.16) and (2.24) gives 

d 1 
ds (2kSi ) = l' 

From Eqs. (2.20), (2.38), and (1.3) we obtain 

.!!.. [ep(i). e] = (-I)ic/>ep(i + 1)· e, (3.10) 
ds 

where 
c/> = (p. k/lp x kl)e,,(2) • V In nr • (3.11) 

In Eq. (3.10) we have adopted the following special 
notation. When i = 1, 

when i = 2, 
ep(i + 1) = ep(2); 

ep(i + 1) = ep(l). 

With these expressions, we obtain from (3.9) the 
expression 

.E.. l;lz, p) = - 1. l ii(z, p) 
ds L 

+ (-I)ic/>li i+1(z, p) + (-1)ic/>li+1 ;(z, p) 

== - !. liJ - ± WI R Ist)lst • (3.12) 
L s.t~1 

In the first term we have introduced the notation 

!. == ! - .E.. In n2 
• 

LIds r 
(3.13) 

The second term describes the rotation of the polari­
zation vectors as the radiation moves along a ray path. 

Scattering within the interval 15s was omitted in 
obtaining Eq. (3.l2). If we include this, we must add 
B to the right-hand side of (3.12). This gives the 
generalized form of the transport equation (1.6): 

~ I(x, p) + 1. I(x, p) + RI(x, p) = B(x, p), (3.14) 
ds L 

where B is given by Eq. (1.7). Iffrequency shift due to 
scattering must be taken into account, we obtain the 
generalized form of Eq. (1.21): 

.E.. I(x, p, w) +!. I(x, p, w) + RI(x, p, w) = B(x, p, w). 
ds L 

(3.15) 

The scattering strength B is now given by Eq. (1.22). 
Let us write out in detail Eqs. (3.14) and (3.15). 

For either case, the form is 

d 1 
- 111 = - - 111 - c/>(/12 + 121) + B11 , 
ds L 

d 1 
- 112 = - - 112 + c/>(/11 - 122) + B12 , 
ds L 

d 1 
- 121 = - - 121 + c/>(/11 - 122) + B21 , 
ds L 

(3.16) 

d 1 
-/22 = - -/22 + c/>(/12 + /21) + B22 · 
ds L 

For many applications the Stokes parameter 
representation is more convenient than that of Eqs . 
(1.3). In this representation we write 

11 =/11 , 

12 = 122 , (3.17) 

/12 = i(/a - if4) = n1' 
(The detailed form of B in this representation was 
given in II.) Equations (3.l6), when expressed III 

terms of the Stokes parameters, become 

dl1 1 
d; = - 1/1 - c/>/a + B1, 

dl2 1 
- = - -/2 + c/>/a + B2, 
ds L 

d1a 1 - = - -/3 + 2c/>(/1 - 12) + Ba, 
ds L 

(3.18) 

dl4 = _ 1. 14 + B 
ds L 4' 
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,.. 
p FIG. 4. Illustration of 

the unit vectors intro­
duced in Eqs. (3.19) and 
(3.20). 

A somewhat more "natural" choice than (1.3) for 
the unit polarization vectors is illustrated in Fig. 4. 
At each point on a ray path, ez lies in the osculating 
plane along the principal radius of curvature. Thus, 

detector are shown as being a large distance from 
the plasma. [The extension to other scattering systems 
is evidently straightforward. It is only necessary to 
use the appropriate scattering amplitudes Iii in Eqs. 
(4.3), etc.] The multiple scattering representation for 
the electric field was given by Eqs. (U.l) and (I.3.2)14: 

N Z 

E(za) = E1(za) + 2 2ea(J(j)FafJ(j)· (4.1) 
p( ",a)=l j=l 

dp = ez 
ds R' 

Here eap(j), j = I, 2, defined by Eqs. (1.3) with p 
(3.19) parallel to Za - zp and 

p 

where Rp is the principal radius of curvature. Then 

(3.20) 

and we obtain 

del e2 
-=--
ds R ' t 

(3.21) 

Here R t is the radius of torsion of the ray path. 
If we define m, Eq. (1.11), and I, Eq. (3.6), with 

e1 and ez replacing the polarization vectors (1.3), the 
only change in the transport equation [Eqs. (3.14) or 
(3.15)] occurs in the rotation matrix R. After a simple 
calculation using Eqs. (3.21), we obtain 

dI.. 1 1· . 
-E = - -Iii + - [( -1)'Ii+1 i + (-I)'Iii+1] + Bij. 
ds L R t 

(3.22) 

These have the same form as do Eqs. (3.16), but with 
cp replaced by H;l. 

The form (3.22) will not be used in this paper. 

4. DERIVATION OF THE TRANSPORT 
EQUATION 

We turn now to the derivation of Eq. (3.14) from 
Maxwell's equations1Z [the corresponding derivation 
of Eq. (3.15) following the method used in III, is 
straightforward]. For this purpose, we can use the 
development given in I with only superficial changes­
mostly of notation,13 To avoid repetition of the 
complete development in I, we shall just indicate here 
these changes. 

As in I, we shall suppose the scattering system 
(plasma) to consist of N nonrelativistic electrons 
confined to a finite volume and having the proba­
bility distribution PN(Zl, ... , ZN) described in Sec. 1. 
This is illustrated in Fig. 1, where the source and 

(4.2) 

represents the incident radiation, taken to be a plane 
wave at the scatterer. The Fa(J are defined by the equa­
tions 

The notation of I has been used here, with 

(4.4) 

as defined by Eq. (2.6), and 

ftkxP, pa) = foea(J(i) • e(Ja(j), 

ftirJ.P, PO) = foea(J(i)· e(1). (4.5) 

The quantity (-/0) is the classical electron radius 
divided by (1 - ;'V cl w). 

If we expand Eqs. (4.1) and (4.3) in a sequence of 
scatterings and express the result in vector form, we 
have 

E(za) = Eiza) + 2 (foG~a + f~ 2 G~(J • G~a 
a p 

+ fg 2 G~Pl • G31(J2 • G32a + ... ) . EiZa), 
Plo(J2 

(4.6) 

where G~(J == GO(za, zp) is the expression (2.5b) and 
no two adjacent subscripts rJ., PI' ... above are equal. 

For a coherent sequence of scatterings we obtain 
(1.3.22) in the form 

Gaa = G~a + fo t f G~(J • G(JaPbp) d
3
z(J 

+ f~ ! fG~(Jl • G pl (J2 • GP2a 
(J1,P2( ",PI) 

X P1(Zpl)P1(Z(J2)g(Z(J1 ,z(J2)d3z(Jld3Z(J2' (4.7) 
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where g is the pair correlation function of Eq. (1.8), 
etc. We emphasize that Eq. (4.7) is just Eq. (1.3.22) 
rewritten in vector notation. 

For IZPl - zPol :( Rc , we can rewrite Eqs. (1.3.23) 
and (I.3.24) as 

Gpo" ~{exp [in/zp)kpl" • RpOP1]}Gpl'" (4.8) 

Gp1PO ~ [J - RPIPoRplP.)[exp (inr(zp)kRpIP.)]/Rf!tP •. 
(4.9) 

Here kp1" is the wavenumber vector at ZPl for a ray 
originating at z". This represents a generalization 
approximate to curved ray paths of the notation used 
in I. We observe that [see Eqs. (2.13)] 

Use of Eqs. (4.8), (4.9), and (4.10) lets us rewrite 
(4.7) as the vector generalization of Eq. (I.3.25): 

G~" = G~" + f G~p • Gp"y(zp)d
3
zp, (4.11) 

where 

y(Z) = p(z)fo + l(z)f~ f d3R{Hl + (q . R)2J) 

X g(z; R){exp [inr(z)k(R - q. R)]}/R (4.12) 

is just the expression (1.3.26b). 
It follows from Eq. (2.4) that G~" [defined by Eq. 

(4.11)] satisfies Eq. (2.7) with 

n2(z) = 1 + (4rr/k2)y(z). (4.13) 

We may therefore use the eikonal representation 
(2.33) for G~" . 

Equations (1.3.31) and (1.3.32) may now be rewritten 
as 

N 

E(z~) = Ec(z~) + L cp~(j)E~p(j), (4.14) 
P(i'~)=l 

E~P(i) =Z.~l (i/ Gap 11)fz;((1.(3, (30)Ec(zp,j) 

+ f (il Gap 11)fz;«(1.(3, (3a)Ep,,(j»). (4.15) 
,,(i'P)=l 

In Eq. (4.14) we have written cPa(j) == cPa(j; (1., (3), 
j = 1, 2, to indicate the unit vectors (1.3) on the 
ray path joining zp and Za. [When no confusion will 
result, we shall use the abbreviated notation of Eqs. 
(4.14) and (2.33).] In Eq. (4.15) we now take 

fz;{(1.(3, (3a) =fOcllp(l; (1.f3). cfip(j; (3a), (4.16) 

etc. The coherent field Ec is just the quantity (3.2). It 
satisfies Eq. (3.3) with E[ as the incident field. At a 
point Z the tangent vector to the ray path of Ec will be 

written as 
(4.17) 

Then, 
Ec(z,j) == cfi,(j) • Ec(z). (4.18) 

Finally, the Green's function (il G~p II) in Eqs. (4.15) 
is defined by Eq. (2.33). 

The transport equation is now derived just as in I. 
To describe the coherent intensity, we use the 15 
function (as in I) b[p, Pc(z»), having the property 

ff(P)b[P, piz)] dnll = f(Pc), (4.19) 

where f(p) is nonsingular at p = Pc. Then, Eq. (1.5.8) 
is written in the form 

+ cnr<Za)f(iJL.p) ds(zp)U«(1., (3). (4.20) 
ana 

The first term here represents the intensity of the 
coherent field at za. From Eq. (2.14) we see that 

(JcCZ»ii = (c/8rr)nr<z)E~(z, i)EcCz,j). 

The integral in the second term in Eq. (4.20) is taken 
in the reverse direction along the ray path which passes 
through Z~ with the local tangent p. The notation of 
Eq. (2.43) has been used, with bL.p being the area at 
zp of a flux tube of ray paths which pass through Za 
with tangent p and lie within the small solid angle 
bna • 

The quantity U«(1., (3) is defined by [Eq. (1.5.14)] 

U«(1., (3) = G:p @ Gap ([cnr(Zp)r1M«(1.(3, (30)JcCzp) 

+ f d3z"M«(1.(3, (3a)U«(3, a»). (4.21) 

Here M is defined by Eqs. (1.10), (1.11), and (1.12), 
and we have used the index pairs «(1.(3) and «(3a) to 
indicate the direction of the unit vectors p and p' at 
zp in Eq. (1.10). The notation G:p @ Gap is used to 
denote the open product (;1 G~p Ij)*(/1 G~{J Is). 

From Eqs. (4.20) and (4.21) we obtain the transport 
equation 

I(z, p) = Jc(z)b[p, Pc(z)] 

+ J (:~:) ds(x)G*(z, x) @ G(z, x) 

x (nr(z») Jdnp,M(p(X), p')I(x, pi). (4.22) 
nr(x) 

Here p(x) is the tangent at x of the ray path passing 
through Z with local tangent p. 
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Equation (4.22) can be simplified using Eqs. (2.33), 
(2.39), and (2.41). Since 

(0~"')A2(Z' x) = niz) , 
00. nr(x) 

we obtain 

I(z, p) = Ie(z)b[p, Pe(z)] 

+ fdS(X) [exp (-f ~S) ] (:;~) 
X P(z, x) is) P(z, x) f dOp,M(p(x), p')I(x, pi). 

(4.23) 

Both path integrals here are taken over the ray passing 
through z with local tangent p. The quantities P here 
are matrices with elements 

(il P(za, zp) Is) = ep/i; oc, (3) • Pap' ep/s; oc, (3), 
(4.24) 

where PaP is the quantity (2.31). 
To further simplify Eq. (4.23), let us define the 

matrix 
V(z, x) == P(z, x) is) P(z, x). (4.25) 

This has matrix elements, for i,j, s, t = 1,2, 

(ij I V(za, zp)1 sl) 

= [epa(i)' Pap' ep/s)] X [epa(j)' Pap' epp(s)]. (4.26) 

Use of Eqs. (3.10) and (3.11) lets us obtain 

~ (ijl V(z, x) 1st) 
ds 

= (-lYcfo(i + Ijl V 1st) + (-l)icfo(ij + 11 V 1st). 

This is equivalent to 

!L V(z, x) = - R(z)V(z, x), 
ds 

(4.27a) 

(4.27b) 

where R is the matrix introduced in Eq. (3.12). 
Finally, then, we rewrite (4.23) as 

I(z, p) = Ic(z, p) 

+ r dS(X{ exp ( - f ~S) ] (:;~~) 
X V(z, x) J dQp,M(p(x), p')I(x, pi). (4.28) 

The coherent intensity in Eq. (4.23) has here been 
abbreviated by writing 

Ic(z, p) = Jc(z)d[p, Pc(z)]. (4.29) 

More generally, when there are several sources or 
incoherent sources, we may interpret Ie in Eq. (4.28) 
as the intensity of un scattered radiation. 

Equation (4.23) represents the integral form of 
Eq. (3.14). Indeed, on differentiating (4.28) along the 
ray path with tangent p, we obtain the differential 
form (3.14). [Comparison of Eqs. (3.9) and (4.28) 
makes this obvious.] 

5. DISCUSSION OF THE COHERENT 
INTENSITY 

Let us first suppose that scattering can be neglected 
so that B = 0 in Eq. (3.14). In this case we have only 
the coherent intensity Ie of Eq. (4.28). This satisfies 
the differential equation 

!L IcCz, p) + (.! + R)IcCZ, p) = O. (5.1) 
ds L 

We consider the case of a single coherent source, so 
that through any point z there passes only one ray 
path (with the exception of possible singular points). 

In terms of the Stokes parameters [see Eq. (3.17)] 

1==11 + 12 , 

Q == 11 - 12 , 

u= la, 

V= 14 , 

(5.2) 

Eq. (5.1) becomes (in the remainder of this section 
we drop the subscript "c" from Ie) 

(5.3) 

(5.4) 

d~ + !. ~ + r~ = O. 
ds L 

(5.5) 

Here we have written 

~ == (e), (5.6) 

If z~ and Zl are two points on a given ray path, we 
may integrate Eq. (5.3): 

J(Z2, P2) = [exp (_iZ2 dS)] (n;(2»)J(Zl' PI) 
Zl I nr(l) 

== T(2, l)J(Zl' PI)' (5.8) 

In the second writing here we have introduced T(2, 1) 
for the function which translates I at Zl to the point Z2 • 

From Eq. (5.4) we evidently obtain 

V(Z2, P2) = T(2, l)V(ZI' PI)' (5.9) 
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To integrate Eq. (5.5), we first define 

cI>(2, 1) == 2 rz. </> ds. (5.10) 
JZ1 

TABLE II. Matrix elements of V(z., Zl) in 11, /., Is, and 14 
representation. Here III == III (1 , 2) in the notation of Eq. (5.10). 

1.(1) 

!sin III 0 11(2) 
Then the integrated form of (5.5) is /.(2) 

HI + cos Ill) 
HI - cos Ill) 

-sin III 

HI - cos Ill) 
W + cos Ill) 

sin III 
-! sin III 0 

Is (2) cos III 0 

Q(Z2, P2) = T(2, 1)[cos cI>(2, I)Q(ZI' PI) M2) o o o 1 

+ sin cI>(2, I)U(ZI' PI)], 

U(Z2,P2) = T(2, l)[coscI>(2, I)U(Zl> PI) 

- sincI>(2, I)Q(ZI' PI)]' (5.11) 

The above results let us write the solution to Eq. 
(5.1) in the form 

Ic(z2' P2) = T(Z2' ZI)V(Z2, zl)Ic(Zl, PI)' (5.12) 

Here T(Z2' Zl) == T(2, I) is defined by Eq. (5.8) and 
V by Eq. (4.27). From Eq. (5.11) we can extract the 
matrix elements of V. These are given in Table I for 
the I, Q, U, and V representation and in Table II for 
the II, 12 , 13 , and 14 representation. 

The energy flux vector at a point Zl is 

Referring to Fig. 5, we construct a tube of ray paths 
passing through Zl with solid angle onl . The tube has a 
cross section of area o~o at some fixed reference point 
Zo' Differentiation of Jjnr along the ray path then 
leads to the equation 

~(J(1)) - ~ fi dn 
ds n

r
(l) - ds nr 1 

= ~ f!(O~O)-ld~o. (5.14) 
ds nr dn1 

Now, according to Eq. (2.43), 

( O~o) = A~l nr(O) 
anI nrCl) 

_ A2 nr(O) 
- 10 n

r
(1) . (5.15) 

TABLE I. Matrix elements of V(Z2, z,) in /, Q, U, and Vrepre­
sentation. Here III == 1ll(1, 2) in the notation of Eq. (5.10). 

1(2) 
Q(2) 
U(2) 
V(2) 

1(1) 

1 
o 
o 
o 

Q(I) 

o 
cos III 
-sin III 

o 

U(1) 

o 
sin III 
cos III 

o 

V(I) 

o 
o 
o 
1 

================================== 

Substitution of this into (5.14) and use of Eqs. (5.3) 
and (2.26) leads to the differential equation 

~(J(Z)) = _(~ + \72Sr)(~) _ R(~) (5.16) 
ds nr(z) 1 nr nr nr 

The scalar flux 

J(Z) = f I(z, p) dnp (5.17) 

is seen from (5.16) to satisfy the equation 

This agrees with Eq. (37), p. 116, of Born and Wolf. 7.15 

A slightly different version of the above discussion 
can be given as follows. We first integrate both sides 
of Eq. (5.8) over the solid angles of Pl' There results 

f J(Z2' P2) dnl = T(2, I)J(1). (5.19) 

Now, 

dn = dn (O~o) (O~o )-1 
1 2 on ::In 

2 u 1 

= dn
2 
(A~l) (nrC2)). 
A~2 nr (1) 

From Eg. (2.26) we obtain 

(5.20) 

Substitution into Eg. (5.19) leads to 

J(2) = (nr (2)){exp [_ rz'(~ + \7
2

Sr) dS]}J(I), 
nr(l) JZl I nr 

(5.21) 

in agreement with the similar result of Ref. 7 and an 
obvious integral of Eg. (5.18). 

FIG. 5. Illustration of 
the flux tube on which 
Eq. (5.14) describes the 
intensity. 
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The result (5.21) permits us to integrate the set of Now, from Eqs. (1.10) and (1.11), we see that 
Eqs. (5.16) in the form 

(6.3) 
J(z) = J(z)V(z, ZI)J. (5.22) where 

Here J(z) is specified by Eq. (5.21), V by Eq. (4.27), 
and J is a constant column matrix specifying the 
polarization at ZI: 

(5.23) 

Since J(z) is the total flux, we must have 

J1 + J2 = 1 (5.24) 
in Eq. (5.23). 

6. RADAR BACKSCATTER IN THE DWBA 

In this section we discuss radar backscatter in the 
distorted wave Born approximation (DWBA). This 
is illustrated in Fig. 6, where the transmitting and 
receiving antenna is located a point y very far from a 
plasma scatterer. In the DWBA only a single scattering 
is assumed to occur. This means that the flux of energy 
may be obtained from Eq. (4.22) as (assuming no 
coherent backscatter) 

J(y) = f I(y, p) dOp 

= f d3xG*(y, x) 

Since 

@ G(y, x) nr(y) fdOf>,M(P(X), p')Ic(x, p'). 
nr(x) 

(6.1) 

this may be rewritten in the form 

J(y) = f d3x exp (-f ~s) V(y, x)M( - pix), pix» 

nr(y) 2( ) () X -- A y, x Jc x . 
n,(x) 

(6.2) 

Scotterer 

FIG. 6. Backscatter, 
using the same antenna 
for transmitting and re­
ceiving. 

in the representation of Eq. (1.11). 
We shall assume the incident radiation to be a plane 

electromagnetic wave. The quantity Je(x) has, 
according to Eq. (5.22), the form 

JcCx) = Jc(x)V(x, y)J, (6.5) 

where J has the form (5.23) and specifies the polariza­
tion of the'incident radiation. As the point x moves 
outside the plasma along an incident ray path, Jc(x) 
assumes the constant value Je(y). 

Since y lies outside the plasma, nr(y) = 1. When 
x and yare both outside the plasma, 

A(y, x) = Ix - yl-l. 
Thus, 

A2(X, y)y2 -+ 1, x «y, 

as x moves outside the plasma along an incident ray 
path. Therefore, we may write 

J e(y)A2(x, y)i exp (_ rx dS) = Jix). (6.6) 
Jy I nrCx) 

That is, the quantity on the left satisfies the differ­
ential equation (5.18) and the appropriate boundary 
condition on an incident ray path. 

The above results let us write Eq. (6.2) in the form 

J(y) = (V-2) f d3xai -1)J~(x)[n;(x)J c(y)r1 

X [V(y, x)~V(x, y)J]. (6.7) 

In the usual Born approximation, V = 1, the unit 
matrix, nr(x) = 1, and Jc(x) = JoCy). Thus, in the 
Born approximation, 

J(y) = [Je(y)~J/y2]f d3xai -1). (6.8) 

To further simplify Eq. (6.7), let us use the I, Q, 
U, and V representation of Eq. (5.2). In this repre­
sentation, 

(6.9) 

With the grouping of terms implied by Eqs. (5.3), 
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(5.4), and (5.5), we may write Here 

I == (~) ® (;), 

!r = az ® az , 

R = 2i~1 ® all' 

at = t f dOp,(l - p. p')ay(p. p'), 

(6.10) and P is the matrix with elements 

(7.2) 

where 

Also, 
V(2, 1) = exp [-i<1>(2, 1)1 ® a1/]' (6.11 ) 

where <1> is defined by Eq. (5.10). We see that !r2 = 
1 @ 1 and 

!rR!r = -R. 
Thus, 

!rV(y, x)!r = [Vex, y)]-l, (6.12) 

and we may rewrite Eq. (6.7) as 

J(y) = (!r j Ii) f d3xauC -l)J~(x)[n;(x)J c(y)tl. (6.13) 

The lack of cross polarization on backscatter, 
characteristic of the Born approximation,is therefore 
also found in the DWBA. We emphasize, of course, 
that we have shown this only in the eikonal form of 
the DWBA and also when the approximation (1.9) is 
valid for the pair correlation function. 

7. THE DIFFUSION APPROXIMATION 

When the cross section ag(p· p') is sufficiently 
strongly peaked in the forward direction, the scattering 
function B can be simplified by making the diffusion 
approximation. The appropriate form was derived in 
II. We quote this here. 

Using the representation (3.17) and polar coordi­
nates for p [that is, writing I = I(x, e, ~)] with k as 
polar axis, we have 

B(x, e, ~) = 2atp( (sin e)-1 :~) 

+ at .!((1 - ,i) OJ) 
aft aft 

+ (1 _ 2)-1 (}21 (7.1) 
at ft 0~2' 

P23 = -P13 = cos e, 
P31 = -P32 = 2 cos 0, 

all others vanishing. 

(7.3) 
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The n:ain result in the present work concerns a criterion on the existence and the structure of proper 
values 10 a class of bounded operators (Schrodinger-type tridiagonal operators) on an abstract 
separable Hilbert space. The realization of these operators in the space of square summable sequences 
1.(1, (0) represents a boundary-value problem of difference equations of the following form: fen + 1) + 
fen - 1) + a(n)f(n) = Ef(n). In our case fen) E 1.(1, (0), and the condition f(2) + a(1)f(l) = E[(I) must 
hold. The approach followed is based on the reduction by Deliyannis and Ifantis [1. Math. Phys. 10, 
421 P9~9)1 of the above boundary-yalue probl~m to. an abstract operator form, which makes possible the 
applicatIon of the methods of functional analysIs. It IS shown that for every monotonically convergent and 
real-valued sequence a(n) ~ 0, n = 1,2,' . " there exist proper values, the greatest of which can be deter­
mined by the Ritz approximation method. 

I. INTRODUCTION 

One of the most important approximation methods 
for the evaluation of proper values is the well-known 
Ritz method for the determination of the greatest 
proper value of a bounded self-adjoint operator in 
Hilbert space. A well-known operator class, in which 
the Ritz method has been applied in the past, is the 
class of positive completely continuous operators. The 
reason for this successful application is the fact that 
in the aforementioned operator class the existence of 
proper values is well known and the value of the norm 
is the greatest proper value. 

Another class of self-adjoint operators in which the 
Ritz method can be applied is the class of operators 
of the form 

T= To + A, (1) 

where To is a bounded self-adjoint with continuous 
spectrum and A completely continuous and self­
adjoint. Moreover, 

II~II > II Toll (2) 

must hold. This is because, due to the Weyl theorem,l 
the operators To and T have the same essential spec­
trum. Therefore, if (2) holds, the extension of the 
spectrum of T is due to its point spectrum, i.e., the 
value 11 Til is the absolutely greatest proper value of T. 

A large class of Schrodinger-type tridiagonal 
operators (Sec. II) is of the form (1), and it is useful 

diagonal operators, an important criterion is derived 
in the present paper. 

In Sees. II and III we simply give the definition of 
the Schrodinger-type tridiagonal operators and state 
some simple propositions, which we use later. 

In Sec. IV a representation of the Hardy-Lebesgue 
space by means of the shift operator is given. Through­
out the paper, we often use certain results which follow 
with the help of the aforementioned representation. 
Besides, it is of special interest since it connects the 
proper value problem of tridiagonal operators with 
problems of analytic functions in the unit disc. 

In Sec. V we derive a criterion for the existence and 
position of the point spectrum for a large class of 
bounded self-adjoint tridiagonal operators of the 
SchrOdinger type. In Sec. VI two theorems are proved 
concerning the structure of the spectrum. 

II. THE SCHRODINGER-TYPE 
TRIDIAGONAL OPERATORS 

Let V be the shift operator on a separable Hilbert 
space :Ie, over the complex field C, with an ortho­
normal basis {en};", Ven = en+!' V is an isometry and 
its adjoint V* a partial isometry. We call every opera­
tor T of the form T = To + A, where To = V + V* 
and A is a diagonal operator, defined as 

Aen = a(n)en , n = 1,2,.···, a(n) E C, 

to know when (2) holds. This is due to the fact that a tridiagonal operator of Schrodinger type. The opera­
in the case of the Schrodinger-type tridiagonal tor To = V + V* is self-adjoint with purely contin­
operators the Ritz method can be easily applied uous spectrum (Appendix C) covering the closed 
(Appendix A). However, before its application, the interval [-2, +2]. In case a(n) is real and lim a(n) = 
existence problem must be solved. Concerning the a:;6 00, as n -+ 00, we may assume A to be completely 
existence problem and the structure of the point continuous and self-adjoint without restriction of the 
spectrum of the Schrodinger-type self-adjoint tri- generality. Then, we have the following theorem.2 

3138 
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Theorem 1: The operator T cannot have a discrete 
spectrum {En} such that lim En as n -- 00 exists; i.e., 
it cannot have a pure point spectrum with a single 
limit point. In case \I Til > 2, the point spectrum 
is not empty. 

In the case of the Schrodinger-type tridiagonal 
operators the Ritz approximation method can be 
easily applied. In Appendix A two examples are given, 
in which we can compare the approximate values 
found with the exact ones. 

III. SOME BASIC PROPOSITIONS 

We list below the propositions concerning V* and 

analytic functions 
00 

4>(z) = (fz,J) = L, (en ,J)zn-\ Izl < 1, 
71~1 

with the additional property 

00 

L, I(en ,J)1 2 < 00. 
n~l 

We can make the following remarks: (a) If the 
element f corresponds to the analytic function 4> (z), 
i.e., iff -- 4>(z), then 

Vf -- z4>(z), 

T = V + V* + A which we shall use later. because 
V*f -- Z-l[4>(Z) - 4>(0)] (3) 

Proposition 1: Every point z in the interior of the 
unit disc in <C belongs to the point spectrum of V*, 
and the set of proper elements 

00 

fz = L, zn-len , fo = el , 
n~l 

forms a complete system in Je in the sense that, iff is 
orthogonal to fz for every Izl < I, then f = O. 

The first statement is obvious. The second follows 
from the fact that, if 

(fz, Vf) = (V*fz,f) = z(fz,f) = z4>(z) 

and 

(fz, V*f) = (Vfz,f) = Z-l(fz - el,f) 

= Z-l[(fz,f) - (el,f)] = Z-l[4>(Z) - 4>(0)]. 

(b) For Schrodinger-type tridiagonal operators, we 
have 4>(0) = (el,f) =F- 0, in case that f is a proper 
value. 

This follows from Proposition 2 of the previous 
section. Now let 

4>(z) = (fz,f) and (fz, Tf) = F[c/>(z)]; 
n~l then 

(Jz, Tf - Ef) = F[c/>(z) - Ec/>(z). (4) 
for every Izl < 1, then (f, en) = o for every n, i.e.,f= O. 

Proposition 2: If f =F- 0 is a proper element of T, 
then (J, e1) =F- 0 because, if (f, e1) = 0, then we have 

(Vf, e1) + (V*f, el) + (Af, e1) = 0, 

i.e., (f, e2) = 0 and, consequently, 
00 

(f, e3) = 0 . .. and f = L, (f, en)en = O. 
n~l 

Proposition 3: For a Schrodinger-type tridiagonal 
operator the proper elements are uniquely determined 

We observe from (4) that the problem of finding the 
proper values E of the operator T is equivalent to the 
problem of finding the values of the parameter E, for 
which the solutions of equation 

F[c/>(z)] - Ec/>(z) = 0 (5) 

are analytic within the unit disc and fulfill the con­
dition 

00 

L, la(n)1 2 < 00, (6) 

if the proper values are known. That means that, if the where 
proper values are known, the problem of finding the 

n~1 

00 

fez) = L,a(n)zn-\ proper elements is straightforward. 
This follows from the previous proposition because, 

if we normalize the proper element f by taking Let 
(j, el) = 1, then we can uniquely determine the other 
components (j, e2), (f, e3), •••• 

n~1 

a(n) = c/>(n-l)(O)/(n - I)! . 

00 00 

fl = ! a(n)en, f2 = ! b(n)en· 
n~1 n~l 

IV. THE REALIZATION OF THE SCHRODINGER­
TYPE TRIDIAGONAL OPERATORS IN THE 

HARDY -LEBESGUE SPACE 

The analytic functions in the unit disc which corre­
spond to the elements fl,j; E Je are 

Proposition 1 allows us to establish a one-to-one 
correspondence between the elements f E Je and the 



                                                                                                                                    

3140 EVANGELOS K. IFANTIS 

The set of analytic functions within the unit disc with 
condition (6) obviously forms a linear space Je2 with 
the usual addition and multiplication by scalars. If we 
define an inner product in Je2 as 

""- --
(r/>I(Z), r/>2(Z»;re2 = 2a(n)b(n) = (fuf2);re, 

n=1 

then Je2 becomes a separable Hilbert space with the 
functions p (z) - zn-l n - 1 2 '" forming a n - , -" , 

complete orthonormal system corresponding to the 
basis {en}~ in Je. 

Je2 is the so called Hardy-Lebesgue space, and con­
dition (6) is equivalent3 to the condition 

(7) 

The proper value problem of tridiagonal operators in 
Je is therefore represented as a proper value problem 
of operators specified by (5) in space Je2 • In the 
following, we derive some results which we shall use 
later. 

We define the operator Ak as 

k 

Ad= 2a(n)(f, en)en, fEX, a(n) = real numbers, 
n=1 

and consider it as perturbation of the operator To = 
V + V*. If r/>(z) = (j.,f), then the analytic function 
which corresponds to the element AkJ is 

~ a(n)r/><n-l)(O) n-l 
~--'---z . 
n=1 (n - I)! 

Thus, by virtue of (3), Eq. (5) has the form 

zr/>(z) + Z-I[r/>(Z) - r/>(O)] 

i.e., 

or 

+ i a(n)r/><n-ll(O) zn-l _ Er/>(z) = 0, 
n=l (n - I)! 

k 

r/>(z) = r/>(O) 2 Pn(E)zn(z2 - Ez + 1)-1 
n=1 

r/>(z) = r/>(0)(Z2 - Ez + 1)-llliE, Z), r/>(O) =;!: 0, (8) 

where the llk(E, z) are polynomials in z of degree k 
and the P nee) are polynomials in E of degree n - 1. 
Due to the fact that Ak is nuclear and self-adjoint, the 
values lEI:::;; 2 belongl to the continuous spectrum of 
To + Ak • For lEI> 2 the real roots ZI and Z2 of the 
equation Z2 - Ez + 1 = 0 are different and, by 
virtue of Z1Z2 = 1, one of them, say Z1, is contained 
in the unit disc. Thus, in order for r/>(z) to be analytic 
in the unit disc, we must have llk(E, Z1) = 0 or, 

because zi - EZ1 + 1 = 0, 

llk[(zi + 1)/z1' Z1] = O. (9a) 

Let zi(E) =;!: 0 be a root of the polynomial nk(E, z), 
i.e., 

llk(E, z) = [z - zi(E)]llk_l(E, z). 

Then the values of E which satisfy the relations 

IZi(E)1 < 1, 

z~(E) - Ez;(E) + 1 = 0 (9b) 

are proper values of the operator To + Ak • In fact, 
from (8) we have 

r/>(z) = r/>(0)(Z2 - Ez + 1)-I[Z - zi(E)]nk_1(E, z) 

= r/>(O)[z - I/Zi(E)]-lllk_l(E, z) 

= -r/>(O)llk_1(E, z)z;(E)[1 - z;(E)Z]-1 

and, because IZ;(E)I < 1, 

"" r/>(z) = - r/>(O)llk_l(E, z)z;(E) 2 [z;(E)zr-1 
E Je2 • 

n=1 

{Note that from the last of the conditions (9b) it 
follows that 

E ± 2 = [z;(E) ± 1]2/z;(E) :;; 0, zi(E):;; 0, 

and from this that lEI> 2.} 
For the operator AI' 

Ad = a(1)(j, e1)e1 , f E Je, 

relations (9b) give 

IZil = 11/a(1)1 < 1 or la(1)1 > 1 
and 

l/a2(1) - E/a(1) + 1 = 0 or E = a(1) + l/a(I). 

The normalized proper element is 

(a2(1) _ 1)1"" ( 1 )n-l 
fo = 2 - en' 

a(l) n=1 a(l) 

For la(I)1 :::;; 1 the point spectrum of To + Al is empty. 
An interesting result which follows directly from 

(9a) is the following: 

Proposition 4: For k < 00 there can exist only one 
finite set of proper values of To + Ak • 

V. THE EXISTENCE CRITERION 

Let B be defined as Ben = b(n)en , n = 1, 2, ... , 
and assume that there exists a proper value E, corre­
sponding to the normalized proper element f of the 
operator To + B, i.e., 

00 

(To + B)f = Ef with f = 2 c(n)en 
m=l 
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and and 
",' 

\lfII2 = ~ Ic(n)12 = l. (10) a(n - 1) ~ 2 - 2[(n - l)k2 
- 4k + n - 1] 

n=1 

Then we have 

II(To + A)J\l 2 = II(To + B)f + (A - B)f11 2 

= JlEf + (A - B)f11 2 

'" = ~ Icn l2 1E + a(n) - b(n)12
, 

n=1 

and from this, in view of Theorem I, it follows that, if 

'" ~ Icn l21E + a(n) - b(n)12 > 4, (11) 
n=1 

then the point spectrum of To + A is not empty. 
Because of (10), relation (11) is satisfied if 

IE + a(n) - b(n)1 > 2 (12) 

holds for at least some nand 

IE + a(n) - b(n)1 ~ 2, 

for every n. For 

ben) = a(I), for n = 1, 

= 0, for n> I, 

(13) 

we know from the previous section that the operator 
To + B has a unique proper value E (lEI> 2) if and 
only if laO)1 > 1. In other words, for real a(l) > I 
and a(n) ~ 0, relations (12) and (13) hold and, 
therefore, the point spectrum of To + A is not empty. 

The above criterion, as well as some others, which 
was established in Ref. 2, is very strong for the case 
in which a(n) > 0 for every n, as we may see by using 
for the definition of the operator B the sequence 

ben) = 2bn-1 , n = 1,2, ... ,b > O. (14) 

The greatest proper value E of the operator To + B, 
where ben) is the sequence (14), is E = 2(1 + b2)t 
(Appendix B). Thus, if we choose b = 2k(k2 - 1)-1, 
k > 1, then, in case a(n) > 0 for every n, conditions 
(12) and (13) are satisfied for n ~ k because the 
relations 

(I + b2)t - bk-1 = I, 

(1 + b2)t - b(k + 7')-1 > I, 7' = 1, 2, ... , 

hold. 
The fact that (13) is satisfied for n < k implies 

conditions on the values of the sequence a(n) (n < k). 
These conditions follow if we set b = 2k(k2 - 1)-1 in 
the relation 

2(i + b2)-1 + a(n - 1) - 2b(n - 1)-1 ~ 2; 
i.e., 

a(1) ~ 4(k + 1)-1 - 0 as k - 00 

x [en - l)k2 - n + 1]-1-0 as k- 00. (15) 

We see from (15) that for every sequence a(n) with 
positive terms a and k, therefore, a value of bin (14) 
can be chosen such that condition (13) is satisfied for 
every n < k. 

For a sequence a(n) with negative terms we choose 
ben) = -2bn-l, b > O. The least proper value E of 
the operator To + B is then E = -2(1 + b2)t and, 
therefore, relations (12) and (13) remain the same as 
for the case in which a(n) > O. 

Finally, we note that, if a(n) > 0 [a(n) < 0] for 
every n, then the points inside the interval [- 00, - 2] 
([2, 00]) belong to the resolvent set of the operator 
To + A. In fact, for every / E Je we have 

11(v + V* + A - 2E)fll 

and 
~ II/(A - 2E)f11 - II(V + V*)flll (16) 

'" II(A - 2E)f11 2 = ~ I«A - 2E)f, en)12 
n=l 

00 

= ~ la(n) - 2EI 2 1(f, en)12 
n=1 

'" = 4 ~ Ita(n) - EI 2 1(f, en)12. 
n=l 

But 

Ita(n) - EI ~ p> 1 if a(n) ~ 0, 
and 

-oo<E<-1 or a(n)::;;O and I<E<oo, 

i.e., 

Thus, 

II(A - 2E)/1\ - II(V + V*)/II ~ 2p II/II 
- I/(V + V*)/I/ ~ 2p II/II - 211/11 

= 2(p - 1) II/II > 0 

and, in view of (16), the following condition holds: 

II(T - 2E)/11 ~ 2(p - I) II/II V /E Je 

and 2(p - 1) > 0, 

which is the necessary and sufficient for 2E to belong 
in the resolvent set of T. 

We summarize the conclusions in the following: 

Theorem 2: For every real-valued null sequence 
a(n) :;6 0, n = 1,2, ... , with all the terms of the 
same sign (either positive or negative), the point 
spectrum of the operator T = To + A is not empty. 
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It lies in the interval [- II Til, - 2} in the case a(n) < 0 
and in the interval [2, II Til} in the case a(n) > 0 for 
every n. 

VI. THE STRUCTURE OF THE SPECTRUM 

To obtain the structure of the spectrum of To + A, 
we first prove a theorem which is analogous to a well­
known theorem in the theory of completely continuous 
operators. 

Theorem 3: Let e > O. For the operator To + A 
there can exist only one finite set of proper values E 
for which lEI ~ 2 + e. 

Prool: Assume that To + A has an infinite set of 
proper values {En}~' IEnl ~ 2 + e, corresponding to 
the normalized proper elements Un} ~. [In our case, to 
each proper value there corresponds only one proper 
element (Proposition 3); i.e., 

(To + A)fn = Enfn, Ilfnll = 1 and (fn,fm) = !5nm ·) 

Then we have 

and 

IIAln - Afmll ~ IllEnfn - Emfmll - II To(fn - fm)lIl· 

But 

IIEnfn - Emfmll = (E~ + E~)t ~ (2 + e)J2 

and 

II To(fn - fm)1I ~ IITollllfn - fmll = 2J2. 

Therefore, 

IIEnfn - Emfmll - II To(fn - fm)1I 

~ (2 + e)J2 - 2J2 = eJ2 > o. 
Thus, IIAln - Almll ~ e-J2, which contradicts the 
compactness of the operator A. 

Corollary: The points -2 and +2 are the only 
possible accumulation points of proper values which 
lie in the intervals [- 00, - 2) and [2, oo}. 

Theorem 4: Every proper value E of the operator 
To + A is unstable in the following sense: There 
cannot exist a number N such that for k > N the 
point E belongs to the point spectrum of all To + Ale, 
where Ak -+ A as k -+ 00. (Ale is defined in Sec. IV.) 

Proof' The proof is based on the following char­
acteristic property of tridiagonal operators: If I is a 
proper element of To + A and at least two of its 
successive components (j, e/c) and (j, ek+l) are equal 
to zero, then (j, e/c) = 0 V k = 1, 2, .... The proof 
of this property is similar to that of Proposition 2. 

We have the following three possible cases: 

(a) (To + Ak)fk = Eh, E> 2, Ilfkll = I, and lk 
infinite set,;;' ~ h+i' i = 1,2, ... , 

(b) (To + Ak)f= Ef, E> 2, IIfll = I, k> N, 
(c) (To + Ak)h = Ef,., E> 2, IIhll = I, and h 

finite set, k > N. 

We can exclude case (b) by the following reasoning: 
Let 

Then 

(To + Ak)j = Ef, (To + Ak+l)f = Ef,--­

(To + Ak+2)f = Ef 

(Ak+l - Ak)f = 0 and (Ak+2 - Ak+l)j = 0, 

i.e., 

or 
(f, ek+l) = (f, ek+2) = O. 

Hence all the components off are zero. For case (c) 
let 11' f2' ... ,In be proper elements of the operators 
To + Ale, k > N. At least one of them, say h, must 
appear as a proper element of To + Ak an infinite 
number of times. Let 

(To + Ak)ft = Eh and (To + Ak+v)fl = Efl; 

then 

(Ak+V - Ak)h = ak+l(j, ek+l)ele+l + ak+2(j, ek+2)ek+2 

+ ... + ak+v(J, e Hv)ele+v = o. 
Hence 

(11' ek+l) = (Jl' ek+2) = ... = (h, ek+v) = 0 

and, therefore,ft = O. Consider now case (a), and let 

Tolk + Aklk = ~fk' h ~ 0, (17) 

Tolk+l + Ak+th+l = Eh+l' Ik ~ h+l' (18) 

Toh+2 + Ak+dk+2 = Eh+2, h ~ h+l ~ fk+2, etc. 
(19) 

Observe that 
(ek+l ,fk+l) ~ 0, 

(ek+2 ,fk+2) ~ 0 (20) 

because, if, for instance, (ek+l ,h+l) = 0, then Ak/'k+l = 
Ak+dk+l' That means [because of (17) and (18)] that 
E is a proper value with multiplicity, contrary to 
proposition 3. 

Equations (17) and (18) give 

«Ak+l - Ak)h ,fk+l) = 0, 
i.e., 
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from which, by virtue of (20), 

(ek+l ,h) = O. 

Equations (17) and (19) give 

«Ak+2 - Ak)fk ,fk+2) = 0 
or 

i.e., 
Uk' ek+2)(ek+2,h+2) = 0, 

and, because of (19), 

(he, ek+2) = O. 

From (21) and (22) it follows thatfk = O. 

(21) 

(22) 

QED 

Remark: If a(n) is not a null sequence but coverages 
monotonically to the real number a, then all the above 
theorems hold for the operator To + A - a, the 
spectrum of which is simply a translation of the 
spectrum of To + A. 

APPENDIX A: THE APPLICATION 
OF THE RITZ METHOD 

It is convenient for the application of the Ritz 
method to choose in the present case, as a complete 
system of elements in Je, the orthonormal basis 
{en}~. Then the n-approximate greatest proper value 
of the operator T = V + V* + A is given4 from the 
greatest root E of the equation 

(Tel, e1) - E (Te2, e1) 

(Tel, e2) (Te2, e2) - E 

(Ten, e1) 

(Ten, e2) 

(Ten, en) - E 

= O. (AI) 

Example 1: Here we give the case of the operator 

T = V + V* + A:a{n) = 12n-I, n = 1,2,···. 

(A2) 

Using the system of the two vectors e1 and e2, we 
have Tel = e2 + 12e1 and Te2 = e1 + ea + 6e2 • 

Therefore, Eq. (AI) takes the form 

1

12 - Ell = 0 
1 6 - E ' 

from which we obtain the greatest root E = 12.1622. 

Example 2: Here we give the case of the operator 

{
10 for n = I 

T = V + V* + A, a(n) = 0 '" . (A3) 
lor n > 1 

Then, similarly, we have E = 10.099. 
We compare the approximate values found for the 

greatest proper value of the operators (A2) and (A3) 
with the exact ones. In the first example the exact value 
is E = 2(1 + 62)! = 12.1654 (Appendix B); in the 
second, (Sec. IV) E = 10 + 10-1 = 10.100. Thus, we 
obtain a very satisfactory approximation by using the 
system of only two vectors e1 and e2 • 

APPENDIX B 

Consider the proper value problem of the 
Schrodinger-type tridiagonal operator 

T = V + V* + 2bCo\ (Bl) 

where Co is defined as follows: 

This problem has been solved5 by classical methods. 
The proper values of (Bl) for b > 0 are found to be 

Ek = 2[1 + (b/k)2]!. 

Here we give a simple solution with the help of the 
realization of T in the Hardy-Lebesgue space. Assume 
that the proper value equation 

{V + V* + 2bC( 1)f = 2Ef, E = 2E, b > 0, 

or, equivalently, 

(CoV + CoV* + 2b)! = 2ECof. (B2) 

Assume that 4>{z) = (J., f) is the analytic function 
corresponding to the element f E Je, i.e., f -+ 4>(z). 
Then the elements fz belong to the definition domain 
D( Co) of Co, and 

Cof -+ z4>'{z) + 4>(z) (B3) 

holds. In fact, we have 
00 

IICo!zI12 = I n2 IzI 2
(n-l) < ro for Izl < 1 

n~l 

and 

(fz, Cof) = (Co!. ,f) 
00 

= I nzn-1(en ,j) = Z(I/{z) + 4>(z) 
n~l 

because 

4/{z) = z-1(~lnzn-1(en,f) - tP(Z»). 

Similarly, we C'ln prove 

CoV*f -+ tP'(z), 
Co V! -+ Z24/(Z) + 2ztP(z). (B4) 
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By virtue of (B3) and (B4) , Eq. (5), for the proper 
value problem (B2), has the form 

Z21/ (z) + 2zcf>(z) + 1/ (z) + 2bcf>(z) 

- 2€[zcf>'(z) + cf>(z)] = 0, 
from which 

cf>(z) = const X A(z)/B(z) for €:;6 ± 1, (BS) 

where 

and 

A(z) = [z _ € + (€2 _ 1)!]b«2-1)-Lr, 

B(z) = [z _ € _ (€2 _ 1)!]b«2-wl+r, 

cf>(z) = const x (z =r 1)-Vb
/(Z'!'l) for € = ± 1. 

For € < 1, cf>(z) cannot be analytic. Thus, the case 
which the Weyl-von Neumenn theorem predicts2 is 
excluded. € must be contained in the interval 
[1, I + 2b]. For € > 1 we make the following 
remark: From the integral condition (7) it is easy to 
obtain the fact that, if cf>l(Z) or cf>2(Z) is bounded on the 
unit disc, then 

cf>l(Z)cf>2(Z) E Je2 · 

Because of this statement and the fact that € + 
(€2 _ I)! > 1, we have from (BS) 

bJ(€2 - I)! = k + 1, k = 0, 1,2, ... , 

i.e. (because b > 0), 

Ek = 2€ = 2[1 + (bJk)2]!. 

Similarly we can find the proper values for b < 0, 
Ek = -'"2[1 + (bJk)2]!. 

APPENDIX C: THE SPECTRUM OF 
THE OPERATOR V + V* 

From the relation II V + V* II = 2 (see Ref. 2) it 
follows that all E, lEI> 2, belong to the resolvent set 
of V + V*. Thus, if there exists a proper value, E of 
V + V*, then lEI ~ 2. But then the components 
(l(n) = (j, en) of the proper element f must satisfy 
the equation 

(l(n + 1) + (l(n - 1) = E(l(n). (C1) 

The solutions of the above equation for lEI < 2 are 
oscillatory, and for E = ±2 they have the general 
form 

(l(n) = cln + C2 , for E = 2, 

(l(n) = Cln( _1)n + C2 , for E = -2, 

where Cl and C2 are constants. Thus, in any case, they 
do not belong in 12(1, ex). The point spectrum of 
V + V* is therefore empty. To prove that the entire 
closed interval [-2, 2] is the continuous spectrum of 
V + V*, we have only to prove that every E, lEI ~ 2, 
belongs to the spectrum of V + V*. 

Suppose that there exists an E which does not 
belong to the spectrum of V + V*. Then the inverse of 
V + V* - E exists and is bounded; i.e., the equation 
(V + V* - E)f = g has a unique solution f E Je for 
every g E Je. We shall show that this is impossible for 
lEI ~ 2. 

Choosing g = el , we first observe that the com­
ponents of the element f in the equation 

(V + V* - E)f = el 

cannot be finite because, otherwise, all the components 
must be zero. [In fact, if 

(j, ek ) = (j, ek+1) = ... = ° 
from some k :;6 lon, then we must have 

or 

Conseq uently, 

i.e., I 
(j, ek-2) = ° a.s.o.] 

Thus the components of the element f are infinite, 
and it is easy to see that they satisfy the equation (CI) 
with the condition 

(l(2) - E(l(I) = 1. (C2) 

But the solutions of the equation (CI) do not belong 
in 12(1, ex) for lEI ~ 2. [Note that, for lEI> 2, we 
can find the unique solution of equation (C1), 
(l(n) = -An E 12(1, ex), which satisfies the condition 
(C2). A is the solution of the equation A2 - E), + 1 = 
0, whose absolute value is less than unity. This is 
consistent with the relation \I V + V*II = 2.] 
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3 K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1965), 

p.41. 
• B. Z. Vulikh, Introduction to Functional Analysis (Pergamon, 

New York, 1963). 
5 E. K. Ifantis, Z. Angew. Math. Mech. 48, 66 (1968). 
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A direct connection between the spin and conformally weighted functions on the sphere and geometric 
objects in Minkowski space is established through the isomorphism of the conformal group of the sphere 
to the restricted Lorentz group. It is shown that with the use of these functions one can duplicate all the 
standard work on the representations of the Lorentz group. It is shown further that these functions can be 
used to obtain a generalization of the classical equations of motion in which internal degrees of freedom 
arise naturally. 

1. INTRODUCTION 

It is easily demonstrated that the restricted Lorentz 
group is isomorphic to the conformal group of the 
extended plane, and hence (via the stereographic 
projection of the sphere onto that plane) to the 
conformal group of the 2-dimensional sphere. Thus, 
an operation of an element of the Lorentz group on a 
geometric object defined in Minkowski space may be 
identified with an operation of the conformal group 
on an object defined on a 2-sphere. The main purpose 
of this paper is to identify those objects on the sphere 
and to establish their connection with objects in 
Minkowski space. We shall show that the required 
objects are tensor densities of arbitrary rank and 
weight, or equivalently the spin and conformally 
weighted functions on the sphere. It is these latter 
functions that play a dominant role in our work. 
With the use of these functions we can duplicate all 
the standard work on finite, infinite, and unitary 
representations of the Lorentz group. It will also be 
shown in Appendix A that the use of these functions 
arises naturally in certain physical situations. In 
particular, this leads to a generalization of the classical 
equations of motion in which internal degrees of 
freedom arise naturally. 

In the course of this work, the operator edth, 15, will 
be used extensively.l.2 It is assumed that the reader is 
familiar with both this operator and the associated 
spin s spherical harmonics. In Appendix B to this 
paper, we demonstrate a method for obtaining a 
Clebsch-Gordan type angular momentum decom­
position using the operator 15. 

2. PROPERTIES OF THE UNIT SPHERE 

Starting with the standard line element on the unit 
sphere 

(2.1) 

and introducing the complex stereographic coordinate 

(2.2) 

the line element becomes 

ds2 = d~ d~/P2, (2.1') 

where P = HI + a). 
Essential to the formalism are the two complex 

vectors m" and m" which obey the normalization 
conditions 

m"m" = 1, m"m" = 0, fl = 1,2. (2.3) 

These vectors are naturally chosen to make Re m" 
and 1m m" tangential, respectively, to the curves 
1m ~ = const and Re ~ = const. Thus, they take the 
form, in this coordinate system, 

m" = ../2 Pt5~ , m" = ../2 Pt5~ . (2.4) 

The generators of the conformal group are defined 
as i~ll(oloXIl), where ~Il is a solution to the conformal 
Killing equation 

(2.5) 

We obtain the general solution to this equation by the 
following procedure. 

Letting ~Il be a solution to (2.5), we form the scalars 

~+ = ~Ilmll and L = ~Ilmll 

which are of spin weight I and -I, respectively. Then 
transvecting (2.5) with mllmv, ml'mv, and mllmv, we 
obtain the three equations 

i5~+ = 0, 

~e+ + i5L = ../2 k(~, ~), 
i5L = o. 

(2.5') 

(2.5") 

(2.5 111
) 

As ell is to be nonsingular on the sphere, ~+ can be 
expanded as a series, 

00 I 

~+ = L L aIm l~m(" ~), (2.6) 
I=Om=-1 

where aIm are complex constants and 8 Y lm (~, ~) are 
the spin-s spherical harmonics. 

3145 
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TABLE I. Generators of the Lorentz group and their associated infinitesimal conformal and spin 
weight factors. 

'~Il 0 k, infinitesimal 0., infinitesimal 
Generator ' a OXIl conformal factor spin weight factor 

1 ( 0 0 ) i 
Nl = Ll - - a2 - 1) -- (~, - 1)- 0 - - a +~) 

2 0' o~ 2 

. { 0 0 1 
N, = L, ! (" + 1) - + W + 1)-) 0 - - (' - ~) 2 0' o~ 2 

o 0 
N3 = L3 '0' - ~ o~ 

N.=M1 !. a' - 1) - + w - 1) -. { 0 O} 
2 0' o~ 

N5 =M. 1 ( 0 0 ) - a' + 1)- - (~, + 1)-
2 0' o~ 

Ns=M3 .r 0 0 ) 
-'t' 0' + ~ o~ 

From (2.5') it follows that I = 1, so that 

~+ = a 1 Yll + b 1 Y10 + e 1 Y1.-1 . (2.7) 

As ~Il is real, 
(2.8) 

so that 
L = C_1Yll - b-1Y10 + ii-1Y1.-1. (2.9) 

Substituting (2.7) and (2.9) into (2.5/1), we obtain 

(a - c) oYll + (b + b) oY10 + (e - ii) OY1.-1 = k. 

(2.10) 

By setting k = 0, we obtain the general solution for 
a rotation, 

(2. t'l) 

where p is a complex constant and q a real constant. 
Using the relation 

(2.12) 

we obtain the three generators of the rotation group. 
These are labeled L 1 , L 2 , and L3 and are shown in 
Table I. 

Setting 

k = 2s oYll + 2t oY10 - 2& OY1.-1 , (2.l3) 

we obtain the solution for the "pure" conformal 
(boost) transformation 

~+ = S lYll + t lY10 - & OY1.-1, (2.14) 

with s complex and t real. 
Using (2.12) we obtain the generators of the boost 

0 

,+~ 1 

1 + a - -a -~) 
2 

. ,- ~ ~ (' + ~) -'I + a 
I-a 

0 -1 + a 

transformations, together with their associated k. 
These are listed as M 1 , M 2 , and Ma in Table I. 

The normalization of the various vectors has been 
chosen so that the generators give rise to the canonical 
commutation relations 

[Li' Ljl = iEiikLb [Li' Mil = iEiikMk' 

[Mit Mil = -iEiikLk' (2.15) 

These are seen to be identical to the commutation 
relations of the proper Lorentz group. a The finite 
transformation associated with these generators is 

(2.16) 

where a, b, e, and d are arbitrary complex numbers 
subject to the condition ad - be = 1. This, the 
fractional linear transformation, is known to be 
isomorphic to the proper Lorentz group. Thus the 
isomorphism of the conformal group on the sphere 
to the proper Lorentz group is established. 

Two functions which play a major role in the 
remainder of this paper may be defined from the 
fractional linear transformation as follows: 

eO. = (O~'/O~)! = c' + d, 
0"/0' c~ + d 

K=rtP 
P' 

= (1 + '~)[(a' + b)(a~ + b) 

+ (c' + d)(c~ + d)]-t, 

(2.17) 

(2.18) 
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where 

). is interpreted geometrically as the local angle of 
rotation of the two coordinate grids given by ~ = 
const and ~'= const (after transformation). The 
infinitesimal form for)' is given in Table I. 

K is the conformal factor associated with the trans­
formation of the spherical metric under (2.16), i.e., 

Under a pure rotation K = 1, while under a boost 
K ~ 1. For the form of an infinitesimal boost, i.e., 
K = 1 + €k, see Table I. 

From Eqs. (2.17) and (2.l8) it follows that 

(2.19) 

a relation that will be extensively used. 

3. SPIN AND CONFORMALLY WEIGHTED 
FUNCTIONS 

In this section we will consider functions on the 
sphere which transform as 

rJ(~, ~) -+ rJ'(~'~') = KWe;SArJG, ~) (3.1) 

under (2.l6). 
Functions of this type are said to be spin and 

conformally weighted, with s the spin weight and w the 
conformal weight. They arise naturally if we consider 
tensor densities on the sphere of rank s and weight 
n = -Hw + s). (With no loss in generality the 
densities may be taken as symmetric and trace free­
any 2-dimensional density can be decomposed into its 
irreducible parts and represented as a sum of terms 
of this type.) From the transformation properties of 
a tensor density, i.e., 

where s denotes the number of indices, by con­
tracting with m'I'··· m" and using the complex 
stereographic coordinates of the previous section 

(thus m'l' = ";"2 P'bO, we obtain 

(3.3) 

Eliminating J and o~/or by Eqs. (2.18) and (2.19) 
results in 

or 

where 
'I'l = A p(2n+s) 
./ , ... ~ , 

'I'l' - A' pd2n+s) 
./ - , .... ,' , 
w = -(2n + s). 

(3.4a) 

(3.4b) 

We now wish to consider in particular the behavior 
of these functions under the infinitesimal fractional 
linear transformations associated with the conformal 
Killing vectors of the previous section. 

Defining the Lie derivative £( ;a) of a function with 
respect to the conformal Killing vector ;a ,a = 
I ... 6, by 

na, ~) - 1]'(1;, ~) = £(~a)n = ~ (Na - iwka + SAa)n, 
I 

(3.5) 

where Na is the generator i~~(olaxl') and ka and Aa are 
the associated conformal and spin weight factors of 
Table I. The six operators i£(;a) obey the identical 
commutation relations (2.15) as the associated 
operators N a , and so yield a new realization of the Lie 
algebra of the proper Lorentz group. 

Next we calculate the Casimir operators associated 
with this realization. They are 

L2i - M~ = S2 + w(w + 2), 

LiM; = is(w + 1). (3.6) 

It is well known that each irreducible representation 
of the proper Lorentz group is determined by a pair 
of numbers4 ko, c, where ko is integer or half-integer 
and c is any complex number. If the Casimir operators 
are calculated in terms of these numbers, the results 
are 

L~ - M; = k~ + c2 
- 1, 

LiMi = -ikoc. (3.7) 

Since ko is required to be positive, and integer or 
half-integer, this leads to the natural identification 
ko = lsI. and c = -s/isl (w + 1) with the additional 
restriction that s is integer or half-integer. Thus, for 
every irreducible representation of the proper Lorentz 
group we have an associated realization of the Lie 
algebra in terms of i£(~a), and conversely. The 
relations between ko and c, which determine whether 
the representation is finite dimensional, unitary, etc., 
now apply to the related sand w. 

In choosing basis functions for the representation 
we diagonalize L3 and L7 (the Casimir operator 
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associated with the rotation subgroup). They are 

L~ == 13 

= -~B + s(s + 1). (3.8) 

The eigenfunctions of these operators • Y1m are 
determined by the equations 

La .Y1m = m sY1m 

and 

L2.¥;m = /(1 + 1) s¥;m. 

The functions. Y1m defined in this manner are (when 
properly normalized) just the spin s spherical har­
monics.1.5 (In order to exhibit the proper behavior 
under the boosts, these functions are assigned con­
formal weight w.) 

4. PROPERTIES OF REPRESENTATIONS 

At this point we wish to state a series of results 
concerning representations, the proof of which is 
postponed till the end of this section. 

Consider infinitely differentiable functions of the 
sphere rJa, nand rJ' a', ~) which transform with spin 
weight s (s integer or half-integer) and conformal 
weight w (wan arbitrary complex number), such that 
both rJ and rJ' are expandable in spin -s spherical 
harmonics, i.e., 

rJ = L aim s¥;m(', '), 
/=181 

rJ' = L a;m 8¥;m(C ~') = K Wei8ArJ· (4.1) 
/=181 

These functions then form the vector space of a 
representation (not necessarily irreducible) of the 
proper Lorentz group, which will ~e denoted by Dx' 

X = (nl' n2) = (w - s + 1, w + s + 1). (4.2) 

The reason for this notation will be obvious later. 
A converse statement is also true; any irreducible 
representation can be realized on these D x spaces. 6 

To be more precise, we consider the space of two 
complex numbers nl and n2, given by Eq. (4.2). We 
say that X = (nl' n2) is an integer point of this space, 
if n1 and n2 are integers of the same sign and both 
nonzero. We then have the following results: 

(a) A representation associated with a noninteger 
X' is irreducible and infinite dimensional. In addition, 
it is equivalent to the representation associated with 
the point - X. 

(b) A representation associated with a pOSItIve 
integer point (n l and n2 positive integers, or equiva­
lently wand s both integer or half-integer, with 
w ~ lsI) is neither irreducible nor totally reducible. 
The Dx possesses an invariant subspace Ex which is 
spanned by the finite basis vectors s Y1m , Is/ :s;; I :s;; w. 
The Ex are the vector spaces for all the finite-dimen­
sional representations. It is possible to obtain an 
infinite-dimensional representation also from Dx by 
considering the factor space Dx!Ex' The factor space 
is isomorphic to the two equivalent representations 
D n1- ns '-"" D-n1.n2' In fact, given a vector in D n1 ,n2' 

labeled by 1](s,w) , the vectors 

rJ(W+l.s-l) == ~W-8H1](s.w) 
and 

')') = BW+8+l')') ·J{-w-l.-8-11 - ·d.,w) (4.3) 

are in D-n" n2 and D n1 .-n2 , respectively. 
There exists one last isomorphism, namely 

Dnl.n2!Enl.n2'-"" F-n1 .-n2 , 

where F-n1 .-n• (see next paragraph) is a subspace of 
D-m .-n2 • The mapping D nl.n. -+ F- n1 .-n2 is explicitly 
given by 

')') - BW+'+l~w-.+l')') ·t{-8.-w-2) - ·/Cs.w) • (4.4) 

(c) A representation associated with a negative 
integer point [-X = (-nl' -n2), nl and n2 positive] 
is also neither irreducible nor totally reducible. D-x 
now possesses an infinite-dimensional invariant 
subspace spanned by -8 Y1m , I > w = !en! + n2) - 1, 
and denoted by F-n .. - n2 . The factor space D-x! 
F-n .. - n2 ::::::. Em •n2 • Explicitly, the mapping from 
D-x -+ Em.n• is given by 

rJCs.W)(', ~) = J M(" ~, r, ~')f)c-S.-W-2)W, ~')' do.', 

(4.5) 

where dO' is the area element of the sphere and 

with 

w 

M = L a:s.w)8¥;m(', ')-syw, ~') 
I=s 

-1:Sm:S1 

ais,w) == (-1)1+8 (w + lsi + 1)! (Ii' - Isl)!. (4.6) 
(w + I + I)! (w - l)J 

The proof of these assertions is quite simple. We 
first show the isomorphism between the spin and 
conformally weighted functions and the homogeneous 
functions of two complex variables and then,translat­
ing into the language of spin and conformally weighted 
functions (via this isomorphism), known theorems 
which relate these homogeneous functions to the 
Lorentz group. 
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We begin by considering the infinitely differentiable, 
homogeneous functions of the two complex variables 
Z1 and Z2 and their complex conjugates 21 and 22 ; the 
degree of homogeneity is nl - 1 in Z1 and Z2 and 
n2 - 1 in 21 and 22 , i.e., 

!(azl , az2 , ii2l' ii22) = an1- l iin'-Y(Z1' Z2, 21,22), 

(4.7) 

The linear transformation 

(4.8) 

induces a transformation on the j, namely that 

(4.9) 

With each!(z1, Z2' 21,22), we can associate a function 
of one complex variable 

(4.10) 

The transformation on/induced by the transforma­
tion on the z's, in turn induces a transformation6 on 
the 4>, namely, 

with 
, ex, + {J 

~ = y' + band w - s = n1 - 1, 

w + s = n2 - 1. 

Now by using Eqs. (2.17) and (2.19), we obtain 

(4.12) 

Thus, by identifying 'YJ with 4>P-w, we complete the 
proof of the isomorphism. The assertions then follow 
immediately.6 

In addition it is easily seen, from either the iso­
morphism or by direct calculation, that the unitary 
representations are given by: 

(1) principal series; s integer or half-integer, and 
w = -1 + ie, where e is an arbitrary real number. 

(2) supplementary series; s = 0, and w = -1 + p, 
where p is an arbitrary real number, -1 < p < 1. 

Given a representation labeled by (s, w), the 
conjugate representation is (-s, w). 

5. CONNECTION WITH MINKOWSKI SPACE 

It is the purpose of this section to establish a direct 
connection between the spin and conformally weighted 
functions and geometric objects in Minkowski space, 
namely, tensors and spinors and possibly more 
complicated objects. More precisely, we will show a 
simple and direct correspondence, so that the spin and 
conformally weighted functions will have geometric 
meaning in Minkowski space. 

At an arbitrary point P in Minkowski space, 
consider an orthogonal space-time tetrad (t", x", y", 
z"). (A Lorentz transformation will be a "rotation" of 
this frame.) In the 3-space orthogonal to tIl, let S 
denote the unit sphere. We coordinatize S by the 
complex stereographic coordinates " ~, the stereo­
graphic projection being taken from S onto the 
(xl', yl') plane. At each point of S we introduce the 
complex tangent vectors ml'(~,~) and ml'a, t), 
tangent to the , and ~ lines. These vectors are of 
course identical to those introduced in Sec. 2, but here 
they are considered as residing in Minkowski space. 
Relative to the chosen tetrad, any null direction can 
be labeled by the stereographic coordinates of S by 
simply projecting the null direction into the three space 
and noting where it intersects S. We thus write an 
arbitrary null vector as /1'<" ~); as " ~ go over S, /1' 
sweeps out the null cone. The "length" of /1' is normal­
ized by the condition /il' = 1. A point to be noted is 
that, given the frame, by this construction there is no 
freedom of choice in the vectors /1' and mI'. 

In a second orthogonal frame (obtained by a 
Lorentz transformation from the first) at P, the iden­
tical construction can be used to find an alternative 
description of the null cone by the vectors /,1'<", n, 
with a unit sphere S', coordinatized by'" ~', with 
tangent vectors m'l' and m'l'. 

We now contend that, for any proper Lorentz 
transformation, there will correspond a transforma­
tion of S ~ S', given by 

Moreover, 

r = a' + b. 
c' + d 

(5.1) 

['I' = K[I', m'l' = eiA(m" + H[I'), (5.2) 

where K and A are the conformal factor and rotation 
angle of the previous section and H is a function of K. 
(See Appendix A.) 

The proof can be given by direct calculation, but it 
is easier to infer it directly from work on the Bondi­
Metzner-Sachs group7.8 by just keeping the super­
translations all zero and restricting the considerations 
to flat-space. 
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With each pair of vectors I"a, ~) and mila, ~), we 
can associate a unique pair of two component spinors 
oAa, ~) and tBa,~) normalized so that OAtA = 1, by 

(5.3) . 

When /1' and mil transform by Eq. (5.2), it is easily 
seen that 

With this result we can establish the direct relation of 
the spin and conformally weighted functions with 
spinors. 

An arbitrary irreducible spinor, and consequently 
any irreducible tensor through the known association 
of tensors with spinors, can be written 

<l> A"'BA".'C', 

with w - s symmetric unprimed indices and w + s 
symmetric primed indices. By defining 

on - '" OA •.. aBo-A' ... o-c' 
./ - 'l'A"'BA""C' , (5.4) 

we see that, under a Lorentz transformation of the 
Minkowski space, we have 

(5.5) 

(We point out that,though it may appear as if we are 
not performing a Lorentz transformation on the 
spinor <l> A'''BA' ... C' itself but only on the OA, this is 
not true. The following example should clarify this 
point.) 

Consider a vector Aa in two coordinate frames, i.e., 

A = ax" A 
a oxa " 

with 

ia = oxa 
I'" = K oxa 

I"; 
ax" ax" 

then AJa = KAia or 'Yj' = K'Yj, i.e., W = 1, s = O. 
What we have thus shown is that,when an irreducible 

spinor (or tensor) at a point is contracted with a 
variable 2-component spinor OA, which spans the 
light cone, the result is a spin and conformally 
weighted function given on the local unit sphere. A 
local Lorentz transformation from one frame to 
another is equivalent to the fractional linear or 
conformal transformation of one unit sphere onto the 
other. 

It is not difficult to see that this contraction can be 
reversed for the finite-dimensional representations, by 
using the orthogonality properties of the spin-s 
spherical harmonics. 

One can generalize the above notions to a spinor or 

tensor field, tPA ... BA' ... c(X") or Ta .. .p(x"). They would 
correspond to a spin weighted function field 'Yj(', t x"). 
In this manner invariant equations for spinor or tensor 
fields would be written as a scalar equation in a 6-
dimensional space. In addition, one need not limit 
oneself to just the finite-dimensional representations. 
The infinite-dimensional or even the partially re­
ducible representations are just as easily described 
in this manner as the finite-dimensional ones. 

Finally, we point out that, in some sense, one can 
give a geometric meaning to the infinite-dimensional 
representations. In a given frame, 

00 

'Yj(', ~, x") = ! Qlm(x") s¥;mC', ~). (5.6) 
1=181 

The Qlm(X"), -/ ::;; m ::;; /, can each be identified with 
a 3-dimensional "tensor" (or spinor) totally symmetric 
and trace free in I spatial indices, 

Thus, 'Yj is equivalent to an infinite set of 3-dimensional 
tensors (or spinors), each transforming irreducibly 
under 0(3) [or SU(2)], but being completely mixed 
under a Lorentz transformation. 

APPENDIX A 

As an application of the results of Sec. 5, we present 
here a generalization of the classical relativistic 
equations of motion for a free particle. The generaliza­
tion consists of extending the representation of the 
homogeneous Lorentz group associated with a vector, 
s = 0 and w = I (in particular the velocity vector of a 
particle), to its related infinite-dimensional, partially 
reducible representation, the additional components 
representing internal structure. For future reference, 
slightly more material is developed here than is 
needed. 

We begin by taking the parametric form of an 
arbitrary timelike world line in Minkowski coordinates 
(yfl) to be yfl = ~I'(U). The Minkowski coordinates of 
an arbitrary point can be expressed in terms of null 
coordinates x" = (u, r, X2, x 3), associated with the 
light cones emanating from the line, by 

y" = e(u) + rA"(u, xA
), A = 2,3, (AI) 

where XO = u is a measure of proper time on the world 
line, with each cone being labeled by u = const; 
Xl = r is an affine parameter along each null ray lying 
on the cones as well as a measure of the radius of each 
sphere given by u = const, r = const; x 2 and x 3 are 
"angular coordinates" which are related to the 
complex stereo graphic coordinates , and ~ by , = 
x 2 + ix3 ; and A" is a null vector field which sweeps 
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out the directions of the full cone at each u = const as 
, and ~ vary. Since ).1' is null, it must satisfy the 
conditions 

).I'}.I' = ).1').1' = }.I' ).1', A = 0, (A2) 

where a dot denotes a/ou and a comma-A denotes 
a/,oxA. In addition we require the normalizations 

(A3) 

where the 2 implies that u is .J2/2 times the proper 
time. Finally, in order to specify how null directions 
are to be propagated along the world line, we let 

).Il = [I'/v, [I' = [1'(', ~), V = v(u, ,,~) (A4) 

and differentiate with respect to u. This yields the 
propagation law 

(AS) 

By means of the relationship , = cot tOe;"', we can 
also express v in terms of ordinary spherical harmonics 
Y1m(O, q:,) as 

i 
v = (21T)!toyoo - C31T

) [W + it2)/.J2 Y1- 1 + eyIO 

- (t1 
- j~2)/.J2 ~l]' (A12) 

The line element in the null coordinates can now be 
written as 

ds 2 = 2(1 - ~ r) du 2 + 2 du dr - ~ d, dr 
v 2P~v" 

(A13) 

Thus, the world line uniquely determines the metric 
and the metric determines the world line. 

Assuming that II' is a spin weight zero quantity, one 
can show by straightforward calculation from (AID) 
that 

t5~[1' = 0, (A14) 
which simply expresses the parallel transfer of the 
direction of ).1'. Note that from (A3) and (A4) we 
obtain the relations where 60 denotes the operation of t5 with respect to 

(A6) Po = HI + a). It also follows from (A2) and (A8) 
that 

We can now calculate the metric tensor gll.(Xa) in 
the null coordinates by means of (AI) and the trans­
formation law 

ay"ayll 
gllv = axil oxv:rla , 

where 'YJap is the usual Minkowski metric 'YJall = 
diag (1, -1, -1, -1). Using (A2)-(A6), we find that 

goo = 2( 1 - ; r), 
11l,A[",B 2 

gAB = --2 - r. 
v 

(A1) 

Since /11 and v were defined in (A4) only up to an 
arbitrary u-independent factor, we may choose this 
factor such that 

(A8) 
where 

Po = i(l + ,~). (A9) 

A solution to (A8) is given by 

[I' = (2.J2 Po)-l( 1 + a, , + t ' ~ ~ , a-I). 

(AlO) 
It then follows from (A6) that 

v = J2 (l - l' : ~e + i l' : ,~ t2 + ~ ~ ~~ t3) . 
(All) 

- -
lllt50 111 = ll1t50 11' = 0, 6011'60 11' = -1. (AlS) 

With the help of (AI4) and (AIS), we then obtain the 
results 

- --
[I't50t5011' = -!t50t50 [11 • 6060 11' = 1. (A16) 

Defining the real null vector nil and the complex null 
vectors mil and mil by 

(AI7) 

ml' = tioll', ml' = tioll', (AI8) 

we have constructed a null tetrad system (Ill, nil, mil, 
ml') for Minkowski space, which satisfies the standard 
orthonormality conditions, namely, 

[I'nl' = -mllml' = 1, (AI9) 

with all other scalar products equal to zero. In terms 
of this null tetrad, the Minkowski metric 11 can be 

'/11' 
expressed as 

11 = I n + n I - m m - m m (A20) 
'/11' II v II' II v I' v' 

Now, consider two arbitrary vectors AI'(u) and 
BII(U) which are attached to the world line and let 

A = AI'/II' B = BII/I" (A21) 

Multiplying (A20) by AIIB' and using (Al7) and (Al8), 
we obtain 

AI'BI' = 2AB + A6060B + B60~oA 
- 60A . ~oB - 60A . t5oB. (A22) 
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In particular, 

tilt 2 2( 2 - - ) 
<; ~ I" = = v + V~o~oV - ~o1J • ~ov 

or 
(A23) 

This last equation simply states that the Gaussian 
curvature J(, of the 2-surface, whose metric is given by 
g~BdxA dxu = (d~ d~/P~V2), is equal to I, i.e., 

.)\, = v260~o log (Pov) = 1. (A24) 

From the results of Sec. 5 we note that under a 
proper Lorentz transformation of the original 
Minkowski coordinates III and v transform according 
to 

I'll = KIll, Vi = Kv, (A25) 

that is, v has conformal weight 1. For completeness, 
let us also consider the transformation of the vectors 
mil and nil. Putting milt = ~~l' 11 and using (A25) we have 

a pi or a 
mill = 2P' - (Kill) = 2 ~ P .2.. - (Kill) 

o or Po 0 o~' o~ 
pi or 

= ......!?_'" ~ (Kl"). Poot 0 

With the help of (2.l9), we then get 

mill = eiA(ml" + IIl~O log K). (A26) 
Similarly, 

n'll = I'I" + ~~-g~1'1l 
= Kill + K-2~0t50(KIIl) 
= K-1 [nl" + ml"~o log K + ;n1"i50 log K 

+ 1~(K2 - 1 + ~o-go log K 

+ ~o log K . ~o log K»). (A27) 

We can simplify (A27) by using the identity 

(A28) 

which can be easily proven from the definition of K 
given in (2.18). Thus, under a proper Lorentz trans­
formation the tetrad vectors transform as 

I'I" = KII", 
mill = eO-(mll + Hill), 

(A29a) 

(A29b) 

n'll = K-1(nl" + Hm ll + Rii11l + RBIIl), (A29c) 

with R == ~o log K. 
With this background, we now give a simple gen­

eralization of the relativistic equations of motion 

we immediately obtain the equivalent statement, 
namely, 

tmv = F(u, " ~), (A31) 

with F = Pill. By leaving (A31) unchanged in form 
but now considering v and F to be associated with the 
infinite-dimensional representation s = 0, W = 1 

( i.e., v = i vim Yzm and F = i F lm Yzm), 
1=0 1=0 

we have generalized (A30). The VOO ' VIm' and FOO ' Flm 

are related to the usual 4-velocity and 4-force as in 
(A I 2); the higher I components Vim can be associated 
with the internal structure or moments, with the higher 
Flm acting as the driving "force" for these moments. 

Equation (A31) can be generalized further by 
applying the results of Sec. 4 and recalling that v has 
s = 0 and W = 1. It can be easily verified from (4.3) 
and (4.4) that the expression 

{J 4 2-2 3 2 -2 (A32) (Xv + v ~oi5oV + yv i50v . ~ov, 

where (x, {J, and yare constants, also has s = 0 and 
W = 1. Though other expressions with this property 
can be constructed, (A32) is the simplest. By adding 
this to (A31) we obtain 

tmv = F + (Xv + {JV4t5~-g~V + yv3t5~v . ~~v (A33) 

as a nonlinear relativistically invariant equation of 
motion for a particle with internal degrees of freedom. 

A remarkable coincidence arises if we specialize to 

oc = 0, y = - {J = (l2vi2: K)-l (K being the gravita­
tional constant) and treat the particle as free, i.e., 
F = O. The resulting equation 

mv = (6vi2 K)-V(~~v· E~v - v~~EM (A34) 

is identical to the Robinson-Trautman equation,9.lo 
which arises in the study of algebraically special 
solutions of the vacuum Einstein field equations. In 
several recent papers,1l·12 we have argued, from a 
slightly different point of view, that this equation 
(A34) represents equations of motion. 

APPENDIX B 

A function f which obeys L2f = 1(1 + 1)/ is con­
sidered to have an I value. In general the product of 
two such functions does not have an I value. It is well 
known ,though , that this product may be decomposed 
into a sum of terms, using the Clebsch-Gordan 
coefficients, each of which does have an I value. In this 
appendix, we present a method of obtaining this 

(A30) decomposition which requires neither knowledge of 
(The extra factor t comes from the fact that our u is the Clebsch-Gordan coefficients nor of the azimuthal 
.J2/2 times the proper time.) Contracting (A30) with Ill, decomposition of the individual functions. 
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As an example, consider two functions j and g, 
both with' value one. Using the operator t5, we may 
write 

fg = 1/6(2fg + t5j~g + "8jt5g) 

+ 1/6(4fg - t5f"8g - ~jt5g). (Bl) 

Considered as functions, the two bracketed expressions 
are easily seen (using the equivalence L2 = -t5~ for 
spin weight zero quantities) to have I values 0 and 2, 
respectively. We shall now prove that this decom­
position can be obtained generally and give a method 
for its construction. 

From the properties of the Wigner D matrices and 
their relation2 to the spin-s spherical harmonics, it is 
easily shown that the product of two spin-s spherical 
harmonics is given by 

81 Y;1m1(e, cp) 82 Y;.m2(e, cp) 
1 

= I (2/1 + 1)(212 + 1») 8 YlmCe, cp) 
I 41T(21 + 1) 

X (11, 12; m1, m211, m)(/1' 12 ; -SI' -s211, -5), 

(B2) 

where (/1, '2; ml , m211, m) is a Clebsch-Gordan 
coefficient of the rotation group13 

m = m1 + m2, 

8=Sl+ S2, 

111 - /21 ~ I ~ III + /21. 

Choosing S1 = -S2 = S (s > 0), we rewrite (B2) as 

t5
S
Y;1m1t5'Y;2m2 

1 = (-1)' I ((11 + s)! (12 + s)! \211 + 1)(2/2 + 1») 
I (11 - S)! (12 - S)! 41T(21 + 1) 

X Y;m(11 , 12 ; m1 , m211, m)(/l' 12; -S, s 11,0). 

(B3a) 
For s' < 0, (B2) becomes 

- " 8'Y, tj- Y;1 m1 t5- 22m2 

= (-IrS' I ((11 - s')! (12 - s')! (211 + 1)(212 + 1»)1 
I (11 + s')! (12 + s')! 41T(21 + 1) 

X Y;m(ll, 12; m1, m21/, m)(ll, 12 ; s', -s'll, 0). 

(B3b) 

Assuming that 11 ~ 12 , then (B3) represents 2/2 + 1 
independent equations. 

If f and g have I values 11 and 12 , respectively, they 
may be written 

f= Iam1 Y;1ml' g = Ibm2 Y;2ffl2' 
tnl m2 

-I; ~ mj ~ Ii' 
(B4) 

Multiplying (B3a) by am1 and bm2 and summing over 
m1 and m2 , we get 

t51~Sg 

= (-1)' I ((11 + s)1 (12 + s)! (2/1 + 1)(212 + 1»)1 
I (11 - s)! (12 - s)! 41T(21 + 1) 

X (11 ,12 ; -s, s 11, 0) 

X I (11,12; ml , m211, m)a ffl1 bm2 Y;m 

= I !XsID I
(" ~), (BS) 

I 

where !Xsi are constants (see below) and DI satisfies 

[t5"8 + l(l + l)]Dla, D = O. (B6) 

Similarly, from (B3b), we obtain 

~sft5Sg = I (-IY1+ 12+1!X"zD I, (BS') 
I 

where we have set s' = -s in (B3b),so that 0 ~ s ~ 
12 , and have made use of the identityI3 

(/1,/2; s, -s II, 0) = (_)/1+/2+1(/1' [2; -s, s II, 0). 

[The indices II and 12 have been suppressed in (BS).] 
The normalization of D! is not uniquely determined, 
as any variation results in a corresponding variation 
of the constants !Xsi' The expansion we seek then is 

fg = I lXolDI = .I IXIDI. (B7) 
I 

Equations (BS) and (BS') form a set oflinear equations 
for the Dl's in terms of t5168g and "81 t58g, which may 
be inverted to give expressions for the Dl's of the form 

From Eqs. (BS) it can be seen that,while the expression 
t58f"88g does not have good parity, the combination 
t58f"88g ± "88ft58g has parity ± ( -I )11+12. Since DI has 
parity (-I)!, (BS) must be of the form 

DI = I al.[t5sf~Sg + (_I)/1+l2+/~sft5Sg]. (B9) 

In order to generate the coefficients als ' we make 
use of the easily established identity (valid for 0 ~ 
s:::::;12-1): 

t5~(t5'i~Sg) = t5s+1f"8s+1g 

- [ll11 + 1) + 12(12 + 1) - 2S2]t5'i~'g 
+ [11(11 + 1) - s(s - 1)] 

X [12(12 + 1) - s(s - I)W-lf~·-lg. 

(BlO) 
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Substituting (B9) into (B6) and using (BIO), we equate 
the coefficient of (5s+1f6 S+1g to 0 and obtain the recur­
sion relation 

aZS = [11(11 + 1) + 1112 + 1) 

- 2(s + 1)2 - l(l + 1)]az,s+l 

- [11(11 + 1) - (s + 1)(s + 2)] 

X [12(12 + 1) - (s + l)(s + 2)]a1,8+2' (Bll) 

where 0 :::; s :::; 12 and all. is arbitrary, reflecting the 
arbitrariness in the choice of DZ. Using these relations, 
it is a simple matter to generate all the expressions Dl 
of the same parity as fg and hence the final form 

fg = LtX.zDz. 
l 

As indicated above, expressions Dl with parity 
opposite to that of fg are easily calculated. A case of 
particular interest is that when 11 = 12 = 1 = 1. Let 
f, g, and h be three vectors such that 

f x g = h. (BI2) 

We form the function f("(" ~) associated with the 
vector fby 

f("(',~) = e;)\ -(fx - ifY)Yu("(,,~) 
+ (It + !fY)Yl.-l("(,'~) + ,,/ifzYlo("(', ~)] 

(B13) 

with similar expressions for g("(,,~) and h("(,,~) 
formed from g and h, respectively. The functions 
f, g, and h all have 1 value equal to one. 

From the above it follows that (5f6g - 5f(5g has I 
value to one. In fact, 

(i/2)«5f5g - 6fi5g) = h, (BI2') 

giving an expression for the cross product of two 
vectors expressed in our formalism. 
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I. INTRODUCTION 
Recently a new approach to the subject of equations 

of motion in general relativity was presented.1•2 This 
approach, using the spin-coefficient formaIism,3.4 
describes the motion of a singularity (suitably defined) 
in terms of the behavior of the family of null cones 

emanating from the singularity. The resulting descrip­
tion is intrinsic to the singular space-time and does not 
rely on an assumed regular background space. 

A novel consequence of this work was that not only 
did it predict exact equations of motion (e.g., the 
radiation reaction force and the Lorentz force when 
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the electromagnetic field is coupled in), but it also 
predicted a type of internal structure for the singu­
larity as well as the dynamical laws governing the time 
development of this structure. Though it was possible 
to interpret this structure as being loosely related to 
the mass (or "electric" type) multipole moments, 
there was nothing that could play the role of the spin 
(or "magnetic" type) moments. In particular, there 
was no means of treating the motion of a singularity 
with intrinsic angular momentum. 

It is the purpose of this article to try to remedy this 
defect. (Though we here work only with the linearized 
Einstein equations, we believe that the method can be 
extended to the full nonlinear theory.) By first inte­
grating the Bianchi identities in flat space (using a 
null coordinate system associated with an arQitrary 
timelike world line) with the condition that no 
moments5 higher than the dipole should exist, two 
functions of integration, representing the mass and 
the complex dipole moment (mass dipole and angular 
momentum), are obtained. Then, by effectively using 
the condition that the angular behavior of the linear­
ized metric be regular (i.e., be expandable in general­
ized spherical harmonics), conditions on the motion of 
the singularity and the time development of the 
moments are derived, and then shown to be identical 
with the well-known relativistic equations of motion 
for the pole-dipole particle.6 •7 

The authors believe that though the results are not 
new, the method of approach is sufficiently novel and 
holds out the strong enough hope for generalization 
to the full nonlinear theory to justify the present 
description, 

2. THE NULL COORDINATE SYSTEM 

As in Refs, 1-4, we introduce a null coordinate 
system xa = (u, r, xA ), a = 0,1,2,3, A = 2, 3, and 
an adapted null tetrad W, na, rna, rna) and apply it in 
flat space-time, The coordinates and tetrad are to be 
based on an arbitrary timelike world line c:ya = 
.;a(u), where ya are Minkowski coordinates and the 
time coordinate u is normalized according to 

~2 = 2, (1) 

and the affine parameter r chosen to satisfy la~a = 1. 
Further specialization results in a metric1.2 

ds2 = 2 (1 - ~ r) du 2 + 2 du dr - ~ d, d~, 
P 2P 

and a null tetrad 
, = x2 

- ix3
, (2) 

la = c5~, n
a = c5~ + (-1 + ~ r ) c5~ , 

rna = - f(1, i)c5A. 
r 

(3) 

The quantity P(u, xA ) has the interpretation1.2 that 
PIP is in one-to-one correspondence with the accelera­
tion vector ~a, 

The zeroth-order spin coefficients are then calculated 
from the field equations, with the Weyl tensor 
Wn (n = 0 - 4) set equal to zero [see Ref. (2), Eqs. 
(Bl) and (BS) with 4> = W = 0 and K = 1]. 

The following notation will be used: A superscript 
zero (e.g., wV indicates that the quantity concerned is 
independent of r; a subscript zero sign (e.g" i5o) will 
be used, where necessary, to distinguish zeroth-order 
from first-order quantities (this is done only in Sec, S); 
if sa and ta are 4-vectors, then S2, (st) denote the inner 
products sasa , sata , respectively; and [(s)/] is used to 
denote a quantity8.9 whose angular behavior is like a 
spin-weight s, angular momentum I, spherical 
harmonic s Y lm ' 

3. FIRST-ORDER CALCULATIONS 

The linearized Bianchi identities for the first-order 
Weyl tensor depend only on zeroth-order spin 
coefficients and are written 

DWn + (S - n) Wn = -i5Wn+1, n = 1,2,3,4, (4) 
r r 

1fn + (-1 + ~ r)DWn + [(2 - n)~ r - 1 - nJ:n 

-i5Wn+1 - P ---'-"'-:"': + nWn-l i5 - , 
r P 

n = 0, 1,2,3, (S) 
Here D == alar and8 •9 

i5'Y1 = 2p1- S '£' P"'YI '/ a, 'I' 

5'Y1 = 2pHs 0_ p-s'YI '/ a, 'I' 
(6) 

where' = x2 
- ix3

, Wn has spin weight 2 - n, 
In the usual multipole interpretation, 5 WO is specified 

by giving the quadrupole and all higher moments, so 
the dipole assumption amounts to 

Wo = O. (7) 
The radial integration of (4) can be carried out 
explicitly: 

(8) 
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where the tp~, n = 1-4, ar~ constants of integration. 
Substituting the expressions (8) for tpn into the 
propagation Eqs. (S) and equating coefficients of like 
powers of r, we obtain 

t5tp~ = 0, (9a) 

~'110 - 3 !.. 1110 _ ,j,0 
v r 2- prl rl' 

~ 0 3 I' 0 ,0 
vtpa = p tp2 - tp2' 

~ 0 3 I' 0 ,0 
vtp4 = p tpa - tpa' 

(9b) 

(ge) 

(9d) 

Since t5[(s)s] = 0, Eq. (9a) states that tp~ is a [(1)1] 
quantity-in some sense the dipole moment. The 
Eqs. (9b)-(9d) can be regarded as determining 
tp~, tpg, tp~ in terms of tp~ (and possibly arbitrary 
constants); Eqs. (8) then yield the complete solution 
for tpn' 

The general method of solution of Eqs. (9) can be 
illustrated by its application to the second of these 
equations. [Essentially the technique is to analyze 
each equation according to its various angular parts 
(i.e., I values) and then use the raising properties 
(s ---+ s + 1) of t5. References 6, 7, and Appendix A 
of Ref. 2 will prove helpful in following the manipula­
tions through in detail.] Write 

~ 0 3 I' 0 '0 A vtp2 = - tpl - tpl = 2 + B 2 , 
P 

i.e., 

t5[(0)] = [(0)1] x [(1)1] _1-. [(1)1] = [(1)1] + [(1)2]. 
au 

Then 

t5B2 = 4tp~t5!.. . 
P 

{Note t5[(s)s] = 0, but t5(ajau[(s)s]) ~ 0, or more 
generally, the time derivative of an [(s)/] quantity is 
not an [(s)l] quantity. We give here three useful 
general formulas for any (s) quantity 'Y): 

a I' 
- t5n'Y) = n - t5n'Y) 
OU P 

+ n(n + s - 1)t5 ~ . tin-I'Y) + t5nij, 

o - p-
- t5n'Y) = n - t5n'Y) 
au p 

-I' - -+ n(n - s - 1)t5 P . i5n- I'Y) + i5nij, 
(10) 

a - I' I' -
- t5t5'Y) = 2s - 'Y} + 2 - i5i5'Y) 
au p p 

I' - -I' -} + si5 - . i5'Y} - si5'Y} . t5 + i5i5ij. p. p 

Continuing the analysis: 

gt5B2 = -4B2 = 4~ ( tp~ . t5 ~), 
I' - I' 

B2 = 2tpf - - t51p~ . t5 - , 
p P 

A2 = t5tp~ - B2 

I' - I' 
= tpf - + t5tp~ . t5 - - 1p~. 

p p 
Thus 

a + b , 
i.e., 

[(0)] = [(0)0] + [(0)1] + [(0)2], (11) 

where m is an arbitrary [(0)0] function of integration 

(a function of u), a == tgA2, and b = -tgB2' It is 
convenient to introduce the [(0)1] quantity G defined 
by 1p~ == t5G. In terms of G, 

- I' 
a = t5Gt5 P - G, (12) 

b = tG ~ - lt5G~ ~ - l~Gt5 ~ . (13) 
p p p 

Proceeding along similar lines with Eqs. (9c): 

t51pg = M + Aa + Ba + Ca , 
i.e., 

t5[( -1)] = [(0)0] + [(0)1] + [(0)2] + [(0)3], (14) 

where 

M = - m + !a ~ + lt5ag ~ + 19at5 ~ p 6 P 6 p' (lSa) 

I' -I' - I' 
A = 3m - - d + .lt5at5 - + .lt5at5 -a p l P 2 p' (lSb) 

8 I' 2 -.1' - I' b Ba = sa - - at5ai5 - - it5ai5 - -
p p p 

+ ttsbei ~ + !eibts ~ , (lSe) 
p p 

I' -I' - I' 
Ca = 3b - - ti5bi5 - - ti5bi5 - . (15d) 

P P P 

Since 1p~ is a (-1) quantity, we must have 

M=O, (16) 

whieh is the first of the equations of motion. In the 
ease of the pure mass monopole (i.e., G = 0), this 
reduces immediately to the mass conservation law 
m =0. 

As will be shown later, further restrictions on tp~ 
and 1pg follow as a consequence of the first-order field 
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equations: 
Aa = 0, 

1m (a) = 0, 

1m (m) = 0. 

(17) 

(18) 

(19) 

Equations (16)-(18) in fact constitute the equations 
of motion6 •7 for a pole-dipole particle. Equation (19) 
forbids a "spin" monopole or "magnetic" type 
monopole. For a pure monopole (G = 0), Eq. (17) 
implies 

PIP = 0, (20) 

so that the monopole is constrained to have a time­
independent mass and move along a geodesic in 
flat-space. 

The radiation field 1p~ consists of a linear combina­
tion of (-2)2, (-2)3, and (-2)4 quantities, and may 
be calculated from Eq. (9d): 

° 1 ~ P ~B 1 ~21J 1 ~ P ~C 1 ;;2C -1p4 = T2U - U a + 24U a + SOU - U 3 + T20U a' p p 

(A similar result may be derived for the radiation 
field of the electromagnetic dipole moving along an 
arbitrary world line; 

° -G IP-a - a p 
- CP2 = ii5 e + '2 P ~ e + ti5G e au P , 

where now cPg = i5Ge , Ge representing the electric 
and magnetic dipole moments.) 

4. THE POLE-DIPOLE EQUATIONS 

In the present notation with the normalization 
t2 = 2, the pole-dipole equations of motion [Eqs. 
(5.3) and (5.7) of Ref. (6)] take the form 

sab + t[aa.b] = 0, (21) 

pa = 0, (22) 

where sab is a skew-symmetric tensor, representing the 
intrinsic dipole moment and angular momentum, and 

a.a = Sabtb, 

pa = mta + a.a. (23) 

[Usually the additional condition that the dipole 
moment vanishes is imposed; namely 

Sabtb = 0. (24) 

Though we will not use (24), it will be mentioned 
later.] 

Note that the full content of (21) is expressed in 

Sa*ib = 0, (21') 

where the * represents the operation of taking the 
dual. 

Before establishing the connection between (21) 
and (22) with the equations of the previous section, a 
few mathematical results are stated. If sa and ta are 
vector fields defined along c, orthogonal to the 

velocity vector ta, then contracting with Eq. (A3) of 
Ref. 2, we obtain 

-Cst) = 2ST + i5S"8T + i5T"8S, (25) 

with S = (Is), T = (It). Further, it may be shownlO 

that if 
h a = ~ €abcdt: S t (26) ,J2 "b cd 

(which is the cross product of t with s in the 3-space 
normal to ~), then, defining H = (lh), 

H = J2 (i5S"8T - ~Si5T). (27) 

Multiplying Eq. (22) with t a and la - t~a, respec­
tively, we obtain 

2m - (a.~) = 0, 
P .. 

m - + (ckl) + t(a.~) = 0. 
p 

By using (25) and the identification a = -3(a.t), we 
obtain Eqs. (16) and (17). 

The tensor S:b can be represented by 
* " 'd Sab = qa~b - qb~a + €abCdrC~ , 

where qa = tS:b~b, ra = tSaib. From (21'), 

2qa - qbtb~a + €abCdrc~dtb = 0. 

Multiplying by la and using (25), (26), and (27), we 
obtain 

2i\t + i5(R - iQ) . i5 - - i5(R + iQ) . i5 - = ° r. [ -P - PJ 
p p' 

where Q = (qt), R = (rl). [Use has been made of the 
identity (ql) = Q + Q(P/P).] Finally setting G = 
6(R - iQ), Eq. (18) is obtained. With G so defined and 
a = -3(a.t), the consistency Eq. (12) can be shown 
to be identically satisfied. 

Note also that the vanishing of the dipole moment, 
i.e., Eq. 24, is equivalent to R = 0. 

5. COMPLETE FIRST-ORDER SOLUTION 

A subscript zero is now attached to all zeroth-order 
quantities, e.g., a.g, Po, ~o. All spin coefficients and 
metric variables without a zero subscript are first­
order quantities. 

Using certain coordinate conditions,4 the first-order 
radial field and metric equations can be integrated: 

p = 0, K = 7T = € == 0, 
a = aOr-2, 

a. = _a.°r-1 + iXgaor-2, 

p = iXOr-1 - a.gaor-2 - t1pfr-a, 

T = iX + p, 
I' = y0 - i1p~r-2 + t(a.g1p~ - iXgtP~ - 2~01p~)r-3, 
A, = A,°r-1 + aOr-2, 

ft = ft°r-1 - 1pgr-2 - i~o1p~r-3, 
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y = yO _ 1J!~r-l - !~01J!~r-2 + t( ip~ - ~~1J!~)r-3, 
~A = ~OAr-l _ O'O~gAr-2, 

w = wOr-1 - t1J!~r-2, 

XA = X OA + t(1J!~~gA + ip~~gA)r-3, 
U = uO _ (yO + yO)r 

- t( 1J!g + ip~)r-l - t(801J!~ + ~ip~)r-2. 
Substituting in the linearized nonradial field and 

metric equations yields relations between the first­
order constants of integration. The new first-order 
variable ~OA is taken as - PoI(1, i) [see Eq. (3)]. Thus 
the zeroth-order P of the previous sections becomes 
the first (plus zeroth)-order Po(1 + I). It then follows 
from the field equations, using further coordinate and 
tetrad conditions [see e.g., Ref. (4)] that 

OA 0 1 ° - Po -I X = 0, y = -t, Y = Ii50 - + i50 , 
Po 

(J.,O = -li501 + tJBo log Po, 

w 0 = - ~oO'o );0 = &0 _ 0'0 Po 
, P , 

o 

-flo = - uO = K = 21 + i5o~oI. 
In addition 0'0 and I must satisfy the first-order equa­
tions 
° -0 :;<2 ° ",2-0 1J!2 - 1J!2 = VoO' - VoO' , 

1J!~ = i50(Je° + B~I), 
(28a) 

(28b) 

0= _B2j _ 2B I~ Po + 2 Po Je0 - ig. (28c) 
1J!4 ° 0 0 Po Po 

Note that, though (28) satisfies (9), identically it 
imposes, by its structure, severe conditions on 1J!g and 
1j!g. Since ao and Jeo + B~I are spin-weight -2 quanti­
ties, it follows immediately that 1J!g has no [(-1)0] or 
[(-1)1] part and that 1J!g-ipg has no [(0)0] and 
[(0)1] part. These restrictions amount to nothing more 
than a restatement of Eqs. (16)-(19). 

In addition (2b) implies 

i51J!g = i5~(Je0 + g~I) 
= ~ i5~Bo - 3 Po i5~Bo + i5~~~I, (29) 

au Po 

and, from Eqs. (14)-(17) and (19), 

o . Po 
fj1J!3 = - b + 3 - b 

Po 

(

8 Po - Poc Po) + aa - - ii50a . i50 - - ~i5oa . i50 -. (30) 
Po Po Po 

Equating (29) and (30) yields a single equation for 
the determination of 0'0 and l. Though the solutions 
are not unique, by making the identification 

(31) 

the solutions 

I = -a~i5oBo(a ~:) (33) 

are obtained. The alternate solutions can be con­
structed by means of infinitesimal coordinate transfor­
mations that are generalizations of supertranslations. 
By means of this freedom it is possible to make 
I = 0, but then the 0'0 becomes a nonlocal function of 
G, i.e., it depends on a time integral over G. It appears 
as if (33) is the only local solution. 

It is possibly of interest to note that,in the case of 
R = 0, the "news" which has been broken up into two 
parts, 0'0 and I, is such that 0'0 contains the "magnetic" 
part of the news and I the "electric" part. Further­
more, it appears likely that a new congruence of null 
vectors can be introduced which are no longer hyper­
surface orthogonal but are now shear free, i.e., the 
"news" which was in ao would then be placed in the 
curl or twist of the new congruence. This suggests that 
in the full theory one should look at the algebraically 
special solutions which are curling in order to study 
equations of motion of spinning bodies. In fact, the 
above was suggested by a study of the Kerr metric. In 
addition it appears possible that the condition R = ° 
might be derived rather than assumed. 
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The behavior of a previously discussed model of phase transitions for Fermi systems is analyzed in the 
region very near the critical point. It is shown that for a very general class of 2-body interactions the 
chemical potential is analytic in the temperature and density at the critical point, so that the model is in 
this sense equivalent to the classical theory of phase transitions. An extension of the model to include 
certain 3-body and higher interactions leaves this conclusion unchanged. 

I. INTRODUCTION 

In the past decade the problem of phase transitions 
has become widely recognized as one of the outstand­
ing unsolved problems of statistical mechanics. l The 
question as to whether statistical mechanics is even 
applicable near the critical point was, of cdurse, 
answered in the affirmative by Onsager2 in 1944 with 
the solution of the 2-dimensional Ising model. Since 
that time several rigorous theorems on the behavior 
of the partition function near a phase transition have 
been derived,3-5 but a large portion of the theoretical 
effort has been directed toward the analysis of various 
models that undergo phase transitions. With a few 
notable exceptions,6 the analyses of these models have 
of necessity involved approximations of some sort, 
and, as a result, descriptions of the phase transition are 
generally obtained which are in agreement with the 
classical theory of Van der Waals. 7 As the Van der 
Waals theory is not in quantitative agreement with 
current experimental results8 near the critical point, 
the basic problem of the phase transition remains 
unsolved and the search continues for models which 
on the one hand are simple enough so that the thermo­
dynamic properties can be found via statistical mechan­
ics and on the other hand are sufficiently complex 
so that nonclassical critical point behavior can be 
obtained. 

tion for the model can be evaluated exactlyI2 and the 
resulting thermodynamic functions are summarized 
by the formula 

f dk 
n(p, ft) = (27T)3 p(k, p, ft), (2) 

where n is the particle density, ft the chemical poten­
tial, f3 the reciprocal of Boltzmann's constant times 
the temperature, and where we have changed the sum 
to an integral by the usual prescription. The quantity 
p(k, f3, ft) is the single-particle density matrix which 
obeys the nonlinear integral equation 

p(k, p, ft) 

= [1 + exp p(t(k) + f (::)3 W(k, q)p(q) - ft) rl. 
(3) 

By considering the properties of this equation, a set of 
necessary and sufficient conditions on the interaction 
W(k, q) have been obtained which must be satisfied 
in order that a phase transition occur in the model.9 

When these conditions are fulfilled, it is shown that 
the transition in the model exhibits all the qualitative 
behavior observed in condensation phenomena. 
However, turning to a quantitative study of the model 
near the critical point, Gartenhaus and Stranahan 
found that,ll for the attractive, factorable interaction 
W(k, q) = -h(k)h(q), the critical exponents all as­
sumed their classical values. l3 Therefore, for this 
special case the model is not in quantitative agreement 
with experiment near the critical point. 

In this work we consider a model of a phase transi­
tion, proposed in a series of papers by Gartenhaus and 
Stranahan,9-11 in which the thermodynamic behavior 
of a system of fermions is studied near the liquid 
vapor condensation region. The model is defined by 
the Hamiltonian In this paper we investigate the critical-point behav­

ior of the model for a class of more complicated 
(1) interactions to determine whether it is possible in some 

cases to obtain nonclassical values for the critical 
where Nk is the number operator for a fermion of exponents. We show that, for a very general class of 
spin and wave vector k, t(k) the single-particle kinetic interactions satisfying only certain integrability cri­
energy, W(k, q) the two-particle interaction, and 0 terion, the critical exponents always retain their 
the quantization volume. In the thermodynamic limit classical values regardless of the detailed properties of 
(0 ..... 00, particle density n fixed) the partition func- the individual interactions. We also find by extending 

3159 
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the model to include simple 3-body and higher inter- for the single-particle density matrix,and we find 
actions that these conclusions are unaltered. 

Our analysis is organized in the following manner. 
In Sec. II we consider the behavior of the model 
near the critical point and show that any singular 
behavior at that point must be due to the vanishing 
of a certain function D({J, p,). In Sec. III the properties 
of the function D({J, ft) near the critical point are 
determined and the equation of state in the critical 
region is derived. In Sec. IV we define an extension 
of the model to include 3-body and higher inter­
actions, and study the critical-point behavior of this 
model. Section V contains our conclusions. 

II. PROPERTIES OF THE MODEL NEAR 
THE CRITICAL POINT 

In this section we enumerate the model properties 
that will be needed to carry out our study of the 
critical region. For this purpose, we calculate the 
derivatives of the density with respect to temperature 
and chemical potential and investigate their behavior 
near the critical point. To facilitate this investigation, 
we define a function 1p(k, (J, ft) by 

f dq 
1p(k, (J, ft) = (27T)3 W(k, q)p(q, (J, p,), (4) 

where p(k, (J, ft) satisfies Eq. (3). Upon substitution 
of 1p(k, (J, ft) into the argument of the exponential in 
Eq. (3), the single-particle density matrix p(k, (J, ft) 
now becomes a functional of 1p(k, (J, ft) given by 

p(k, "1', ft) = {I + exp (J[t(k) + 1p(k) - ftn-1. (5) 

The advantage of this formulation is that the inter­
action W(k, q) appears as the kernel of the nonlinear 
integral equation (4). 

In this work we consider the behavior of the model 
for a class of interaction W(k, q) which has the follow­
ing properties: First, all interactions in the class must 
have the necessary behavior so that a phase transition 
does occur in the model9 ; secondly, all interactions 
must be expressible, either exactly or as an approxi­
mation in the mean,14 by a symmetric interaction of 
the form 

.]V' 

( on\ = (Jf~ F(k) [(01p(k)\ - 1J 
oftJp (27T)3 Oft Jp , 

(:;t = f (~:)3 F(k)[{J (O~~k»)~ + J(k) J. 
where the functions F(k) and I(k) are defined by 

F(k) = -p(k)[l - p(k)], 

J(k) = (J-l1n C ~(:;k»), 

(7) 

(8) 

(9) 

(10) 

and where 1p(k) is given by Eq. (4). Differentiating 
Eq. (4) successively with respect to (J and ft and 
making use of Eq. (5), we find the derivatives of 1p(k) 
satisfy the linear integral equations 

(O~~k»)p = {J J (:~3 W(k, q)F(q)[ c~~q») - 1 J. 
(11) 

e~~kl = f(::)3 W(k, q)F(q)[{J(O~~q») + I(q)} 

(12) 

Upon substitution of the interaction defined by Eq. 
(6) into the above equations, both are reduced to 
systems of inhomogeneous algebraic equations which 
can be solved by Cramer's rule. The solutions of 
Eqs. (11) and (12) are therefore given by 

(
01p(k») = -(J f oci(k)(F{Jj) M(i,j) , (13) 

oft fJ i.j=1 D({J, ft) 

(
01p(k») = f oci(k)(FIBj) M(i,j) , (14) 

o{J ~ i.j=1 D({J, ft) 

where we have used the notation 

(FG) =f dk 3 F(k)G(k) (15) 
(27T) 

and D({J, ft) is an oN' X oN' determinant, the elements 
of which are functions of (J and ft defined by 

(16) 

W(k, q) = ! oci(k){Ji(q), 
i=l 

(6) The quantity M(i,j) is the minor of D({J, ft) formed 
by deleting the ith row andjth column. Now, inserting 
Eqs. (13) and (14) into Eqs. (7) and (8), respectively, 
we find 

where oN' is a positive integer and each oci(k) and (Ji(q) 
is a bounded function defined over a finite interval in 
k space. In the following calculations, we shall only 
consider interactions in this class, so that the interac­
tion form above will always be used. 

In order to calculate the derivatives of n({J, ft), we 
differentiate the density formula (2), utilizing Eq. (5) 

(
on\ = _(J2 f (FOCi)(F{J) M(i,j) - (J(F), (17) 
oftJfJ ;';=1 D({J, ft) 

(an) = (J f (FOCj)(FI{Jj) M(i,j) + (FI). 
o{J ~ l.j=1 D({J, ft) 

(18) 
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We shall see that the function D(P, ft), which we 
subsequently refer to as the denominator function, 
contains all of the information needed to describe the 
behavior of the model very near the critical point. 

We now consider the quantities (onjoft)p and 
(onjop)1' near the critical point. According to the 
criterion 

at the critical point, (onjoft)p must diverge at that 
point. Upon examination of Eq. (17) we see that, in 
order to satisfy Eq. (19), the denominator function 
must vanish at the critical point, i.e., 

D(Pc, ftc) = 0, (20) 

where Pc and ftc are the values of P and ft at the critical 
point. It follows then that the density is a nonanalytic 
function of the temperature and chemical potential at 
the critical point. We shall show in the next section, 
however, that, by choosing density and temperature 
as our independent thermodynamic variables, we 
obtain the equation of state ft = ft(P, n) which is 
analytic in a neighborhood of the critical point. It is 
this equation of state which allows us to conclude that 
the critical exponents for the model all retain their 
classical values. 

III. THE EQUATION OF STATE IN THE 
CRITICAL REGION 

In this section we study the behavior of the denomi­
nator function D(P, ft) in the variables P and n near 
the critical point. By showing that all derivatives of 
D(P, ft(P, n» == D(P, n) with respect to P and n exist 
near the critical point, we prove that, for the class of 
interactions defined in Sec. II, D(P, n) is analyticlS in 
P and n at the critical point. Then, given this result, 
it is straightforward to derive the equation of state in 
the form It = ft(P, n) near the critical point. We will 
see that the equation of state, like the denominator 
function D(P, n), is analytic at the critical point. As 
this analyticity is the basis for the classical theory of 
phase transitions,13.16 we are able to conclude that, 
for the given class of interactions, the critical expo­
nents of the model agree with those of the classical 
theory. 

In order to determine the analytic behavior of the 
.N' x .N' determinant D(P, ft) [Eq. (16)], it is sufficient 
to consider a general element of D given by 

Di; = ()i; - P(FrxiP;)· 

We consider first the behavior of Dii as a function of 
the density, holding the temperature constant. As Di ; 

is an implicit function of n through the function 
ft(P, n), the derivative of Di; with respect to the density 
is given by 

(ODii) = (OD;;) (Oft) . (21) 
on p aft p on p 

The quantity (oftjon)p is given by the reciprocal of 
Eq. (17) and the derivative of Di ; with respect to ft 
is 

where F(k), p(k), rx i , P;, and 1p(k) are all defined in 
the previous section and where the integration 
notation defined in Eq. (15) is used. It will be recalled 
from Sec. II that the derivative of 1p(k) with respect 
to ft at constant P is given by Eq. (13). Substituting 
this equation into Eq. (22) and keeping only terms 
proportional to D-I(P, ft), we find 

(ODii) = p3 f [rxiPiF(l _ 2p)rx!](FPm) M(l, m) . 
oft p !,m=l D(P, ft) 

(23) 

Now, inserting the reciprocal of Eqs. (17) and (23) 
into Eq. (21), we see that the D-I(P, ft) term cancels, 
and we are left with 

(
ODiJ) A(P, ft) -- =--, 
on p N(P,ft) 

(24) 

where A(P, ft) is the numerator in Eq. (23) and 
N(P, ft) is the expression which multiplies D-I(P, ft) 
in Eq. (17) and where terms proportional to D(P, n) 
have been ignored in numerator and denominator. 
We shall hereafter refer to N(P, ft) as the numerator 
function. If N(P, ft) is nonvanishing at the critical 
point,I7 then the first derivative of Dii with respect to 
n at constant p, according to Eq. (24), is finite. 
Applying the same argument to all higher derivatives 
of Dij with respect to n, we conclude that Dil is 
analytic in n near the critical point for all interactions 
in the given class. IS 

Turning now to the derivatives of D ii , with respect 
to P at constant n, we make use of the theory of 
JacobiansI8 to write 

(O~t = [e~t (~;)p - (O~t(~;)J/ (~;)p' 
(25) 
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The .quantities (onjofl)p, (onjo(J)Il' and (oDiJOfl)p 
are gIven by Eqs. (17), (I8), and (23), respectively. In 
analogy with Eq. (22), (oDii jo(J)1l is given by 

= -(Frxi(Jj) - (J o~ (FrxJ3 j) 

= -(Frx;(Jj) - (J2{rx;(JjF(1 - 2P{(J(~;)1' + I(k)]}. 
(26) 

Substituting for (o'lf'jo(J)1' and keeping only terms 
proportional to D-l«(J, fl), we find 

(OODij) = _(J3 f [rx;(JjF(1 _ 2p)rx/](FIBrn) M(l, m) . 
(J I' I,m D({J, fl) 

(27) 

Making use of the Eqs. (17), (18), (23), and (27), we 
find after some manipulation 

(
OD;;) (~ i. -0{J = ~ Hk~q,p,r({J, fl)[M(k, q)M(p, r) 

n k,q,P,T 

- M(k, r)M(p, q))) / D({J,fl), (28) 

where 

Hk~q,pi{J, II) = (J2(Frxk)(FI{Jr)[(1 - 2p)rxi{Jjrxp](F{Jq). 

(29) 

We now employ the identity19 

M(i,j)M(k, I) - M(i, I)M(k,j) = M(i,j; k, /)D({J, fl), 

(30) 

where M(i,j; k, I) is the minor of D({J, fl), formed by 
deleting rows i and j and columns k and I. Upon 
substitution of Eq. (30) into Eq. (28), the D-l«(J, fl) 
singularity is cancelled and (oDjo{J)n becomes 

(Oa~;) = ( f Hi:q,p,r(fJ, fl)M(k, q; p, r)) /N({J, fl)· 
tJ n k,Q.,p,r 

(31) 

Assuming again that the numerator function N«(J, fl) 
is nonvanishing in a neighborhood of the critical 
point,17 it follows that (ODiilo(J)lI exists in thi" neigh­
borhood. As was the case for the density derivatives, 
we can apply the same arguments to higher derivatives 
of Dii with respect to (J at constant n and we find that 
the cancellation always takes place. On the basis of 
this result and the earlier result for the density 
behavior, we conclude then that, for all interactions 

in the given class defined by Eq. (6), the associated 
denominator function D«(J, n) is analytic15 in a 
neighborhood of the critical point. 

The analyticity of D«(J, n) allows us to expand it 
in a Taylor series about the critical point and, very 
near that point, to keep only the lowest-order terms. 
Thus we may write 

D«(J, n) ~ a(n - nc)k + b({J - (Jc) 

+ c(n - nc)«(J - (Jc) + ... , (32) 

where a, b, and c are constants and k is the order of 
the lowest nonvanishing derivative of D«(J, n) with 
respect to n at constant (J.20 Sufficiently close to the 
critical point we can replace the numerator function 
N«(J, fl) by a nonzero constant Nc , and the reciprocal 
of Eq. (17) becomes 

(
Ofl) -1 k on p ~ Nc [a(n - nc) + b({J - (J.) 

+ c(n - n.)({J - (Jc) + ... ]. (33) 

Integrating this expression in the critical region, we 
obtain 

fl - flc ~ den - nc)k+1 + e«(J - (J.)(n - nc) + f({J), 

(34) 

where f«(J) is a function of (J only vanishing at the 
critical point, and d and e are constants. Examina­
tion of Eq. (34) shows that this equation of state is 
equivalent to the classical equation of state.13 We are 
thus able to conclude immediately that the critical 
exponents of the model, for all interactions in the 
given class, are the same as those of the classical 
theory. 

IV. EXTENSION TO MANY-BODY 
INTERACTIONS 

In view of the results of the. previous section, we 
now consider an extension of the model to include 
3-body and higher interactions in the hope that 
such a model may exhibit nonclassical behavior. If 
such interactions are included the model Hamiltonian 
becomes 

1 
H = I t(k)Nk + - I W2(k, q)NkNq 

k 20 k,q 

1 + --2 I W3(k, q, p)NkNqNp + .. '. (35) 
3! 0 k,q,p 

If we consider two through m-body interactions all 
of which are independent of the momentum variables, 
then the interaction part of H can be expressed as a 
polynomial of degree m in the operator !k Nk/O. 
The methods of Girardeau again allow us to calculate 
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the thermodynamic functions exactly in the lim Q ---+ 

00, and the nonlinear integral equation for the single­
particle density matrix of the new model is 

p(k, fJ, ft) = {I + exp fJ[t(k) + Pen) - ftJ}-I, (36) 

where Pen) is a finite-degree polynomial in the den­
sity n. 

In order to study the critical-point behavior of this 
model, we proceed, in the same manner as the 
previous sections, to determine the analytic behavior 
of the chemical potential ft(fJ, n) near the critical point. 
Substituting the expression for p(k), Eq. (36), into 
the density formula (2) yields an implicit equation 
for n(fJ, fl). Differentiating this equation with respect 
to ft, holding fJ constant, we find 

- = - + p'(n), (
aft) -1 
an p fJ(F) 

(37) 

where 

(F) =J dk 3 F(k) 
(27T) 

and F(k) is given by Eq. (9), and where P'(n) is the 
derivative of pen) with respect to n. Since the single­
particle density matrix p(k, fJ, fl) is positive definite 
for finite temperature, it follows from Eq. (9) that (F) 
is nonzero. Thus we conclude that, because of the 
critical point criterion (aft/an)p = 0, Eq. (37) vanishes 
at the critical point and is defined in some neighbor­
hood of that point. Furthermore, the calculation of 
higher derivatives shows that all derivatives of fl with 
respect to n at constant fJ exist in this neighborhood, 
and so the chemical potential is analytic in n. To see 
that ft is analytic in fJ, we differentiate the implicit 
formula for the density with respect to ft, holding n 
fixed, and we find 

(
aft) (FI) 
afJ n = (J(F) , 

(38) 

where I(k) is defined by Eq. (10). Again since (F) is 
nonzero and (I) is finite, we see that (aft/a{J)n and all 
higher derivatives of ft with respect to fJ exist near the 
critical point. We therefore conclude that fl({J, n) is 
analytic in nand (J at the critical point.16 It now 
follows that the equation of state can be written in a 
manner similar to Eq. (34), and thus the critical 
exponents for our modified model are again the same 
as those of the classical theoryP 

V. CONCLUSIONS 

From our analysis of the model of Gartenhaus and 
Stranahan in the preceding sections, a distinctive 
feature of this model has emerged: namely, the fact 

that for a very general class of interactions the critical 
exponents associated with the model always retain 
their classical values. Before discussing this character­
istic wenote that perhaps the most important over~all 
property of the model is the fact, as shown by Garten­
haus and Stranahan, that all the qualitative features 
of the liquid vapor phase transition are exhibited. The 
conclusions obtained in this paper apply only to the 
region very near the critical point and do not effect 
this general result. We also remark that the interac­
tions considered for the model generally do not have 
a term corresponding to a hard-core repulsion between 
the particles. However, for the present case of a 
fermion system, the catastrophic collapse which might 
otherwise occur is prevented by the Pauli principle. l1 

In Secs. II, III, and IV we analyze the model for a 
large class of 2-body interactions and for certain 
simple 3-body and higher interactions. Our main 
conclusion was that, for all interactions considered, 
regardless of their detailed properties, the critical 
exponents for the model always assume the classical 
values. From our analysis, we see that the reason 
the model exhibits classical behavior for such a wide 
range of interactions is the fact that, for each of 
these interactions, the equation of state fl = fl({J, n) 
can be expanded in a Taylor series about the critical 
point. This analytic behavior in the region near the 
critical point was in turn derived in general for any 
interaction which could be expressed approximately 
as a finite sum of factorable interactions of the form 
given by Eq. (21). Thus, we conclude that this analytic 
behavior at the critical point is a basic property of the 
model, irrespective of the interaction used in the 
Hamiltonian (subject only to certain general integra­
bility criterion outlined in Sec. II). In retrospect, this 
result is not entirely unexpected since all interactions 
considered have, by assumption, infinite range, and 
it has been shown that a large class of systems with 
local, infinite range interactions also have classical 
values for the exponents. 2L22 In this sense our con­
clusions confirm an earlier conjecturell that the theo­
rems of Lieb22 and Lebowitz and Penrose21 can be 
generalized to nonlocal interactions as well. It appears 
to be a general fact, therefore, that, when the limit of 
an infinite interaction range is taken in order to 
evaluate the thermodynamic properties of a given 
model, while a phase transition can be produced in 
such a limit, any nonanalytic behavior of the thermo­
dynamic functions near the critical point is lost. 

Finally it has been shown23 that, if we assume 
Girardeau's methods can be applied to infinite power 
series in the operator Ik Nk/il, then by judicious 
choice of the coefficients in this series we can obtain 
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a phase transition in the model with nonclassical values 
for the eJl.ponents (J, <5, and a.'. 
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APPENDIX: THE CASE N(Pc' Pc) = 0 

In this appendix we investigate the consequences 
of the assumption that the numerator function N({J, fl) 
vanishes at the critical point. We recall from Sec. II 
that N({J, fl) is defined by 

.N' 
N({J, Ii) = ~ (Fa.i )(F{J1)M(i,j), (Al) 

i.1=1 

where the quantities on the right side of the equation 
are defined in this section. We shall show that, if 
Eq. (AI) vanishes at {J = {Jc, fl = flc' then the 
behavior of the model contradicts the well-known 
result9 that the density fluctuations, given by 

(A2) 

must diverge at the critical point. 
To see this, we examine the numerator function as 

a function of the variables (J and n, N({J, fl({J, n» == 
N({J, n). It is sufficient for our analysis to consider 
this function in the one phase region T > Tc ' along 
the critical isochore, n = nc. We recall from Sec. II, 
Eq. (31), that, near the critical point, 

(
aD) const 
a{J n '" N({J, n) , 

(A3) 

where D({J, n) is the denominator function, also 
defined in Sec. II, and expressed here as a function 
of (J and n. Now, since N({J, n) as well as D({J, n) 
consists of sums of terms of the form ' 

(A4) 

the reasoning leading to Eq. (A3) can also be applied 
to N(B, n), so that 

(ON) const (A5) 
a{J n'" N({J, n) . 

Setting n = nc and making use of the fact that 
N({Jcnc) = 0 by hypothesis, we solve Eq. (A5) and 
obtain 

(A6) 

where a is a constant. Substitution of Eq. (A6) into 
the equation for (aD/a{J)" , Eq. (A3), we find that 

D({J, nc) also can be expressed in the form 

(A7) 

where b is a constant. 
Now according to Eq. (32) of Sec. II, the density 

fluctuations are given by 

(
an) = c + N({J, n) , 
afl p D({J, n) 

(AS) 

where c is a constant. Substituting Eq. (A6) and (A7) 
into Eq. (AS), we see that Can/afl)p remains finite as 
the critical point is approached along the critical 
isochore n = nc' Since the divergence in the density 
fluctuations is a primary characteristic of the liquid­
vapor transition, we conclude that, for all models 
considered in Sec. II which undergo a phase transition, 
the numerator function N({J, n) does not vanish at 
the critical point. 
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~ general solutio!l is .derived for a system of nonlinear partial differential equations describing longi­
tud~nal plasma. osclllatlO!ls. T~e method of ~onstruction of the solution involves the imposition of 
arbltr~ry functional relatIOnships among the mtegrals of an associated system of ordinary differential 
equatIOns. 

1. INTRODUCTION 

The purpose of this paper is to discuss a mathemat­
ical technique for deriving general solutions to a 
subsystem of the nonlinear differential equations 
describing the interactions of electromagnetic fields 
with ionized media. 

The nonlinear interaction of an electromagnetic 
wave with a plasma layer has been investigated 
theoretically and experimentally by Whitmer, Teten­
baum, and Barrett.1- 4 The mathematical model on 
which these studies are based consists of Maxwell's 
equations, together with the continuity equation and 
the "Navier-Stokes" equation for the electrons. The 
latter equations may be derived by taking the first 
and second moments of the Boltzmann equation. In 
this model, n represents the electron density; niO is 
the steady-state positive ion concentration; V is the 
electron velocity vector; e and m are the charge and 
mass of the electron; collisions are between electrons 
and neutral particles, are assumed to be elastic, and 
are described by a collision frequency v. 

In this model, the nonlinear terms nV, VXB, and 
(V· V)V appear. In Refs. 1-4, the authors discussed 
nonlinear effects produced by these terms, such as 
harmonic generation and frequency mixing. The 
approach taken was to expand all terms into Fourier 
series in time, match frequency components, and solve 
a sequence of boundary-value problems for the linear­
ized equations in a plasma slab. In general, the results 

of the experiments gave good agreement with the 
theoretical predictions made by this method, within 
the limits of the ~mall-signal theory. 

In the present paper, a method is described for 
deriving general solutions to a subset of the nonlinear 
equations of the model, by exploiting the fact that 
the equations in the subset have identical principal 
parts. 5 From these general solutions, infinitely many 
special solutions may be derived, expressed in terms 
of the plasma parameters v and wp. These solutions 
correspond to longitudinal oscillations of the plasma. 
In the present paper we shall not treat the case of a 
strong dc magnetic field, which may produce coupling 
between these oscillations and transverse components 
of the electromagnetic field. 

Let E"" Ey , E., B"" By, B., and V"" Vy, V. represent 
the X, y, and i components of the E, B, and Vvectors, 
respectively. We shall assume a simple geometry in 
which all spatial variation is in the x direction only, 
and we shall begin by investigating the solution in 
which Ey , E., By, B., Vy , and V. are = O. We retain 
the equations 

o e e 
- E", = - n - - niO ' (1) ox €o €o 

a e 
-E = - - nV (2) at '" €o "" 

a a e 
;- V'" + V",;- v., = - E", - v V"" (3) 
vt vx m 
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1. INTRODUCTION 
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ical technique for deriving general solutions to a 
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describing the interactions of electromagnetic fields 
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wave with a plasma layer has been investigated 
theoretically and experimentally by Whitmer, Teten­
baum, and Barrett.1- 4 The mathematical model on 
which these studies are based consists of Maxwell's 
equations, together with the continuity equation and 
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latter equations may be derived by taking the first 
and second moments of the Boltzmann equation. In 
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mass of the electron; collisions are between electrons 
and neutral particles, are assumed to be elastic, and 
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(V· V)V appear. In Refs. 1-4, the authors discussed 
nonlinear effects produced by these terms, such as 
harmonic generation and frequency mixing. The 
approach taken was to expand all terms into Fourier 
series in time, match frequency components, and solve 
a sequence of boundary-value problems for the linear­
ized equations in a plasma slab. In general, the results 

of the experiments gave good agreement with the 
theoretical predictions made by this method, within 
the limits of the ~mall-signal theory. 

In the present paper, a method is described for 
deriving general solutions to a subset of the nonlinear 
equations of the model, by exploiting the fact that 
the equations in the subset have identical principal 
parts. 5 From these general solutions, infinitely many 
special solutions may be derived, expressed in terms 
of the plasma parameters v and wp. These solutions 
correspond to longitudinal oscillations of the plasma. 
In the present paper we shall not treat the case of a 
strong dc magnetic field, which may produce coupling 
between these oscillations and transverse components 
of the electromagnetic field. 

Let E"" Ey , E., B"" By, B., and V"" Vy, V. represent 
the X, y, and i components of the E, B, and Vvectors, 
respectively. We shall assume a simple geometry in 
which all spatial variation is in the x direction only, 
and we shall begin by investigating the solution in 
which Ey , E., By, B., Vy , and V. are = O. We retain 
the equations 

o e e 
- E", = - n - - niO ' (1) ox €o €o 
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a a e 
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describing longitudinal plasma oscillations. Multi­
plying (1) by V", and adding to (2), we derive 

- - E + V - - E = -W V a(e) a(e) 2 
at m '" '" ax m '" p "" 

(4) 

where w; = nioe2/mEo. The "plasma frequency" wp 
is assumed to be constant. We shall derive a general 
solution to the nonlinear system (3), (4). 

2. INTEGRALS OF THE NONLINEAR SYSTEM 

Observing that the Eqs. (3) and (4) have the same 
principal parts, we consider the equivalent system of 
nonlinear ordinary differential equations 

dt = dx = d[(e/m)E",] = dV", . (5) 
1 V", -w;V", (eJm)E", - vV", 

The integration of systems of first-order partial 
differential equations having the same principal parts 
may be achieved by deriving integrals of such systems 
of ordinary differential equations.5 Three integrals 
will be derived from (5) be standard techniques (Ref. 
6, Chap. 6), and a general solution will be constructed 
from these integrals. 

It can be easily shown that a general solution to (5) 
may be written in the form 

x(t) = C1eJ.+t + C2eJ.-t + Ca, 

Vit) = A+CIe;.+t + A,-C2en , (6) 

where 
) ( 2C ;.+t 2C ;'-1 (elm E., t) = -Wp Ie - wp 2e , 

A,+ = -v/2 + i(w; - v2/4)!, 

A- = -v/2 - i(w; - v2/4)t, 

and C1 , C2 , and Ca are arbitrary constants. 
Equivalently, we have the relations 

:-;'+1 _[Vit) + A~ (!!... E",(t»)] = CI , 

A - A Wp m 

e-J.-t ·[Vit) + A:(!!... E.,(t»)] = C2 , 

A- - A+ Wp m 

[(: Eit)) + w;xJ = Ca. 

(7) 

We observe that at t = 0, (7) provides explicit 
solutions for the constants of integration C1 , C2 , 

and Ca in terms of the initial values Vo, xo, and 
[(e/m)E", (0)]. We also observe that for the original 
system of Eqs. (3), (4), appropriate initial data would 
be of the form 

Vo = V., (x, t = 0) = F(x), 

!!...EiO) = !!...E.,(x, t = 0) = G(x). 
m m 

These initial data give rise to functional relations 
among the constants Cl , C2 , and Ca. This method 
of construction of general solutions to the system 
(3), (4), by utilizing the functional relations that the 
initial data impose among the constants of integration, 
may be stated in the form of a theorem: 

Theorem: Let ~(Xl' x2) and 'r(xl , x2) be any C2 
functions of two variables whose first derivatives do 
not vanish. A general solution to the system (3), (4) 
may be found by solving the equations 

~(Cl' Ca) = 0 = 'r(C2 , Ca). 

Proof: The proof consists of calculating the 
derivatives: 

a~ = 0 = a~ oCl + a~ oC3 , 

ax oCl ax aC3 ox 

o~ = 0 = ~ oCl + o~ oC3 , etc., 
at aCl at aCa at 

and then substituting for Cl , C2 , and Ca the integrals 
derived above. The resulting equations regenerate the 
system (3), (4). I 

For example, suppose that we impose the following 
functional relations on the integrals: 

C1 = I(Cs) , 

C2 = h(Cs), 

where I (x) and hex) are arbitrary differentiable func­
tions I(x), hex) y6 O. 

It follows that we have 

[~: (: E",) + iWpV",] 

= -2wp(w; - tv2)!e'<+tf(: E", + w;x) (8) 

and 

[-~~+ (: E",) - iWpV",] 

= -2wp (w! - tv2)*e;.-th(: E", + w;x). (9) 

Any explicit choice of the functions I (x) and hex) 
in Eqs. (8) and (9) will result in a pair of equations 
defining V", and (ejm)E" as explicit functions of (x, t!. 

To illustrate this idea, let I(x) == 1 == hex). ThIS 
choice results in the spatially independent solutions 

(: E",) = -2w;e-O/ 2t{cos [(w! - v2J4)ltJ), (10) 

V", = _e-V
/
2t{v cos [(w; - v2/4)tt] 

+ 2(w! - v 2/4)! sin [(w; - v2/4)lt]). (11) 
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Once (e/m)E~ and v~ have been determined, the 
electron density n(x, t) can be derived from either 
Eqs. (1) or (2): 

~.!. E", + w! = L n(x, t) = -o(!!... E",)/V",. ax m mEo at m 

It is easy to verify that (lO) and (11) and the 
resulting value of n(x, t) are exact solutions of the 
original nonlinear system (1), (2), and (3). For small 
values of the collision frequency, v/wp « 1, these 
solutions represent pure longitudinal oscillations 
close to the plasma frequency; the collision frequency 
produces exponential damping. 

3. DISCUSSION 
A general solution has been found for the system 

of equations in the nonlinear model in the special 
case B1/ = Bz = E1/ = Ez = Vy = Vz = o. The method 
of construction of the general solution involves the 
imposition of arbitrary functional relationships among 
the integrals of the associated system of ordinary 
differential equations, thus displaying an infinity of 
possible longitudinal oscillations which satisfy the 
equations. The method has been illustrated by the 
choice f(x) == 1 == hex) in Eqs. (8) and (9). This 
particular choice gives rise to spatially independent 
plasma oscillations (10) and (11). An infinity of 
possible solutions may be generated in this way, 

corresponding to different initial conditions for the 
system (1), (2), and (3). For example, iff(x) == x == 
hex), the resulting solution represents a longitudinal 
oscillation that grows linearly with (x) and contains 
Fourier components at all integral multiples of the 
plasma frequency. The choice f(x) == cos (x) == hex) 
gives rise to interesting nonseparable wavelike 
solutions. 

It is expected that further research will provide an 
extension of this method of integration to construct 
approximate general solutions to the nonlinear 
model in cases where the transverse field components 
do not vanish, and where spatial variations in more 
than one dimension are allowed. A subsequent paper 
will treat the effect of a strong transverse magnetic 
field, which will introduce coupling between the 
longitudinal oscillations described above and the 
transverse components of the field. 
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In Paper I, we presented an expansion of the pressure and density in grand canonical form and 
corrections to the Maxwell rule for a system of particles with short-range repulsion and weak long-range 
attraction. These expansions can be ordered in powers of y, the inverse range of the attractive potential. 
It was assumed that the thermodynamic functions and the molecular distribution functions of the reference 
system, i.e., the system with only the repulsive interaction, are given. In the present paper we have 
calculated the y expansion of the pair distribution function, under the same assumption. The result is 
obtained by functional differentiation of the series for the pressure and presented in the form of a series 
of diagrams. The dominant order in y of each diagram is the same as the order of that diagram in the 
series for the pressure, from which it is derived. 

I. STATEMENT OF THE PROBLEM 

In Paper 1,1 we obtained the pressure and density 
of a fluid of particles with short-range repulsion and 
weak long-range attractive interaction as functions of 
the fugacity and correction terms to the Maxwell rule. 
These results are given in terms of diagram expansions 
which can be ordered in ascending powers of the 
reciprocal range (y) of the long-range attractive 
potential. 

It is known that expansions in reciprocal range have 
several shortcomings. The expansion fails in an ob­
vious manner at the van der Waals critical point. It also 
yields a phase transition for the I-dimensional model 
of Kac, Uhlenbeck, and Hernmer2 for y > 0 at 
temperatures below the van der Waals critical tem­
perature, while the exact solution shows that there is 
no phase transition. A modification of the y expansion, 
stated in Ref. I, avoids the obvious failure at the 
van der Waals critical point, and a similar modifica­
tion for the Ising modelS is known to be successful in 
treating the critical region, i.e., the neighborhood of 
the Weiss-Curie point, for the 2- and 3-dimensional 
cases. 

While these objections affect the results only near 
the coexistence curve, another objection has been 
raised by a previous author,4 which, if it were true, 
would cast doubt on the validity of the expansion 
over the entire range of temperature and fugacity. 
This is the objection that the approximation of the 
2-particle distribution function for particles with 
hard-core repulsion and long-range attraction does 
not vanish when the centers of the two particles 
approach each other closer than a hard-core diameter. 
The calculation presented here yields directly an 

expansion in which each diagram individually vanishes 
in the hard-core region. 

II. FUNCTIONAL DIFFERENTIATION OF THE 
SERIES FOR THE PRESSURE WITH RESPECT 

TO THE REPULSIVE PART OF THE 
INTERACTION 

In Paper I we obtained the pressureP(z) and number 
density p(z) as functions of the fugacity z for a system 
with a pair potential energy consisting of a strong, 
short-range repulsion u(r) and a weak, long-range 
attractive part -vCr) under the assumption that the 
pressure Ph(y) and number density Ph(Y) as well as all 
distribution functions of a reference system with only 
the repulsive potential u(r) are given as functions of its 
fugacity y. The results for the pressure, number density, 
and a corrected Maxwell rule were given in terms of a 
correction function hey) as follows: 

f3P(z) = f3Ph(y*) - lf3vol(z) + h(y*), (1) 

* oh(y*) 
p(z) = Ph(y ) + olny*' (2) 

where {J = (kT)-l, Vo is the integral of vCr) over all 
space, and y* is that root of the eq~ation 

(3) In Y - In (ze-1/Iv(OJ) = (JVO(Ph(Y) + ;~~y;) 

which maximizes the pressure P(z). Equation (3) is the 
grand canonical form of the corrected Maxwell con­
struction as discussed in I. 

The appearance of the two fugacities z and y is 
perhaps most easily understood by analogy with the 
Weiss theory of ferromagnetism, with In (zeipv(OJ) 
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and In y corresponding to the impressed magnetic 
field and the local field respectively; In y* then 
corresponds to the value of the local field obtained 
by the Weiss construction. Without the correction 
terms in Eqs. (2) and (3), Ph(y) corresponds to the 
magnetization of the paramagnet in the local field 
and p(z) = Ph(Y*) to the magnetization of the 
ferromagnet. 

One must note that hey), in the above, is understood 
as the thermodynamic limit of hey) given in Paper I. 
[We denote the latter by h(y).] For finite separation 
of the pair, only terms of order V in the partition 
function will contribute to the pair distribution 
function calculated from it. Terms of order yo, 
however, will contribute to the fluctuation integral. 
We therefore have to check that such terms do not 
appear in our expansion. In Appendix A this has 
been done explicitly for hey) taken through order 
y3V-l and in outline for terms of higher order in y. 

The 2-particle distribution function p(2)(rl , r21 z) 
can be obtained by functional differentiation of the 
logarithm of the grand canonical partition function, 
In Q(z), with respect to the interaction potential. It 
can also be obtained by differentiating with respect 
to either the short-range part u(r) or the long-range 
part -v(r), alone. We have chosen to differentiate 
with respect to u(r) alone because differentiation with 
respect to -v(r) will mix terms of different order in 
reciprocal range. (See also Appendix C.) 

With the abbreviation 1, 2, .. , used for the co­
ordinate vectors rl , r2, ... , we have then 

(2)(1 21 z) == _ bin Q(z) 
p, b{3u(l, 2) 

_ _ b (In Q (y*) _ ~ 
- b{3u(l, 2) h 2{3vo 

X (In y* - In ze-iPV(O))2 + V h(y*»). 

(4) 
Since for the reference system 

_ bin Qh(y) == (2)(1 21 y) 
b{3u(I, 2) Ph' , 

we have 

p(2)(1, 21 z) = (P~2)(1, 21 y) _ bVJi(y») 
b{3u(I, 2) II=Y. 

_ bin y* [_O_(ln Qiy) _ ~ 
b{3u(l, 2) 0 In y 2{3vo 

(5) 

X (In y -In ze-iPv
(O)2 + Vh(y») 1-11. 

(6) 

The last term vanishes because of Eq. (3). We there­
fore obtain 

p(2)(I, 21 z) = p~2)(I, 21 y*) - [bVh(y*)] 
b{3u(I,2) Y=1/. 

== p~2)(I, 2 1 y*) + h(2)(I, 21 y*). (7) 

Clearly, pj,2) (I , 21Y) vanishes when Irl - r21 is less 
than a hard-core diameter if u(r) is taken to be a 
hard-core potential. Paper I, in Appendix A, gives 
the following for h(y): 

Vh(y) = -t Tr In (I - (3v/-l 2) + vh(l)(y). (8) 

The first term is in obvious operator notation with v 
and /-l2 considered as kernels of integral operators. 
Here, /-l2 is the second of the sequence of modified 
Ursell functions /-In(l, 2, ... ,n 1 y) of the reference 
system. Ji(l)(y) is a sum of connected diagrams with 
hypervertices /-In{l, 2, ... , n 1 y), n ~ 3, and bonds 
vl(l, 2) defined in the same operator notation by 

(9) 

We note that v and /-l2 commute as operators since 
v(rl' r2) and /-l2(rl , r21 y) depend only on the vectorial 
distance rl - r2 under Born-von Karman boundary 
conditions. 

In order to perform the differentiation indicated in 
Eq. (7), we need thus only the functions 

A (I' 2' ... n'll 21 ) == b/-ln(I', 2', ... , n' 1 y) 
n+2 " , ,y b[-{3u(I,2)] ' 

(10) 

for n ~ 2. The modified Ursell functions are defined 
by 

(I' 2' ... n'l ) = [b
n 

In Qh({CP} 1 y)] (11) 
/-In " , y - bcp(I')'" bcp(n') ~=o' 

where Qh({CP} 1 y) is the grand canonical partition 
function of the reference system at fugacity y in the 
presence of an impressed potential -(3-lcp(r), i.e., 

00 yN 
Qh({ cp} 1 y) = N"Y:O N! 

X Jexp (- t{3 ~.' u(r; - r i ) + ~ cp(r;») 
s., , 

N 

X II dVri, 
i=l 

(12) 

where v = number of dimensions. Therefore, with 
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p~21 (1, 21 {cp} Iy) denoting the pair distribution func­
tion of hard particles in a field cp(r), 

An+2 (1',2', ... , n'l 1,2 Iy) 

=[onp;,21(1,21{CP}IY)] . (13) 

ocp(I') ... ocp(n') 4>=0 

The relation of the A functions to the modified 
Ursell functions and to the molecular distribution 
functions, together with some of their properties of 
interest in the present context, is given in Appendix 
B. If u(r) is taken to be a hard-core potential, then, 
clearly, An+2 (1', 2', ... , n'l 1, 2 Iy) vanishes when 
Irl - r21 is less than a hard-core diameter since 
p~21 (1, 21 {cp} Iy) vanishes for any cp(r) in this case. 

Taking the first term in Eq. (8), we have 

_---'0'--_ [-t Tr In (1 - fJU,u2)] 
o[ -fJu(l, 2)] 

= t Tr (fJU{ 0,u2/0[ - fJu(l, 2)]}) 
1 - fJU,u2 

1 T (p.- °,u2 ) 
= 2 r (-'vlo[_fJu(1,2)] 

= tfJ f dVr3dVr4Vl(3, 4»).4 (3,41 1,2 Iy). (14) 

This vanishes where it should. Next 

bji(ll(y) 

0[-fJu(I,2)] 

is obtained by differentiating each hypervertex and 
each bond of the diagram series for h(1)(y). Differ­
entiating a hypervertex ,un (1 , ,2', ... ,n' 1 y) replaces 
this ,un by An+2 (1',2', ... , n'l 1, 2Iy), which has 
the proper behavior as a function of rl and r2· 
Finally, differentiating a bond vl(I', 2') gives 

ofJvll',2') 0 (fJU ) 
o[-fJu(1, 2)] = o[-fJu(1, 2)] 1 - fJU,u2 1',2' 

= [flV{ tJ,u2/ tJ [ -fJuCl, 2)]}flV] 
(1 - fJV,u2)2 1',2' 

= J dVr3,dvr4,fJvl(l', 3') 

X ),4 (3',4'11, 2Iy)fJVl(4', 2'), (15) 

where we use the operator notation for the intermedi­
ate steps. Again, Eq. (15) has the proper behavior. 
Thus, when u(r) approaches a hard-core potential, 
every term in the expansion of p(21(I, 21 z) vanishes 
for Irl - r 21Iess than a hard-core diameter. Note that 

no rearrangement of the original series is required to 
achieve this result as it would be if the differentiation 
had been carried out with respect to v(r) instead. 

III. DIAGRAMMATIC SERIES FOR p(21(1, 21 z) 

The diagrammatic series for p(21(I, 21 z) may now 
be obtained by applying the rules for differentiation 
to the diagrammatic series for the function Ji(11 (y) , 
which was given in Paper I, and adding the result to 
the term given by Eq. (14). For the convenience of the 
reader, we repeat here the rules for the construction 
of these diagrams. Draw S circles (S ~ 1) labeled 
Cl , ... , Cj , ... , Cs , each containing nj ~ 3 points 
such that Lf=l nj is even. Connect these points by 
lines such that each point is connected to one and 
only one other point. (Lines connecting two points 
in the same circle are permitted.) Disconnected 
diagrams and diagrams which would become dis­
connected upon removal of one line are excluded. 
With any diagram G, we associate an integral la in 
the following way. Label the points in circle Cj by 
r j.l , r j,2"", rj,n;' For each circle Cj write a factor 
,un/rj,l' ... ,rj,n; 1 y). For a line connecting points 
rj,k and rj',k' write a factor fJvl(rj,k - rj',k')' where VI 
is defined by Eq. (9). fa is then the integral over all 
coordinates of the product of these factors. With any 
diagram G, we also associate a symmetry number 
Sa. Let t ij be the number of lines connecting circles 
Ci and Cj and let S~ be the number of permutations 
of the labels of the circles which leave all t ij invariant. 
Then 

We call two diagrams G and G' equivalent if the 
integrands of la and la, are the same, except for 
the labeling of the variables of integration. Divide the 
class of diagrams described above into subclasses of 
equivalent diagrams. Select one member from each 
subclass to form the class ~t Then 

(17) 

In Paper I we took the potential vCr) to be 

v(r) = yV<I>(y Irl). (18) 

We then showed that a diagram with B bonds and S 
circles cannot contribute any power of y less than 
v(B - S + 1). The diagrams contributing to Ji(1I(y) 
in order y2V and order y3V are shown in Figs. 1 and 2, 
respectively. 
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Ot-----t) 0 
(8) (I2 ) 

FIG. 1. Diagrams 
needed through order 
y"-l • The last of 
these diagrams gives 
a contribution of 
zero. Symmetry num­
bers are shown in 
parentheses. 

The functional differentiation introduces new 
hypervertices which represent the functions 

An+2 (1', 2','" ,n'll, 2IY). 

These will be symbolized by circles with n points 
(field points) and two open points (root points) labeled 
1 and 2, i.e., 

An+2(l', 2',"', n'll, 21y) == (19) 

With this notation, Eqs. (10), (14), and (I5), e.g., 
become 

tJ 00 

o 0 
b( -pu(l, 2» 0 0 ~

o 
o A 0 , 
o 0 

tJ ---=--- [Tr In (1 - PVP2)] = 
tJ( -pu(l, 2» 

and 

bpv(1',2') tJ 
=-----

b( -pu(1 ,2» b( -pu(l, 2» 

I 2 

0· I 2 

X~>-, ---~, = ~" 
I 2 

(10') 

(14') 

(15') 

The general rule for functional differentiation of a 
diagram series5 then 'leads to the following result for 

the diagram series for p(2)(1, 21 z): Each diagram 
contains one An+2 circle (for some n ~ 2); any 
number (including zero) of flm circles (m ~ 3); each 
field point is connected to one other field point by a 
pV1 bond. Disconnected diagrams and diagrams which 
would become disconnected upon removal of one 
bond are excluded because such diagrams do not 
occur in the original diagrammatic series and cannot 
be produced by differentiation. The integral over all 
field points of the product of these factors is denoted 
by IG(I,2\y). The symmetry number is calculated, 
as explained, before Eq. (16). In computing S~, it 
must be remembered that a circle with two root points 
is distinct from a circle without root points. The 
subclass ~ is defined as before [text preceding Eq. (17)]. 
We then have 

I (1 21 *) (2)(1 2 I ) - (2)(1 2 1 *) + '" G, Y P , Z - Ph , Y 4, S ' 
GEri G 

(20) 

where y* is defined by Eq. (3). 
If we use the same considerations as in Paper I to 

determine the lowest order of y which a given diagram 
may contribute, together with the properties of the 
A functions discussed in Appendix B, it is an easy 
matter to show that each diagram of VJi(l)(y) retains 

~ O+-----tl 0 
(48) (48) 

rP?~) !O 
~ (12) 

r0r---) ~ 
~(16)~ 

FIG. 2. Diagrams needed through order y4V-l. Symmetry numbers 
are shown in parentheses. 
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its order in y after it is differentiated. We thus obtain 

p'''(1, 21 z) = pl"(1, 21 y') + [ 0] + [~ + 

I 

(4) 
2 

(2) (8) 

+ 

2 

(4) 

Here the term of OCy') is separated from the four 
terms of OCy2.) by square brackets. Symmetry numbers 
are shown in parenthesis. 

We note here that the fact that each diagram 
retains its order in y after differentiation is a result of 
our having chosen to differentiate with respect to the 
function u(l, 2) (which does not contain y) and the 
form of our diagrams. On the other hand, differ­
entiating a diagram of VIi(l)(y), whose dominant order 
is ym. with respect to v(l, 2), would lead to several 
diagrams whose dominant orders can be y(m-l). or 
ymv. This, of course, would make the ordering of the 
resulting p(2) series more difficult. 

We have carried through the calculation of 
p(2/(I, 21 z) to order y3V-l also by differentiation with 
respect to v(l, 2). This requires terms to order y4v-l 

in the pressure. The result to this order is identical 
with the result obtained by differentiation with 
respect to u(l, 2), as it should be. The calculation is 
given in detail in Appendix C, through order y2V-l. 

IV. CHANGE TO DENSITY AS INDEPENDENT 
VARIABLE 

Our expression (21) for the 2-partic1e distribution 
function, though correct, must be supplemented by 
Eq. (3) to determine the appropriate y* for a given z. 
We may eliminate this step by writing p(2) in a I-phase 
region immediately as a function of density. 

In such a region, y* and z may differ by a large 
amount, but p(z) and p,,(y*) will differ only by 
quantities of order y'. These observations follow from 
Eqs. (3) and (2), respectively, and the fact that h(y) 
is of order yv. It is therefore convenient to change 
from the variables z and y* to the variables p and p" 

+ CJ) 8 + O(y"). (21) 

2 

(6) 

by the following definitions: 

p(z) == p, p,,(y*) == Ph' 

h(y*) = Ii(Y*(PhD == 1](Ph), 

p(2)(1, 21 z) == p(2)(1, 21 p), 

p~2/(1, 21 y*) == p~2)(1, 21 Ph)' 

oli(y*) *_ 
o In y* == 1]l(y ) == 1]tCrh)' 

(22) 

Using these, we obtain from (2) 

(23) 

Calling the right-hand side of (21) F(y*) and using 
(22), we have 

p(Z)(I, 21 p) = F(y*) = F(y*[PhD == F(Ph)' (24) 

Using (23) in (24), we see 

p(Z)(l, 21 p) = ,0(2\1,21 Ph + ih) 

= (1 + 1:(ih~n o:)p!Z)(1, 21 Ph) 
k=l n. OPh 

== [1 + q(Ph)]p(Z'(l, 21 Ph) = F(p,,), (25) 

where the next to last equality defines the operator 
q(p,,). In the last equality we see that the variable p 
has disappeared. Therefore, Ph takes the status of 
independent variable, and we can rename it p. Thus, 
we find, finally, 

[l + q(p»)p(2)(1, 21 p) = FCp) (26) 
and 

,0(2)(1,2\ p) = [1 + q(p)]-lF(p). (27) 
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Here the inverse operator is defined by its power 
series expansion. The right side of (27) contains only 
functions pertaining to the hard-core system, evaluated 
at the true density p. 

To evaluate (27) explicitly, we expand both ti(p) 
and F(p) in orders of 1'. To evaluate 1'2v-1 (that is, up 
to but not including 1'2'), we obtain, in this way, 

Here Kh(p) is the isothermal compressibility PiJphl 
O{3Ph of a hard-core system at density p, and !l2(r I p) 
and ~4 (I', 2'11, 21p) are the functions obtained by 
evaluating 

P2(r I y*) = P2(r I Y*(Ph» == !l2(r I Ph) (29) 
and 

A4 (l',2'11,2Iy*) = A4 (l',2'11,2IY*(Ph» 

== ~4 (1',2'11, 2IPh), (30) 

at Ph = P, in accordance with our above prescription. 
For example, 

!l2(r 1 p) = p~2)(1, 21 p) - p2 + po(r). (31) 

The function ~4 may be obtained from Eq. (10). 
Carrying through this differentiation and simplifying 
the integrals in (28) as much as possible, we obtain 

P<2)(1, 21 p) = Pk2)(1, 21 p )[1 + (3v1(1, 2)] 

+ (3 J dVr1,p~3)(l', 1,21 p) 

x [vtC1, I') + vl(2, I')] 

+ tpffdVr1,dVrdpk4)(I', 2',1,21 p) 

- p~)(l', 2'/ P)Pk2)(1, 21 P)]Vl(1', 2') 

_ 1 2K ( ) op~)(1, 21 p) 
"2P h P op 

xfdVrOPk2\r I p)v
1
(r) + 0(1'2V). (32) 

op 

Several features of this expression are worth 
remarking on. First the expression is finite for V -->- co, 
for, although 

ffdvr1,dvr2,p~2)(l" 2' I p)v1(l', 2') 

is proportional to the volume, this is compensated by 
the integral over p(4)(1', 2', 1,21 p). Secondly, the 
value of vl(r) is never needed for Irlless than a hard­
core diameter since all the distribution functions 
p~n) vanish identically in this region. This fact would 
permit us to use a Coulomb potential for vCr) even 
though its transform v1(r) is singular at the origin. 

V. SUMMARY 

The pair distribution function has been obtained 
by functional differentiation of our diagrammatic 
expansion for the pressure with respect the short­
range part of the pair potential. We have shown that 
the function obtained in this way has the necessary 
property of vanishing for Irl - r21 < a when the 
potential contains a hard core of diameter a, We have 
checked through order 1'3V-l that this function is 
identical to that obtained by functional differentiation 
with respect to the long-range, attractive part of the 
potential. There is little doubt that this is true to all 
orders. In order to perform this latter differentiation, 
it is necessary to relax a restriction on vCr) which had 
been imposed in Paper I, namely, that vCr) considered 
as a kernel of an integral equation be positive 
definite. This restriction facilitated the estimation 
of the diagrams in orders of y. It is not necessary, 
however, for any of the formal expansions. 

In view of the above remarks, our formalism can 
now be applied to systems with Coulomb potentials. 
We can take for vCr) the potential of a uniformly 
charged sphere of the size of the hard core. Outside 
the core, this is identical with the Coulomb potential. 
However, because this potential is finite inside the 
core, both v(O) and v1(0) are now finite. The expansion 
in diagrams is now identical to that given in the text. 
It should be noted, however, that the diagram series 
will no longer be ordered in powers of 1'. Thus, the 
proper estimation of the terms in this series requires 
a separate analysis from that given here. 

APPENDIX A 

In this appendix we will describe a procedure for 
showing that 

In Q(z) = In Qh(Y*) - (Vj2pvo) 

x (In Y* - In ze-!PV (O»2 + Vh(y*), (AI) 

where terms which explicitly depend on V (V -->- co) 
less strongly than VO are neglected. We then carry out 
this procedure explicitly through terms of order 
1'3.-1 in hey). 

The expression for the partition function which we 
use is derived in Paper I by applying the saddle point 
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method to 

Q(z) = L: dco exp [-lc~ + In Qh(Y) + Vh(y)], (A2) 

where 

Paper I gives hey), and it is identical to hey), given in 
the text, if i\(r) is replaced by 

(A4) 

The result of the integration is 

In Q(z) = In Qh(Z) - (V/2(3vo) 

X (In y* - In ze-!PV(O»2 + Vh(y*) 

- lIn (1 - f3vo a 1::*2 [f3Ph(Y*) + li(Y*)]), 
(AS) 

where y* is the saddle point defined in the text. The 
last term comes from expanding the exponent to 
second order and performing the integration. The 
problem, therefore, is to show that 

h(y*) - h(y*) 

( 
f3vo a2

h(y*»)] + In 1 - -- (A6) 
I - f3VO,u20 a In y*2 ' 

neglecting higher terms in V-I. 
To show this through any order in y, one may 

proceed as follows. Take each term (or diagram) 
which contributes to hey) and replace vCr) by the 
right-hand side of (A4). Each term may then be divided 
into parts which involve i\(r) and V-I times its 
integral. The part which is simply the replacement of 
v by VI is just the corresponding term in h(y*); the 
other parts may be ordered in powers of V-I. One 
then shows that the sum of all of the V-I parts (of 
all the terms) is just an expansion of the right-hand 
side of (A6) taken through an appropriate order in y. 

For the y3V-I approximation the sum of V-I parts 

I f3VO a2 (I ) - - --- - TrIn (1 - f3v,u ) 
2V I - f3VO,u20 a In y*2 2V 2 , 

where we have used the relation 
(A7) 

J dVr n+1 .. "f dVr m,um(l, 2, ... , m I y) 

am- n 

= ,un(l, 2, ... , n I y). (AS) a In ym-n 

Comparing (A7) with (A6) shows the former to be 
just the first two terms in an expansion of the latter, 
with h(y*) approximated by -1/2V Tr In (1 - f3V,u2)' 
We have carried out this calculation for the y4V-I 
terms, but, since it is rather lengthy, we will not give 
it here. 

Using diagram analysis, we may give a rigorous 
proof of (A6). This proof consists in showing that 
more than doubly connected diagrams do not 
contribute to h - h to order V-I and that the 
resummation of all doubly connected diagrams 
contributes just the right-hand side of (A6). 

APPENDIX B 

If Q{ r/J} is the grand canonical partition function of a 
system of particles in the presence of an impressed 
potential - f3-Ir/J(r), the modified Ursell functions ,un 
and molecular distribution functions pen) are defined 
by 

and 

onlnQ{r/J} 
,un(1, ... , n) == or/J(l) ... br/J(n) (Bl) 

p(n)(1, ... , n) 

",(1) "'(n) -1 ()nQ{r/J} 
== e ... e Q . o(e"'(l) ... b(e"'(n» (B2) 

We have suppressed the dependence on fugacity and 
the dependence of p(n), ,un, and An on r/J in the nota­
tion. The functions p(n), ,un, and An when used in 
the main body of the paper are understood to be 
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specialized to rp = O. From (Bl) it follows that 

b,un(l, ... , n) 
....!...-.:!':""":""--'---'- = ,un+1(l, ... , n, n + 1) (B3) 

brp(n + 1) 

and from (A2) 

bp(nl(l, ... , n) 

brp(n + 1) 

= p(n+1)(1, ... , n + 1) - p(1l(n + l)p(n)(l, ... , n) 
n 

+ p(nl(1, ... , n) ~ b(ri - r n+1)' 
i=1 

(B4) 

The functions An+2(1', ... , n' 11, 2) are then given, 
according to Eq. (13), in two equivalent forms by 

An+2(1', ... , n' 11, 2) 

= 
bn p(2)(1, 2) 

brp{1') ... brp(n') 

bn[,u2(1,2) + ,u1(1),u1~2) - ,u1(1)b(l - 2)] (BS) 

brp(l')' .. brp(n') 

and satisfy the recursion formula 

An+2+1(l', ... , n', n' + 111,2) 

bAn+2(1', ... , n' 11, 2) 
= 

brp(n' + 1) 
(B6) 

Using (B3)-(B6), we can successively generate the A 
functions in terms of either the ,un or the pen). For 
example, 

A2(l, 2) = ,u2(1, 2) + ,u1(l),u1(2) - ,u1(I)b(1 - 2) 

= p(2)(I, 2), (B7) 

A3(1' 1 1,2) = ,uS (1 , 2, I') + ,u1(1),u2(2, I') 

+ ,u1(2),u2(1, I') - ,u2(1, 1')b(1 - 2) 

= {p(S)(1, 2, I') - p(2)(1, 2)p(1)(I')} 

A4(I', 2' I 1,2) 

+ p(2l(l, 2)[b(l - I') + b(2 - I')], 

(BS) 

= ,u4(1, 2, 1',2') + ,u1(l),us(2, 1',2') 

+ ,u1(2),u3(1, 1',2') + ,u2(l, 1'),u2(2, 2') 

+ ,u2(l, 2'),u2(2, I') - ,ua(l, I', 2')b(1 - 2) 

= {p(4l(l, 2, 1',2') - p(1l(2')p(Sl(l, 2, I') 
- p(1)(1')p(3)(1, 2, 2') - p(2)(1, 2)p(2)(l', 2') 
+ 2p(2)(l, 2)p(ll(I')p(1)(2')} 

+ {p(3)(1, 2, I') - p(1)(1')p(2l(1, 2)} 

x [b(1 - 2') + b(2 - 2') + !b(l' - 2')] 
+ {p(3)(1, 2, 2') - p(1)(2')p(2)(1, 2)} 

x [b(I - I') + b(2 - I') + tb(I' - 2')] 

+ p(2)(1, 2)[b(I - 2') + b(2 - 2')] 

x [b(I - I') + b(2 - I')]. (B9) 

We note in passing that these expressions exhibit a 
transparent structure. The factors in braces as well as 
p(2)(I, 2) are derived from the Ursell functions 
Fn '+1 (1, 1', 2', ... , n') by replacing particle 1 by the 
pair (1,2) (Ref. 6). 

For our purposes, the following two properties are 
essential: (i) From the first line of Eq. (BS), it 
follows that 

An+2(I','" ,n' 11,2) = 0 for Irl - r21 ~ a 

(BlO) 

if the repulsive potential has a hard core of diameter a; 
this is, of course, borne out by the explicit expressions; 
(ii) the functions An+2(I', 2', ... , n' 11,2) are given, 
by applying the recursion formula (B6) to Eq. (B7) 
and using Eq. (B3), as 

An+2(n' 11,2) = ,un+2(n', 1,2) 

+ ~ ,ua+l(a', l),un-a+1(ii', 2) 
a'Cn' 

- b(1 - 2),un+1(n', 1), (Bll) 

where n' is the set of n numbers (1',2',"', n') and 
where a' is a subset of n' and ii' its complement in n', 
a the number of its elements, and the sum extends 
over all subsets a' of n' (including the null set and n'). 
Since the functions ,un have an effective range7 

independent of 1', any f1.n with one root point can be 
replaced in our diagrams by 

,un+I(1', ... , n', 1),...", anph(Y) IT b(rl - r~) (BI2) 
a(ln yr k=l 

for the purpose of obtaining the dominant order in 
y. For the same purpose, functions f1.n with two root 
parts may be replaced, by the same argument, by 

(I ' ') an
,u2(1, 2) TIn ~ , 

,un+2 ,"', n , 1,2 ,...."" a u(r2 - r k )· 
(In yr k=l 

(BI3) 
APPENDIX C 

In this appendix we will show that the pair distribu­
tion function derived by functional differentiation of 
In Q(z) with respect to the long range potential 
-v(r) agrees with that given in Eq. (21) through 
order y2v-1, We begin from the expression 

(2)(1 21 z) == bin Q(z) . (Cl) 
p, b,Bv(l, 2) 

Using Eq. (1) for In Q(z) and the stationary condition, 
(3), we obtain 

p(2)(1, 21 z) = p2(Z) - p(z)b(1 - 2) 

+ [ bV hey) ] (C2) 
b,Bv(I,2) v=v .. 
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Carrying out the functional differentiation of Vh(y) , 
we obtain 

[ 
~Vh(y) ] 
~pv(l, 2) y~y. 

X PiJl (3, 4),u2(2, 41 y*) 

Combining all these results, we obtain 

p(2\1, 21 z) 

= p~2\1, 21 y*) + t II dVrsdVr4~iJl(3, 4) 

X {,uit, 2, 3, 41 y*) + 2ph(y*),uS(1, 3, 41 y*) 

+ 2,u2(1, 3 1 y*),u2(2, 41 y*) 

- ~(1 - 2),uaCl, 3, 41 y*)} + O(y2V). (C5) 

Using Eq. (B9), we see that Eq. (C5) can be written 

p(2)(1, 21 z) 

= p~2)(1, 21 y*) + t II dVrad
Vr4Al3, 41 1, 2) 

+ t II dV
rsd

V
r4flil, 2, 3, 41 y*) 

X PDt(3, 4) + O(y2V). (C3) X PiJtC3, 4) + O(y2V). (C6) 

The first two terms in this expression are obtained 
from the first term on the right-hand side of Eq. (8). 
The last term is the term of lowest order obtained 
by differentiation of the second term in Eq. (8). 
Thus, we see that in order to compute p(2) through 
order y2V-l, we must take into account terms in the 
pressure through order ySV-l. p(z) is found, from Eqs. 
(2) and (8), to be 

p(z) = Ph(Y*) + t II dVr2d
Vrs,uaCl, 2, 3 1 y*) 

X ~iJl(2, 3) + O(y2V). (C4) 

The integral is, of course, independent of r l and is 
the lowest term obtained from (8h(y)(8 InY)lI~1/.' 

This is identical through order y2V-l to our Eq. (21). 
We have checked the agreement also to order ySV-l by 
the same procedure. Since this calculation is straight­
forward and laborious, we have not presented it here. 
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We formulate and solve the problem of determining a complete set of generalized functions for a wide 
class of homogeneous spaces with compact stabilizers. This allows us to say precisely what unitary 
irreducible representations can be realized on a given homogeneous space. The techniques are applied 
to the n-dimensional orthogonal and unitary groups. 

I. INTRODUCTION 

In physics, we frequently encounter homogeneous 
spaces. Two well-known examples are the 3-dimen­
sional sphere Sa = SO(2)\SO(3) in angular momentum 
theory and Minkowski space M = 1S0(3, 1)(SO(3, 1) 
in Wigner's classification l of the unitary irreducible 
representations (UIR's) of the Poincare group. With 

the relatively recent interest in higher-symmetry 
groups, homogeneous spaces have also been used, 
e.g., by Beg and Ruegg2 to study SU(3) and by 
Holland3 to investigate some of the UIR's of SU(n). 
R~czka et al. have studied the most degenerate 
representations of SO(p, q),4 SU(p, q),5 and Sp(n).6 
Further, Lun;at,7 Nilsson and Kihlberg~ and others9- n 



                                                                                                                                    

3176 JALICKEE, SIEGERT, AND VEZZETTI 

Carrying out the functional differentiation of Vh(y) , 
we obtain 

[ 
~Vh(y) ] 
~pv(l, 2) y~y. 

X PiJl (3, 4),u2(2, 41 y*) 

Combining all these results, we obtain 

p(2\1, 21 z) 

= p~2\1, 21 y*) + t II dVrsdVr4~iJl(3, 4) 

X {,uit, 2, 3, 41 y*) + 2ph(y*),uS(1, 3, 41 y*) 

+ 2,u2(1, 3 1 y*),u2(2, 41 y*) 

- ~(1 - 2),uaCl, 3, 41 y*)} + O(y2V). (C5) 

Using Eq. (B9), we see that Eq. (C5) can be written 

p(2)(1, 21 z) 

= p~2)(1, 21 y*) + t II dVrad
Vr4Al3, 41 1, 2) 

+ t II dV
rsd

V
r4flil, 2, 3, 41 y*) 

X PDt(3, 4) + O(y2V). (C3) X PiJtC3, 4) + O(y2V). (C6) 

The first two terms in this expression are obtained 
from the first term on the right-hand side of Eq. (8). 
The last term is the term of lowest order obtained 
by differentiation of the second term in Eq. (8). 
Thus, we see that in order to compute p(2) through 
order y2V-l, we must take into account terms in the 
pressure through order ySV-l. p(z) is found, from Eqs. 
(2) and (8), to be 

p(z) = Ph(Y*) + t II dVr2d
Vrs,uaCl, 2, 3 1 y*) 

X ~iJl(2, 3) + O(y2V). (C4) 

The integral is, of course, independent of r l and is 
the lowest term obtained from (8h(y)(8 InY)lI~1/.' 

This is identical through order y2V-l to our Eq. (21). 
We have checked the agreement also to order ySV-l by 
the same procedure. Since this calculation is straight­
forward and laborious, we have not presented it here. 

• Program at Northwestern University supported by O.N.R. 
and N.S.F. 

t Program at University of Illinois at Chicago Circle supported 
by N.S.F., Grants GP7328 and GP8734. 

1 J. B. Jalickee, A. J. F. Siegert, and D. J. Vezzetti, J. Math. Phys. 
10, 1442 (1969). This will be referred to as Paper I. 

• M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 
4,216 (1963). 

3 A. J. F. Siegert and D. J. Vezzetti, J. Math. Phys. 9, 2173 (1968). 
• J. Zittartz, Z. Physik 180,219 (1964). 
5 T. Morita and K. Hiroike, Pro gr. Theoret. Phys. (Kyoto) 25, 537 

(1961). 
6 These functions were introduced by J. de Boer, Rept. Progr. 

Phys. 12, 305 (1949), Sec. 7, III. 
7 It is assumed that, for the fugacities and temperatures of 

interest in the condensation of the total system, the reference system 
is a gas. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER II NOVEMBER 1970 

Complete Sets of Functions on Homogeneous Spaces with 
Compact Stabilizers 

ROBERT LEONARD ANDERSON· AND KURT BERNARDO WOLF 
Institute of Theoretical Physics, Fack, S-402 20, Goteborg 5, Sweden 

(Received 12 January 1970) 

We formulate and solve the problem of determining a complete set of generalized functions for a wide 
class of homogeneous spaces with compact stabilizers. This allows us to say precisely what unitary 
irreducible representations can be realized on a given homogeneous space. The techniques are applied 
to the n-dimensional orthogonal and unitary groups. 

I. INTRODUCTION 

In physics, we frequently encounter homogeneous 
spaces. Two well-known examples are the 3-dimen­
sional sphere Sa = SO(2)\SO(3) in angular momentum 
theory and Minkowski space M = 1S0(3, 1)(SO(3, 1) 
in Wigner's classification l of the unitary irreducible 
representations (UIR's) of the Poincare group. With 

the relatively recent interest in higher-symmetry 
groups, homogeneous spaces have also been used, 
e.g., by Beg and Ruegg2 to study SU(3) and by 
Holland3 to investigate some of the UIR's of SU(n). 
R~czka et al. have studied the most degenerate 
representations of SO(p, q),4 SU(p, q),5 and Sp(n).6 
Further, Lun;at,7 Nilsson and Kihlberg~ and others9- n 



                                                                                                                                    

COMPLETE SETS OF FUNCTIONS ON HOMOGENEOUS SPACES 3177 

have used some of the homogeneous spaces of the 
Poincare group in order to build field theories which 
may provide a description in which mass and spin are 
treated on an equal footing. 

These examples illustrate an important and well­
known use of homogeneous spaces in mathematics 
and physics: namely, that, if there exists a right G­
invariant measure on a homogeneous space X = 
Go\G (Go is called the right stabilizer of the homo­
geneous space), then, by using the action of G on X, 
one can realize a unitary (in general, reducible) 
representation Ug of G, the Hilbert space L 2(X) of 
square-integrable functions on X serving as a carrier 
space. 

The central mathematical question is the decom­
position (as a direct sum or integral) of L2(X) into 
minimal Ug-invariant subspaces, i.e., the decomposi­
tion of the regular representation Ug into irreducible 
representations. The elements of these minimal Ug-

invariant spaces are called spherical functions. 
We know, from the work of Rl}czka,12 the connec­

tion between the completeness of the set of matrix 
elements of VIR's for the space L2(G) for locally 
compact, semisimple Lie groups and nuclear spectral 
theory: namely, that the VIR matrix elements are the 
generalized eigenfunctions of a complete set of 
operators built from the right and left universal 
enveloping Lie algebras. In fact, we obtain not only 
the spherical functions but their decomposition into 1-
dimensional subspaces and, furthermore, the complete 
classification of all possible VIR's that appear in the 
regular representation of G along with their multi­
plicities. 

Our purpose is to exploit this fact and obtain 
analogous results for the homogeneous spaces of the 
form Go\G, where G is an arbitrary locally compact 
unimodular Lie group with a complete set of VIR 
matrix elements. In this paper we shall discuss in 
detail the case when Go = K is any (closed) compact 
subgroup of G. 

The formalism is set up in Sec. II, where the 
central question "What constitutes a complete set of 
functions on the homogeneous space X = K\G?" is 
answered. This leads immediately to the solution of 
the related problem in Sec. III: "What VIR's can be 
realized on a given homogeneous space?" 

The solution is given explicitly for the orthogonal 
groups in Sec. IV: SO(n) is treated in detail, and the 
extensions to SO(n - 1,1) and ISO(n) are indicated. 
In Sec. V we treat the unitary groups U(n) and SU(n). 
The parametrization of these groups and of the 
homogeneous space manifolds is essential for our 
purposes: The concrete and detailed statement of the 

results is simplified by the use of the Gel'fand-Tsetlin 
patterns. 

We hope to discuss, in a future publication, homo­
geneous spaces where the stabilizer groups are non­
compact (but locally compact). 

II. COMPLETE SETS OF GENERALIZED 
FUNCTIONS 

Let G be a locally compact Lie group and K any 
closed subgroup of G. We can construct the space of 
right (left) cosets, the homogeneous space X = K\G 
(G/K) whose points x E X are the sets Kg(gK), where 
g E G and the topology in X is the one induced by the 
topology of G. The homogeneous space X is itself a 
group only when K is a normal subgroup of G. 
However, we are interested in X as a transitive mani­
fold for G; i.e., (a) the coset Kg is mapped into the 
coset Kgg' under right multiplication by g' E G (gK 
is mapped into g'gK under left multiplication by 
g' E G), and (b) given any two cosets, there exists a 
g E G which maps one into the other. For the purposes 
of economy, we shall confine our discussion to spaces 
of right co sets X = K\G. 

Let F(G) be the set of functions defined on the 
group manifold of G. Functions on the homogeneous 
space X = K\G are defined as functions which are 
constant on right cosets, i.e., 

F(X) = {fE F(G) I/(kg) 

= I(g), for g E G and all k E K}. (I) 

We want to point out the fact that, if IE L 2(X) and 
if the stabilizer K is compact, then IE L 2( G), while, 
if K is noncompact, I¢: L 2( G). It is precisely because 
of this that we restrict ourselves in this paper to the 
case with compact stabilizers. 

Since we are interested in unitary representations, 
we must have a right G-invariant measure on X, and 
we can use the following general theorem13 to insure 
its existence: 

Theorem: If G is a locally compact unimodular Lie 
group and K a subgroup of G, then there exists an 
invariant measure dm(x) on the homogeneous space 
K\G provided that 

Idet AdaCk)1 = Idet AdK(k)1 for all k E K, 

This measure dm(x) is unique up to a constant factor, 
and 

r f(g) df-l(g) =f dm(x) r I(kg) df-l(k) 
Jo K\O JK 

for every IE Co (G). 



                                                                                                                                    

3178 R. L. ANDERSON AND K. B. WOLF 

We know that Co(G), the space of all continuous 
functions on G with compact support, is dense in 
L2(G). Since all continuous functions with compact 
support which are constants on co sets with respect to 
a compact subgroup K belong to Co (G) and are dense 
in L2(X), the theorem is applicable to our case and 
covers a "sufficiently" large class of elements of 
L 2(X). 

We now restrict ourselves further to locally com­
pact unimodular Lie groups, such that the UIR 
matrix elements or some subset of them constitute a 
complete set of generalized eigenfunctions as described 
by R~czka, i.e., such that they are the generalized 
eigenfunctions (in the sense of nuclear spectral theory) 
of a complete set of strongly commuting operators 
built from the right and left universal enveloping Lie 
algebras. We shall henceforth call this "the complete­
ness requirement." 

Presently, there is no general, mathematically 
rigorous statement characterizing all groups which 
satisfy the completeness requirement. The compact Lie 
groups are, of course, rigorously known to satisfy it 
by virtue of the Peter-Weyl-von Neumann theory.14 
The theory has also been developed for some of the 
noncompact groups, specifically SL(2, C),15 10(2),16 
and SO(2, I)Y The work of R~czka12 represents a 
generalization of the Peter-Weyl-von Neumann theo­
rem to noncompact, semisimple Lie groups. 

For groups which satisfy this completeness require­
ment, we can associate, with each function I(g) E 

L 2(G), one matrix function F(A) whose domain is the 
space of a complete set of UIR's of the group, which 
we denote by G. The points of this space are char­
acterized by the eigenvalues A of a complete set of 
Casimir operators18 of the group. For every A, the 
rows and columns of this matrix are labeled in the 
same fashion as the UIR matrices DA(g) themselves 
(as will be detailed below), which become the trans­
formation kernels which relate the two functions1

1.
19 ; 

i.e. , 

FpiA) = Ld,u(g)/(g)D!q(g), (2a) 

I(g) =JAdt1(A) L Fqp(A) D!ig-1
) , (2b) 

G p,q 

where dt1(A) is the Plancherel measure on G. For 
compact groups G, the space G is a set of isolated 
points, and the integration in (2b) becomes a sum 

fAdt1(A) --->- LA dim (A) / V(G), 
G ),EG 

where dim (J.) is the dimension of the UIR labeled by 
J. and V(G) is the volume of the group. 

The norms of the two functions in (2a) and (2b) can 
be related by the Parseval identity 

Let G:::> Gr :::> Gr- l :::> •.• :::> GI be a chain of 
subgroups which includes the compact subgroup 
K = Gk for some k, whose UIR labels can be used to 
classify completely the components of the UIR basis 
vectors [as, e.g., the canonical chains SO(n):::> 
SO(n - 1) :::> •.• :::> SO(2) and U(n):::> U(n - I) :::> 
•.• :::> U(1) for the orthogonal and unitary groups, 
giving rise to the Gel'fand-Tsetlin kets; see Sees. IV 
and V]. 

It will prove convenient to regard the index labeling 
the rows (columns) of the representation matrices 
D pq (g) , as standing for the sets {Pro Pr-l1 ... , PI} 
({qr, qr-l, ... , ql})' where Pi (qi) is the collective label 
which denotes the eigenvalues of a complete setlS of 
Casimir operators of the subgroup Gi along the chain. 
For convenience, we define Pi == {Pi' Pi-I, ... ,PI} 
(7ft == {qi' qH' ... , ql}), i.e., the row (column)-index 
for the UIR matrices of GJ+I, and 

for ko E K, where the Kronecker b in the collective 
labels Pi and qi is to be regarded as a product of the 
Kronecker b's in the individual indices. 

Let us first examine the pair of functions (2) when 
I(g) has the property (1) (Le., when it is a function on 
X = K\G), in order to determine the subset of 
{D~ig-l)} which constitutes a complete set in X: We 
find that only those D's which satisfy 

D!ig-1
) = D;i(kgtl) for all k E K and g E G 

(4) 

appear in the expansion of a IE L2(X)' We have 
employed the following reasoning here: {D;q(g-l)} is 
a complete set for L2(G) and, since IE L2(X) implies 
IE L 2(G), {Dpq(g-l)} is also a complete set for L 2(X); 
IE L 2(X) means I(kg) = I(g) for all k E K, and thus 
we find that the subset of {Dpq(g-l)} which satisfies 
condition (4) is a complete set on X. 

We can integrate (4) over k E K in both sides: 
The left-hand side, independent of k, will be multiplied 
by the volume V(K) of the subgroup. The right-hand 
side can be written as Ls D:q(rl)D~(k-l), and the 
integration performed only over the last factor, where 
(3) can be used. 

Furthermore, since the scalar representation 
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(which is a constant function on K) is a member of 
the complete set of VIR matrices for K, we have 

fKd,u(k)Di:-lqk-l(k-1) = o"k_l'OOqk_l,OOR(qk' 0), (5) 

where the last factor is such that 

r dt1(q)A(q)OR(q, qo) = A(qo) 
Jit 

for any "well-behaved" function A(q) on the space K. 
For compact groups, it can be written as 

0R(q, qo) = Oq,qOV(K)jdim (qo)' (6) 

As before, dim (q) is the dimension of the VIR of K 
labeled by q, and dim (0) = 1. Hence, from (3), (5), 
and (6) it can be seen that those D's which satisfy (4) 
must also satisfy 

D;ig-1) = D;ig-1)oOk,O (7) 

and, hence, the complete set of functions on X = 
KIG is the set {D;,q(k)(g-l)}, where 

q(k) == {q" qr-l, ... ,qk+1' 0, ... , O}. 

It is important to understand that q(k) restricts the 
allowed values of A to those VIR's which contain the 
scalar representation of K. This, in turn, restricts 
the allowed values of p. Concrete cases will be pre­
sented in Secs. IV and V. 

There is another point of interest: namely, that we 
know that, since G is a locally compact unimodular 
Lie group, the right and left regular representations 
are simultaneously defined on the group and that they 
commute, since there exists a left and right G-invariant 
l11easure on the group manifold. The question arises 
as to what happens, e.g., with the action of the group 
(from the left) T: for the right quasiregular repre­
sentation on X. The answer is seen by acting with T: 
on (2b) where the D's are restricted by (7). One finds 
that under T: all elements of a given right coset are 
mapped into another right coset with respect to the 
subgroup g-lKg, so that functions constant on the 
right coset space K\G are mapped into functions con­
stant on the right coset space g-lKg\G. 

III. DECOMPOSITION OF THE QUASIREGULAR 
REPRESENTATION 

An important consequence of our knowledge of a 
complete set of generalized functions on X, as a 
subset of the VIR matrix elements of the group G, is 
that we automatically obtain a decomposition of the 
unitary quasi regular right representation into its 
VIR's, along with their multiplicities. Recall that the 
quasiregular right representation rR of a locally 

compact Lie group G on L 2(X) is defined as 

T~(x) = I(xg), (8) 

where IE LlX), x E X, and g E G. It is well known 
that, if there exists a right G-invariant measure on X, 
then T: is a unitary representation. 

In fact, any IE L 2(X) can be decomposed as 

I(x) =1, dt1(A) I Fq(k),vCA)D;,q(k)(g-l), (9) 
G (,'estrictcd) p,q(k) 

where q(k) was defined above. But T: acting on (9) 
transforms all D;,q(k)(g-l) with a fixed value of q(k) 
among themselves. Hence, for each fixed value of 
q(k) there exists one VIR in the direct-integral de­
composition of L 2(X) , and thus the multiplicity is 
exactly the number of different values of q(k) con­
strained by a fixed (allowable) A and ijk = O. This 
number may, or may not, be denumerable. 

IV. APPLICATION: THE 
ORTHOGONAL GROUP 

We shall give first a brief description of the group 
and representation spaces of the orthogonal groups 
SO(n). The group manifold of SO(n) can be param­
etrized inductively by "Euler" angles (enclosing 
collective variables in curly brackets) as 

Rn({~}(n» = Rn_l({~yn-l»Sn({~(n)}), 

Sn( {u(n)}) = r n-l,n( ~~~l,n) 

X ... X r 23( ~~~» X r 12( ~i~», (10) 

where Rk E SOCk) and rab(~) is a rotation by {} in the 
(a, b) plane. The ranges of the variables are 0:::;; 
~12 < 27T and 0 :::;; ~k-l,k :::;; 7T, k = 2,4, ... ,n. Thus, 
the SO(n) manifold is the product of the SO(n - I) 
manifold and the n-dimensional unit sphere: the 
homogeneous space SO(n - 1)\SO(n), parametrized 
by the n - I angles {~(n)}. 

Notice that, for SO(3), R3(1X, p, y) = r12(IX)r23(p) X 

r12(y). This differs from the more general usage20 in 
that the second rotation is made around the I-axis 
rather than the 2-axis. This will cause no difficulty, 
however. 

The Haar measure on SO(n) can be split according 
to the parametrization (10) as d,u(Rn) = d,u(Rn- 1) dSn , 

where 

dSn = sinn-2~n_l.n d~n-l.l ... sin ~23 d~23 d~12 (11) 

is the measure on the space SO(n - 1)\SO(n). The 
volume of the group can be seen to be given by 
V(SO(n» = V(SO(n - 1»An [and V(SO(2» = 27T], 
where An = 27T!njr(tn) is the surface of the n­
dimensional sphere. 



                                                                                                                                    

3180 R. L. ANDERSON AND K. B. WOLF 

The homogeneous space SO(k)\SO(n) is thus the 
set of points Sk+1({O(k+1)}) ... Sn({O(n)}) and is a 
ftn(n - 1) - ik(k - 1)]-dimensional manifold with 
Haar measure dSk+l ... dSn. 

From the work of Gel'fand and TsetIin2L22 we 
know that the bases for UIR's of SO(n) classified by 
the canonical chain SO(n - 1) ::::> ••• ::::> SO(2) can 
be labeled as 

I n •1 I n ,2 

I n- 1.1 I n- 1.2 

J'.l J4,2 

Ja•1 

J2•1 

(12) 

where [tk] is the largest integer less than or equal to 
tk. This ket transforms as the Jk = (Jk1 , Jk2 , ... Jk[lk]) 
UIR of SOCk). The Jab are either all integer or all half­
integer and are constrained by the inequalities 

J2k+1.; ~ J2k.; ~ J2k+l.H1 , 

j = 1,'" ,k-l, 
k = 1, ... , [ten - I»), 

J2k .; ~ J2k-1.; ~ J2k.H1 , 

j=I,"',k-l, (13) 

k = I, ... , [tn] , 
J2k+l.k ~ IJ2k.k1, k = 1, ... , [ten - I)], 
In.[ln] ~ 0, n odd, 

J n-1o[1n]-1 ~ IJn.[ln]l, n even. 

The number of labels in the ket (12) is 

n 

£len) = L rim] = Hn2 
- 1), n odd, 

m=2 

and the number of UIR, row, and column labels of 
the D:J:_lj'1I_1 (R-;;l) (by using the notation of Sec. 2, 
namely, Jk == {Jk,Jlc-1'··· ,J2}) is thus [in] + 
2LO(n - 1) = tn(n - 1), i.e., the same as the number 
of parameters of the group. 

The scalar representation of SOCk) is Jk = (0, 0, 
... , 0) == O. Notice, then, that, if we have zeros in 
the Jk row, k > 2, of (12), the inequalities (13) imply 
that the Jk+1 row must consist of zeros, except for 
Jk+1.1, which is only constrained to be integer. In the 
Jk+2 row, all except Jk+2.1 and Jk+2.2 must be zero, etc. 
Thus we can see that only the "most symmetric" 
(J, 0, ... ,0) UIR'S of SO(n), n > 3, can be realized 

on the homogeneous space SO(n - 1)\SO(n), a result 
familiar from the theory of spherical functions.' 

For SO(2)\SO(3), J21 = 0 implies only thatJa1 must 
be integer and thus the functions on the 3-dimen­
sional sphere23 can realize all-but only-the single­
valued representations of the group SO(3). 

For SO(k)\SO(n) , the ket (12) will have Jk = O. 
These zeros will "propagate" upwards under a 
diagonal to the right (see Fig. I), and there will be 
[t(2k - n)] zeros in the row of the UIR labels. Thus, 
if k ~ i(n + 1) (n odd) or k ~ in (n even), it will be 
possible to realize all the single-valued UIR's of SO(n) 
in this space. 

It is not difficult to see that the number of indices 
Jq •r , q ~ k + 1, which are forced to be zero is LO(k -
1), so that there are [ik] + 2LO(k - 1) = tk(k - 1) 
zeros in the pattern (12), and the number of remaining 
free labels is In(n - I) - lk(k - 1), equal to the 
number of parameters of the space SO(k)\SO(n). 

On the other hand, if some of the UIR labels are 
forced to be zero, these zeros may propagate into the 
row (p) indices as well, downwards along a vertical 
line (see Fig. I). There will thus be 2£O(k - 1) + 
[tk] - £O(2k - n) zeros in the column (q) pattern 
(12), [t(2k - n)] in the UIR labels, and LO(2k - n -
1) in the row (p) pattern (12). The number of remain­
ing free labels is again equal to the number of param­
eters of the homogeneous space. 

As far as the SO(n - 1, 1) group is concerned, the 
same procedure can be applied to the chain of sub­
groups SO(n - I, I) ::::> SO(n - 1) ::::> ••• ::::> SO(2). 
The only differences lie in (10), where r n-1.n(~) is now 
a boost in the (n - 1) direction so that 0 ~ ~ < 00. 

~= I 111111111111 

p= 

FIG. 1. Graphical representations of the zeros (shaded areas) 
in the VIR, row, and column labels of D;.Q(k)(R-l) for the orthog­
onal group. 
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The homogeneous space SO(n - 1)\SO(n - 1, 1) 
is an n-dimensional revolution hyperboloid with a 
measure (11), where the trigonometric function in 
{}n-1.1 must be replaced by a hyperbolic one in " As 
shown by Chakrabarti,24 the ket (12) replaces its 
discrete I n •1 index by a continuous one, which is not 
subject to the restrictions (13). Our knowledge of 
these groups25 is still unsatisfactory regarding the 
UIR matrix elements themselves26 ; however, the 
statements made regarding the complete set of func­
tions on the homogeneous spaces considered above 
do not depend on their detailed knowledge. 

The inhomogeneous orthogonal group ISO(n) is 
the semidirect product of the n-dimensional transla­
tion group T(n) and SO(n). Its elements are the points 
g = (x, R), x E T(n), R E SO(n), with the product 
(X2' R2)(X1, R1) = (xz + R2x1, R2R1). 

The ISO(n) manifold is thus the direct product of 
the T(n) and SO(n) manifolds, its Haar measure 
being dnx dft(R). Kets similar to (12) which classify 
the components of the UIR vectors using the chain 
ISO(n) ::> SO(n) ::> ••• ::> SO(2) have been set up by 
Chakrabarti. 24 The more common (and physically 
relevant) classification of the UIR's of ISO(n) [and of 
ISO(n - 1, 1)] is the one which follows Wigner's 
"little group" method.1 Harmonic analysis on these 
groups, with their UIR's classified by the mass-M 
spin-J pair of labels (J is a collective index for n ~ 5), 
has been carried out,10.11 and the case of functions on 
the space of co sets of the type ISO(n)/SO(k) developed 
in Ref. 11. This does not fall, however, within the 
bounds of our formalism, which so far requires the 
use of the "canonical" chain. This subject, then, 
requires further investigation. 

V. APPLICATION: THE UNITARY 
GROUP 

We shall present one parametrization of the U(n) 
group manifold which we consider convenient because 
of its inductive definition, which makes it similar to 
the "Euler" angle parametrization of the orthogonal 
groups seen in the previous section. 26 It can be 
conveniently used to parametrize the homogeneous 
space SU(k)\SU(n). 

Enclosing collective labels in curly brackets, we 
define 

Un({gJ, {}}(n» = Un_1({gJ, {}yn-ll)Cn({gJ(n), {}(n)}), 

Cn({gJ(n), {}(n)}) = cI>n(gJ~n»rn_1.n({}~n» 

X ... X cI>z( gJ~n»r1.2(&~n» X cI>1( gJ~n», (14) 

where Uk E U(k); cI>igJ) is a diagonal matrix with 
elements e[i<p/(l-k)] in the (q, q) positions, q = 1,2, 
... , k - 1, e(i<p) in the (k, k) position, and 1 in the 

remaining places on the diagonal. It is unimodular 
for k ~ 2. 

As in the previous section, rab ({}) is a matrix with 
cos{} in the (a, a) and (b, b) positions, 1 elsewhere on 
the diagonal, -sin {} and sin {} in the (a, b) and (b, a) 
positions, and 0 in the remaining places. 

The number of parameters of Cn is 2n - 1, so that 
the parameters of U(n) are n2• The condition of 
unimodularity implies 

since 

and this restricts by one the number of parameters. 
The ranges of the "rotation" angles are 0 ~ {}~k) ~ !7T, 
j = 2, ... ,k, and of the "phases" 0 ~ gJ~k) < 27T, 
j = 1, ... , k. The Haar measure on U(n) decomposes 
as for the orthogonal group: dfl(Un) = dfl(Un- 1) dCn' 

We can see that C~l({ gJln), {}(n)}) acting on the n­

dimensional complex vector (0," . , 0, 1) generates 
(Zl' ... , zn)' the surface of the n-dimensional complex 
unit sphere. The surface element of this can be found 
by using the fact that, for each coordinate, 

d2z = d Re (z) dIm (z) = r dr d"P, 

where r = mod (z) and "P = arg (z). The modulus is 
thus only a function of the {} variables, the argument 
only of the gJ variables, and 

dCn = (r1 ... r n)(dr1 ... dr n)(d"P1 ... d"Pn). 

The first term is sin n-1 {} n cos {} n • • • sin {} 2 co S {} 2 , 
the second one is (11), the measure on the n-dimen­
sional real sphere, and the third one is just dgJ1 ... dgJn 
since the Jacobian is unity. 

The measure on the n-dimensional complex sphere 
is therefore 

den = sin2n- 3 {}~n) cos {}~n) d{}~n) dgJC:) 

X ... X sin {}~n) cos {}~n) d{}~n) dgJ~n) X dgJin) 

= dgJ~n)s~n-3 dSn X ... X dgJ~n)S2 dS2 X dgJin), 

(15) 

where Sk = sinin); thus, this is the measure on the 
homogeneous space SU(n - l)\SU(n). Correspond­
ingly, the space SU(k)\SU(n) is parametrized by 

Ck+1({gJ(kH) , {}(k+1)}) .. Cn({gJln) , {}In)}), 

has n2 - k 2 parameters, and its measure is dCk+1 .•• 
dCn . The volume of the group is V(U(n» = V(U(n -
l»Bn [and V(U(I» = 27T], where Bn = 27Tnjr(n) = 
A2n , the surface of the n-dimensional complex sphere. 
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Vsing again the work of Gel'fand and Tsetiin,27 
we can write the bases for VIR's of U(n), classified by 
the canonical chain15 U(n) :::> U(n - 1) :::> ••• :::> U(1), 
as 

Kn- 1•1 Kn- 1•2 ... Kn- 1•n- 1 

. (16) 

This ket transforms as the Kk = (Kkl' Kk2 , ... , 
Kkk) VIR of U(k), and these labels are constrained by 
the inequalities 

Kk.J 2: Kk- 1•J 2: Kk,J+1' j = 1,'" ,k - 1, 

k=2,···,n. (17) 

The number of labels in (16) is 

n 

LU(n) = ! m = tn(n + 1), 
m=l 

and the number of VIR, row, and column labels of 
DI~_lR'n_l(U) (again, Kk == {Kk' Kk- 1 ,' ., ,KI }) is 
thus n + 2LU(n - 1) = n2 , i.e., the same as the 
number of parameters of the group U(n). 

The representations of SU(n) have the same labeling 
as those of U(n), except that 

(Kn.1 , Kn.2 , ... , Kn.n) 

== (Kn.1 + K, Kn.2 + K, ... , Kn.n + K) 

for any K, so that we can take K = - Kn .n and thus 
restrict the last VIR label to zero, having thus n2 - 1 
VIR, row, and column labels for the (n2 - 1)­
parameter group SU(n). 

The scalar representation of SUCk) is Kk = (0, ... , 
0), but this is equivalent to (K, ... , K) in the pattern 
(16), forcing through the inequalities (17), all the rows 
below the Kk row to be (K, ... ,K) as well (see Fig. 
2). This takes the place of the VIR '0' in the case of 
the orthogonal groups (Sec. IV). 

If the scalar representation of SUCk) is to be 
present in (16), the inequalities (17) imply that all 
but two of the labels of the Kk+1 row must be equal: 
Kk+1 •2 = ... = Kk+l.k = Kk •1 and, in the row above 
that one, Kk+2.3 = ... = Kk+2.k = Kk+l.2 = Kk.1 , etc. 
Thus, we can see that only the (J, K, ... , K, 0) VIR's 
of SU(n) can be realized on the homogeneous space 
SU(n - l)\SU(n). In particular, this places no 
restriction on the SU(3) VIR's which can be realized 
on SU(2)\SU(3) homogeneous space,2.3 as can be seen 

x. = L.I _.....ullwllwllwllwll.ll..II_...I 

FIG. 2. Graphical representation of the regions of constant 
values (shaded areas) .in the UIR, row, and column labels of 
D •• q1k)(U-1) for the umtary group. 

also noting that every VIR of SU(3) contains the 
scalar representation28 of SU(2). 

In general, all VIR's of SU(n) can be realized on 
SU(k)\SU(n) when k ~ Hn + 1). The equality of the 
2LU(k - 1) + k - 1 = k 2 - 1 VIR labels of a 
scalar representation of SUCk) and the triangle above 
it (Fig. 2) leaves n2 - k 2 free parameters, i.e., the 
number of parameters of the space SU(k)\SU(n). 

If k > Hn + 1), only the VIR's of SU(n) with 
Kn.n- k+1 = Kn.n-k+2 = ... = Kn.k are to be realized 
on SU(k)\SU(n). The number of free parameters can 
be seen (Fig. 2),to be again equal to n2 - k 2• 

There seems to be no fundamental difficulty in 
carrying out this program for the SU(n - 1, 1) 
groups29 classified by the canonical chain SU(n - 1, 
1) :::> U(n - 1) :::> ••• :::> U(1) nor for the inhomo­
geneous unitary group ISU(n), whose elements are 
g = (x, U), where x E T(2n) and U E SU(n). The kets 
in the Wigner "little group" chain can be constructed 
using the T(2n) subgroup, and its representations, 
labeled by an n-dimensional complex vector. Again, 
our formalism requires that we follow a procedure 
parallel to Chakrabarti's,24 in considering the "canon­
ical" chain ISU(n):::> U(n) :::> U(n - 1) :::> ••• :::> U(1). 
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Models of 2-dimensional hydrogen bonded crystals obeying the ice rule, which previously have been 
solved exactly, are generalized by removing the ice rule. Many of the peculiar and unique properties of 
the solutions for the constrained models are now explained by showing that these models, above critical 
temperature, are equivalent to new unconstrained models at critical temperature. In addition to locating 
the critical temperature for the general but unsolved models, we locate the singularities of the ground 
state energy of a related ring of interacting spins. 

INTRODUCTION 

Much progress has been made recently in solving 
exactly models for hydrogen bonded crystals in 2 
dimensions.1- 4 These models are constrained by the 
"ice rule." The essential point for the exact solution 
is Lieb's observation for 2-dimensional ice1 that the 
transfer matrix has the same eigenvectors as a solvable 
I-dimensional quantum many-body problem, the 
Heisenberg-Ising ring of interacting spins. 5 

However, the properties of the models, when 
determined, are surprising, and totally unlike the 
Ising problem. One can blame this, of course, on the 
ice rule constraint. However, this remark really does 
not clarify matters. It is the purpose of this paper to 
point out the qualitative relationship between con­
straint and behavior. 

1. THE GENERAL EIGHT-SITE LATTICE 
PROBLEM 

Consider a square lattice of N2 vertices and thus 
2N2 edges. We assume periodic boundary conditions 
in both directions. Place 2N2 arrows one to an edge, 
and assign an energy to each configuration of the four 
arrows about a vertex. In general, therefore, there 
will be 24 = 16 possible energy assignments. 

A large class of solvable models results when the 
possible vertex configurations obey the "ice rule"; 
that is, all configurations have infinite energy except 
the six with two arrows in, two arrows out of a vertex. 
This general six-site configuration is exactly soluble.2 

The allowed sites are the first six in Fig. 1, with a 
possible parametrization in the language of ferro­
electrics shown below. In this notation, the arrows 
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Models of 2-dimensional hydrogen bonded crystals obeying the ice rule, which previously have been 
solved exactly, are generalized by removing the ice rule. Many of the peculiar and unique properties of 
the solutions for the constrained models are now explained by showing that these models, above critical 
temperature, are equivalent to new unconstrained models at critical temperature. In addition to locating 
the critical temperature for the general but unsolved models, we locate the singularities of the ground 
state energy of a related ring of interacting spins. 

INTRODUCTION 

Much progress has been made recently in solving 
exactly models for hydrogen bonded crystals in 2 
dimensions.1- 4 These models are constrained by the 
"ice rule." The essential point for the exact solution 
is Lieb's observation for 2-dimensional ice1 that the 
transfer matrix has the same eigenvectors as a solvable 
I-dimensional quantum many-body problem, the 
Heisenberg-Ising ring of interacting spins. 5 

However, the properties of the models, when 
determined, are surprising, and totally unlike the 
Ising problem. One can blame this, of course, on the 
ice rule constraint. However, this remark really does 
not clarify matters. It is the purpose of this paper to 
point out the qualitative relationship between con­
straint and behavior. 

1. THE GENERAL EIGHT-SITE LATTICE 
PROBLEM 

Consider a square lattice of N2 vertices and thus 
2N2 edges. We assume periodic boundary conditions 
in both directions. Place 2N2 arrows one to an edge, 
and assign an energy to each configuration of the four 
arrows about a vertex. In general, therefore, there 
will be 24 = 16 possible energy assignments. 

A large class of solvable models results when the 
possible vertex configurations obey the "ice rule"; 
that is, all configurations have infinite energy except 
the six with two arrows in, two arrows out of a vertex. 
This general six-site configuration is exactly soluble.2 

The allowed sites are the first six in Fig. 1, with a 
possible parametrization in the language of ferro­
electrics shown below. In this notation, the arrows 
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FIG. 1. Allowed configurations of arrows about a vertex, with 

energy assignments in the language of ferroelectrics, and the 
corresponding statistical weights. Here 1) = eO/T, $ = e2</T, H = 
e2h /T, V = e2V/T, and f) = e·Y/T. 

are taken to be electric dipoles, and v and h are electric 
fields in the vertical and horizontal directions, 
respectively. 

There are several peculiar properties of these models, 
usually blamed in a vague way on the rigid ice rule. 
Implicit in this criticism is the belief that the Ising 
model has in some way "normal" behavior. A partial 
list of peculiar properties: At the critical temperature 
all derivatives of the free energy for antiferroelectrics 
are continuous, while ferroelectrics have a latent heat; 
ferroelectrics are completely ordered below the 
critical temperature; above the critical temperature, 
correlation functions fall off slower than exponen­
tially.4.6 

To understand qualitatively the effect of the ice 
rule, we wish to violate it by adding two new vertex 
configurations, 7 and 8 in Fig. 1, and study these 
more general models. This new problem is completely 
unconstrained, as it is equivalent to an Ising model 
with many-body potentials. The general eight-site 
problem, assigning an arbitrary energy to each of the 
eight vertices, is equivalent to the ferroelectric 
parametrization of Fig. I. This is easily seen if one 
realizes that vertices 7 and 8, and I and 2, must each 
occur in pairs in the crystal; thus there is no generality 
gained by giving them different energy. We shall, in 
this article, consider the problem in zero electric field, 
v = h = 0. 

We treat such a lattice statistical problem by the 
transfer matrix method. 7 Briefly, we construct a 
2N X 2N matrix A with matrix elements between two 
successive rows of vertical arrows in the lattice. For 
two given configurations of vertical arrows q; and q;', 
there are always two ways to place the intervening row 
of horizontal arrows. Then the matrix element of A 
is given by 

A(q;, q;') = exp [-E1(q;, q;')jT] 

+ exp [-E2(q;, q;')jT], 

where E1 and E2 are the energies of the N intervening 
vertex configurations for the two choices of horizontal 
arrows. Then the partition function for the lattice is 

Z = Tr(AN) = AN, 

where A is the maximum eigenvalue of A. 

2. mE XYZ HAMILTONIAN 

Progress was made on solving the six-site ice rule 
problem, when it was realized that the eigenvectors of 
A were the same as the eigenvectors of a soluble 
Hamiltonian for a ring of spins with nearest-neighbor 
interactions. We shall proceed by making a similar 
observation-the transfer matrix for our eight-site 
problem has the same eigenvectors as a new Hamil­
tonian-which we call the XYZ model. 

Consider N spins (S = !) on a ring interacting with 
nearest neighbors by the XYZ Hamiltonian: 

Je = - .! (Jxaxa~ + J lIa1P; + Jzaza~). (1) 
n.n. 

The a's are the Pauli spin matrices, given in a suitable 
basis by 

(0 1) (0 -i) 
ax = I 0' ay = +i ° ' 
This Hamiltonian may be exactly solved (at least 

for the ground state) in the following cases: 

(a) Any two coefficients equal, say A = B, gives 
the Heisenberg-Ising lattice.5 

(b) Any coefficient zero, say C = 0, gives the XY 
model.s 

Rewriting the Hamiltonian as 

Je(~, r) = -(J", + J y).! [a+a~ + a_a~ 
n.n. 

+ r( a+a~ + a_a~) + !~aza~], (2) 

r = (J x - J y), ~ = 2J z 
Jx+Jy J",+JII ' 

we see that Je is exactly soluble as shown in Fig. 2. 

r 

/ 
/ 

/ 

FIG. 2. Je(~. n may be solved exactly on all lines, solid and 
dashed. Singularities, and hence critical points, occur on the dashed 
lines. Knowing the behavior in the shaded triangle is sufficient to 
determine the behavior in the entire (11, n plane. 
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3. EIGENVECTORS OF THE TRANSFER MATRIX AND THE XYZ HAMILTONIAN 

We show A and Je have the same eigenvectors by showing that A and Je commute (with, of course, a 
relationship between the parameters of each). We briefly outline the proof that [A, Je] = 0. 9 A may be 
written as Tr (n~l A(i», where each A(i) is a 2 x 2 matrix with operator elements acting on the vertical 
arrow (or spin) at site i. The trace indicated is only over the 2 x 2 product matrix, not over the operator 
elements. The different choices for matrix elements simply indicate the different ways of arranging the 
horizontal arrows. IO For our eight-site case, we have 

where the a matrices refer to the ith site. More general 
cases will be treated in a later paper. 

Je is a sum of 2-body operators Je = ~i Jei.HI . 

Thus, when we take the commutator with A, we have 

[A, Je] = Tr (t [ ... A(i - 1){[A(i), Jei .i+1JA(i + 1) 

+ A(i)[A(i + 1), Jei,i+lJ}A(i + 2)" 'J). (4) 

A typical commutator in the expression of Eq. (4) will 
again be a 2 x 2 matrix with operator elements of 
the form 

(
[Au(i), Jei,i+1J [A12(i), Jei,;+1J). 
[A 21(i), Jei,i+11 [A22(i), Jei,i+1J 

It happens that, if we choose 

2~ = 'YJ + 'YJ-1 - ; - e, (5a) 

r = (;e)t, (5b) 

then the quantity in parenthesis reduces to 

A(i)Q(i + 1) - Q(i)A(i + 1), 

where Q(i) is a 2 x 2 matrix with operator elements 
acting only on site i. Thus, when we sum over i, the 
commutator is seen to vanish. 

4. SOLUBLE CASES 

We know that A and Je have the same eigenvectors, 
but what does this tell us about either problem since 
neither, in general, is soluble? First, we can expect the 
lattice problem to be soluble whenever the corre­
sponding spin problem is. In particular, for the six-site 
problems, e = 0 and r = 0, and we see that it is the 
Heisenberg-Ising chain, as previously known. On the 
other hand, the line r = I, equivalent to an XY model 
with d = 0, can easily be shown to correspond to an 
Ising model in two dimensions and zero magnetic 
field. u .12 This correspondence was previously un­
known, although the methods of solution were 
similar for the two problems. 

5. DETERMINATION OF SINGULARITIES 

But a much more interesting application of this 
correspondence makes use of the spin Hamiltonian to 
clearly exhibit symmetries hidden in the lattice 
statistical problem. Combining this observation with 
very plausible assumptions enables one to make exact 
statements about the models, although they cannot 
be solved. 

The idea behind our reasoning is contained in 
Kramers and Wannier's early treatment of the Ising 
problem, 7 where they determined the critical tempera­
ture Tc before Onsager's exact solution.13 Tc was 
determined using only an exact symmetry between 
high and low temperatures, with the reasonable 
assumption of one and only one critical temperature. 

In our case, we make two assumptions, both extrem­
ely plausible. The first is that singularities in the lattice 
problem and in the Hamiltonian problem occur for 
the same values of ~ and r. This is very reasonable, 
for singularities are believed to occur at the onset of 
long-range order. Although the eigenvalues are not 
the same, and hence free energy and ground state 
energy are not equal, long-range order is a property 
of the eigenvector, and hence will be the same. 
Probably the qualitative nature of the singularities 
in energy will also be the same; this is borne out by all 
soluble cases, but has not been shown in general. 

Secondly, we make the same assumption as Kramers 
and Wannier of the existence and uniqueness of the 
critical temperature Tc. 

We now argue as follows: If we fix 15, E, and y for a 
particular unconstrained lattice model and then vary 
T, Eq. (5) generates a curve C in the (d, r) plane. 
These curves are always in the r > 0 half-plane; they 
begin at ~ = 0, r = 1 for T = 00 and move to in­
finity. Further, one can cover the r > 0 half-plane by 
varying 15, E, and y; each curve passes once through 
either ~ = r + 1 or ~ = -(r + 1). By our second 
assumption, there is one singular point at the critical 
temperature for each curve. 

If we consider these singular points as a function of 
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t'J, E, and y, they lie on a curve D in the r > 0 half­
plane. By our first assumption, this is also a curve of 
singularities of the Hamiltonian problem. We now 
rotate each spin t7T about the y axis; this is a unitary 
transformation generating a new curve of singulari­
ties D1 • Likewise, if we rotate spins on even or odd 
sites by ± t7T, respectively, about the y axis, this 
generates a curve D2 of singularities. But by our first 
assumption, D1 and D2 will, in general, produce new 
singularities and hence new critical temperatures where 
they intersect the curves C. This, however, would con­
tradict our second assumption, and so D1 and D2 must 
coincide with D for r > O. Thus, we see that D is the 
curve 6. = ±(r + 1), r > O. The curve D and its 
images under all unitary transformations of the 
Hamiltonian we denote by D' and indicate by dashed 
lines in Fig. 2. 

For the spin Hamiltonian :fe(A, B, e), we are led 
to propose that the ground state energy as a function 
of A, B, e has singularities only on the planes IAI = 
IBI 2 lei and the lines IAI = IBI = 0, and permuta­
tions of these. (The singularity at the Ising limit is not 
forbidden by our previous reasoning, for these points 
correspond to T = 0 or T = 00.) We notice that, if 
we were to consider a ring of classical spins in the 
ground state, then they would change their orienta­
tion upon crossing one of the singular planes. 

For the lattice problems, we divide the models into 
two types according to the nature of their order: 
ferroelectrics whose lowest-energy site is of type 3, 4, 
5, or 6 and antiferroelectrics whose lowest-energy 
site is of type 1,2, 7, or 8. Then the critical temperature 
is determined for ferroelectrics by 

(6a) 

or 
1] + 1]-1 - ; - 0 = 2[1 + (;0)1] (7a) 

and for antiferroelectrics by 

6. = -(r + 1) (6b) 

or 
1] + 1]-1 - ; - 0 = -2[1 + (;O)t]. (7b) 

These relations, of course, check for all known cases. 

But we notice the surprising fact that the solvable 
six-site models, constrained by the ice rule, lie entirely 
on the line of singularities when they are above their 
critical temperature 16.1 = 1, r = O. Thus, ice rule 
models above Tc behave like unconstrained models at 
the critical point. This explains, for instance, the non­
exponential decrease of the correlation function. H It 
is in this sense that we may say the ice rule forces the 
system to be permanently at a critical point. One 
expects the general unconstrained models to behave 
like the Ising model near critical point, although this 

,has not been shown. 
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We discuss here in detail the validity of the branching-law method suggested in a previous paper 
~M. K. !". Wong, J. Ma.th. Phys.ll, 1189 (1970)] for the calculation of the inner multiplicity of weights in an 
Iffeducible representatIOn of a classIcal group. It IS found that the method works for all the irreducible 
representatio.ns of SU(n) and ~O(2n + 1),. but that .in the case of SO(2n) and Sp(2n) the method does 
not always. gIve comple~e solutIOns except In some sImple cases. It is then suggested that Racah's recur­
rence relatIOn be used In these cases so that complete solutions may be obtained. It is also noted that 
Racah's recurrence relation alone is sufficient to obtain the inner multiplicity of all weights. This fact is 
utilized in the calculation of i~ner .multipli~ities in another paper lB. Gruber, J. Math. Phys. 11, 3071 
(1970)]: The meth?d.s~ggested In thIS paper IS Illustrated through the calculation of some typical examples 
of the Inner multipliCIty of weIghts In the two classical groups SO(2n) and Sp(2n). 

INTRODUCTION 

In a previous paper,l a method was suggested where­
by the inner multiplicity of weights in an irreducible 
representation of a Lie group can be calculated by a 
formula independently derived by Straumann,2 Kly­
myk,3 and Delaney and Gruber4 together with the 
branching laws of Weyl5 (unitary), Boerner6 (orthog­
onal), and Hegerfeldt' (symplectic). We stated there 
that this method, called the branching-law method, 
works for all the irreducible representations of SU(n) 
and SO(2n + 1), but does not give complete solutions 
for SO(2n) and Sp(2n) except in some simple cases. 
We did not give any proofs of why this is so. It is the 
purpose of this paper to discuss in detail the validity 
of the branching-law method, i.e., under what condi­
tions do we have complete solutions. It is then sug­
gested that, in those cases of SO(2n) and Sp(2n) where 
complete solutions are not forthcoming from the 
branching-law method alone, Racah's recurrence 
relationS for the inner multiplicities be used so as to 
give complete solutions. It is also noted that Racah's 
recurrence relation alone is sufficient to obtain the 
inner multiplicity of all weights in all the irreducible 
representations of the classical groups. This fact was 
pointed out by Racah himself, but does not seem to 
have received enough attention. However, in another 
paper by Gruber,9 Racah's recurrence relation has 
been used to obtain the inner multiplicities in all cases. 

This paper is divided into two sections and two 
appendices. In Sec. 1, the validity of the branching­
law method is discussed in detail. In Sec. 2, Racah's 
recurrence relation for the inner multiplicities is dis-

cussed. In the Appendix, we calculate the inner 
multiplicity of weights in an irreducible representation 
of the two classical groups SO(2n) and Sp(2n) , by 
means of the branching-law method, supplemented by 
Racah's recurrence relation. 

1. VALIDITY OF THE BRANCHING-LAW 
METHOD 

The main question we wish to ask in this section is: 
Does the branching-law method give us complete 
solutions? In other words, are there always enough 
independent equations for the number of unknowns? 
The answer is "yes" for the SU(n) and SO(2n + 1) 
groups, but "no" for SO(2n) and Sp(2n). Let us 
start by considering SO(2n + 1). 

A. SO(2n + 1) 

For SO(2n + 1) the mapping Lm = m. = m onto 
weights mr of its subgroup SO(2n) is nonsingular, i.e., 
one-to-one. Moreover, it can easily be verified that 
dominant weights of the group are mapped onto 
dominant weights of the subgroup. 

Let D(M) denote an irreducible representation of 
SO(2n + 1). An ordering in the set of d-weights of 
D(M) is introduced: 

Let 

be a dominant weight of D(M) and 

m' = M + kUJ1 + ... + k~Pn' 
k;, k; nonnegative integers, 

Pi the simple negative roots of SO(2n + 1), 
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another dominant weight of D(M). We say that the 
weight m is earlier than the weight m', if 

kn = k~, kn- I = k~-l' ... , kU+l = k~+l' 
but 

ku < k~ 
for some value u = n, n - 1, ... , 1. Thus, M is the 
first weight in the ordered set of d.w.'s of D(M). 
Going from the first weight, namely M, successively to 
the following dominant weights of D(M), we obtain 
through the mapping Lm a succession of weights 
M r, M;, M;,"', M;' of the subgroup. Again, in 
the same order, the set of linear equations is written 
down (the suffix r referring to the subgroup): 

y(Mr) = I I 0SryM(m)OLm.1l1r+Rr-SrRr 
SreW, meDUU) 

y(M;) = .. , 

y(M~') = .... 

In this system of linear equations there are as many 
unknowns as there are equations. Moreover, the 
determinant of the system is nonzero. Thus, a unique 
solution exists for the unknown y1l1(m) for given 
values y(Mr), ... ,y(M;'). 

Proof" Consider an arbitrary equation, for instance, 
the second equation. In this equation the dominant 
weight L-I(M;) will appear (on the right side of the 
equation). The only other weights that can appear 
(but do not necessarily) are the dominant weight 
L-I(Mr) and the weights SL-I(Mr), SEW, equivalent 
to L-I(Mr)' Thus, L-I(M;) is the last d.w. that 
appears. This follows from the fact that in 

Rr - SrRr = klPI + ... + knPn, 

Pi simple negative roots of SO(2n + 1), 

the k; are negative integers or zero and k i = 0, i = 1, 
... , n only for Sr = 1. From this it follows immedi­
ately that only the weights L-I(M;) , L-I(Mr) , and 
SL-l(Mr) can contribute. [If dominant weights fol­
lowing L-l(M;) are excluded, then more weights are 
equivalent to them. The dominant weight M' of a set 
of equivalent weights is the highest weight of the set, 
and from this highest weight M' any other member 
of the set can be reached by M' + klPI + ... + 
knf3n' k~ integers ~ 0.] 

Since the above consideration holds for anyone 
of thl? equations, it follows that the matrix of this 
system is triangular and, moreover, that the elements 
in the diagonal are 1. Thus, the determinant is l. This 
completes the proof. 

B. SO(2n) 

The case of SO(2n) is, unfortunately, not so simple. 
Let the irreducible representation of SO(2n) be (Ml , 

M 2 , ••• , M n). Now, in the decomposition of SO (2n) :::> 

SO(2n - 1), there are only n - 1 numbers (M~, 

M~, ... ,M~_I) representing the irreducible repre­
sentations of SO(2n - 1) since 

L(ml' ... , mn-l, m n) = (ml' ... , mn-J· 

On the other hand, the dominant weights are repre­
sented by n numbers (m l , m2' ... , mn). The question 
arises as to whether there are more unknowns than 
equations. The answer, in general, is "yes." To see 
this, one notes that, if two dominant weights can be 
written in the form (m}, m 2 , ••• , mn-l, m n) and 
(ml, m2, ... , mn- l , m~), where the first n - 1 num­
bers are the same but the last numbers mn and m~ are 
different mod 2, then it is impossible to distinguish 
between them in the mapping L(m), and the inner 
multiplicities of these two weights will occur in the 
same equation. But such a case is certainly possible. 
For example, in the irreducible representation (4,4,0) 
of SO(6) we have two dominant weights (4,3, 1) and 
(4,3, -1); three dominant weights (4,2,2), (4,2, 
-2), and (4, 2, 0), etc. The result is that the branching­
law method alone is unable to give unique solutions to 
these weights in particular. We suggest that, in these 
cases, Racah's recurrence relation be used in addition 
to the branching formula in order to give complete 
solutions. 

However, even in the case of SO(2n) the branching­
law method is not as bad as it seems. In the first place, 
there are simple irreducible representations where the 
above case does not arise. In the second place, in cases 
where 

y(ma) + y(mb) = 2, 

it is possible to conclude that 

y(ma) = I and y(mb) = 1 

because both y(ma) and y(mb) are positive nonzero 
integers. In fact, such cases occur quite often. For a 
numerical example, see Appendix A. 

C. Sp(2n) 

What was said about SO(2n) is also true in the case 
of Sp(2n). For example, in the irreducible representa­
tion (4,4, 1) of Sp(6), there are two dominant weights 
(3,3,3) and (3, 3, 1), or (3, 2, 2) and (3,2,0), which 
cannot be distinguished by the branching-law method 
alone. For a numerical example, see Appendix B. 

D. SU(n) 

The proof for SU(n + 1) is the same as for 
SO(2n + 1) once the mapping Lm has been shown 
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to be nonsingular and, moreover, to map d.w.'s of 
SU(n + I) onto d.w.'s of the subgroup. This is, how­
ever, the case if the branching of SU(n + 1) with 
respect to its subgroup U(n) is considered. 

2. RACAH'S RECURRENCE RELATION 

Since the branching-law method does not give 
complete solutions to certain type of weights in SO(2n) 
and Sp(2n) , we have to look elsewhere for other 
equations that will furnish us with a complete set of 
solutions. Among the known equations for the inner 
multiplicity of a weight, we find Racah's recurrence 
relation to be the simplest. Racah has given the deri­
vation of his recurrence relation, and has also stated 
that this equation alone is sufficient to determine all the 
inner multiplicities of weights. This point has been 
utilized by Gruber to calculate the inner multiplicity 
of weights in another paper.9 . 

It is easy to show why Racah's recurrence relation is 
sufficient by itself. To see this, we write Racah's re-

currence relation as 

y(m) = -2 (jsy(m + R - SR). 
s 

K,cl 

Again, we arrange the weights in a definite order: 
from higher to lower. Then we note that R - SR is 
always a positive root or sum of positive roots. There­
fore, any dominant weight is always related to other 
weights higher than itself. Now, starting with the 
multiplicity of the highest weight, which by Cartan's 
theorem is equal to unity, we can obtain the inner 
multiplicities of all the dominant weights one by one 
by means of Racah's recurrence relation. 

In the appendices, we calculate numerically the 
inner multiplicity of weights in the two classical groups 
SO(2n) and Sp(2n). It is noted that, in the first case 
[SO(6), with irreducible representation (4,4,0)], we 
only need to use Racah's recurrence relation twice, and, 
in the second case [Sp(6), with irreducible representa­
tion (4,4,0)], we only need to use Racah's recurrence 
relation three times. 

APPENDIX A: BRANCHING·LAW METHOD PLUS RACAH'S METHOD: SO(6); IRREDUCIBLE 
REPRESENTATION (4,4,0); DIMENSION 925 

For SO(6) ::;) SO(S): 

jl(4,4) = jl(4, 3) = ji(4, 2) = ji(4, 1) = ji(4, 0) = 1, 

ji(4, 4) = y(4, 4, 0) = I, 

ji(4, 3) = y(4, 3,1) + y(4, 3, -1) - y(4, 4, 0) = 1, 

:. y(4, 3,1) = y(4, 3, -1) 

= 1, 

ji(4,2) = y(4, 2, 2) + y(4, 2, -2) + y(4, 2, 0) - y(4, 3,1) - y(4, 3, -1) = 1, 

:. y(4, 2, 2) = y(4, 2, -2) 

= y(4, 2,0) 

= 1, 

ji(4, 1) = y(4, 1, 1) + y(4, 1, -1) - y(4, 2, 2) - y(4, 2, -2) - y(4, 2, 0) + y(4, 1,3) + y(4, 1, -3) 

= 1, 

:. y(4, 1, 1) = y(4, 1, -1) 

= 1, 

'y(4,0) = y(4, 0, 0) + y(4, 0, 4) + y(4, 0, 2) + y(4, 0, -4) + y(4, 0, -2) - y(4, 1, 1) - y(4, 1, -1) 

- y(4, 1,3) - y(4, 1, -3) = 1, 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

:. y(4, 0, 0) = 1, (AlO) 

ji(3, 3) = y(3, 3, 2) + y(3, 3, -2) + y(3, 3, 0) - y(3, 4, 1) - y(3, 4, -1) - y(4, 2, 2) - y(4, 2, -2) 

-y(4, 2, 0) = 0. 
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From Racah's recurrence relation: 

y(3, 3, 2) = y(3, 4,1) + y(4, 2, 2) - y(4, 4, 0) = 1, (All) 

y(3, 3, -2) = y(3, 3,2) = 1, (AI2) 

:. y(3, 3, 0) = 3, (Al3) 

y(3,2) = y(3, 2,1) + y(3, 2, -1) + 2y(3, 2, 3) - 2y(4, 1,3) - 2y(4, 1, 1) + y(4, 4, 0) 

- 2y(3, 3,2) - y(3, 3, 0) = 0, 

:. y(3, 2,1) = y(3, 2, -1) (A14) 

= 3, (AtS) 

y(3, 1) = y(3, 1,0) + 2y(3, 1,4) + 2y(3, 1,2) - 2y(3, 2,3) - 2y(3, 2,1) - 2y(4, 0, 4) - 2y(4, 0, 2) 

- y(4, 0, 0) + 2y(4, 3, 1) = 0, 

:. y(3, 1,0) = 3, (A16) 

y(2,2) = y(2, 2, 2) + y(2, 2, -2) + y(2, 2, 0) - 2y(3, 1,4) - 2y(3, 1,2) - y(3, 1,0) + 2y(3, 4,1) 

+ 2y(4, 1,3) + 2y(4, 1, 1) - y(4, 4, 0) - 2y(2, 3, 3) - 2y(2, 3, 1) = 0. 

From Racah's recurrence relation: 

y(2, 2, 2) = y(2, 3,1) - y(2, 'I, 2) + y(2, 3, 3) + y(3, 1,2) - y(3, 3,0) - y(4, 1, 1) - y(4, 1,3) 

+ y(4, 2, 0) + y(4, 4,0) = 3, (AI7) 

y(2,2, -2) = y(2, 2, 2) = 3, (A18) 

:. y(2, 2,0) = 6, (AI9) 

jJ(2, 1) = 2y(2, 1,3) + y(2, 1, 1) + y(2, 1, -1) - 2y(3, 0, 3) - 2y(3, 0,1) + 2y(3, 3, 2) + y(3, 3, 0) 

+ 2y(4, 0, 4) + 2y(4, 0, 2) + y(4, 0, 0) - 2y(4, 3,1) - 2y(2, 2, 4) - 2y(2, 2, 2) - y(2,2, 0) 

=0, 

:. y(2, 1, 1) = y(2, 1, -1) (A20) 

= 6, (A2I) 

y(2, 0) = 2y(2, 0, 4) + 2y(2, 0, 2) + y(2, 0, 0) - 2y(3, -1,4) - 2y(3, -1,2) - y(3, -1,0) 

+ 2y(3, 2,3) + 2y(3, 2, 1) + 2y(4, -1,3) + 2y(4, -1, 1) - 2y(4, 2, 2) - y(4, 2, 0) 

- 2y(2, 1,3) - 2y(2, 1, 1) = 0, 

:. y(2, 0, 0) = 6, (A22) 

y(1, 1) = 2y(l, 1,4) + 2y(1, 1,2) + y(l, 1,0) - 2y(2, 0,4) - 2y(2, 0, 2) - y(2, 0, 0) + 2y(2, 3, 3) 

+ 2y(2, 3, 1) + 2y(3, 0, 3) + 2y(3, 0, 1) - 2y(3, 3, 2) - y(3, 3,0) - 2y(4, 1,3) 

- 2y(4, 1, 1) - 2y(l, 2,3) - 2y(l, 2, 1) + 2y(4, 2, 2) + y(4, 2, 0) = 0, 

:. y(1, 1,0) = 10, (A23) 

y(O,O) = yeO, 0, 0) + 2y(0, 0, 4) + 2y(0, 0, 2) + 2y(l, 2, 3) + 2y(1, 2,1) - 2y(l, -1,4) 

- 2y(l, -1,2) - y(l, -1,0) + 2y(2, -1,3) + 2y(2, -1, 1) - 2y(2, 2, 4) - 2y(2, 2,2) 

- y(2, 2, 0) - 2y(3, 0, 3) - 2y(3, 0,1) - 2y(0, 1,3) - 2y(0, I, I) + 2y(3, 1,4) 

+ 2y(3, 1,2) + y(3, 1,0) = 0, 

:. yeO, 0, 0) = 15. (A24) 
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APPENDIX B:" BRANCHING-LAW METHOD PLUS RACAH'S METHOD: Sp (6); 
IRREDUCmLE REPRESENTATION (4,4, O); DIMENSION 1274 

From Sp(6) ::> Sp(4), we have: 

y(4,4) = 1, y(4, 3) = 2, y(4,2) = 3, y(4, 1) = 4, 

y(4,0) = 5, y(3, 3) = 1, y(3, 2) = 2, y(3, 1) = 3, 

y(3, 0) = 4, y(2, 2) = 1, y(2, 1) = 2, y(2,0) = 3, 

y(l, 1) = 1, y(l,O) = 2, y(O,O) = 1, 

y(4,4) = y(4, 4, 0) = 1, 

y(4,3) = y(4, 3,1) + y(4, 3, -1) = 2, 

:. y(4, 3,1) = 1, 

y(4, 2) = 2y(4, 2, 2) + y(4, 2, 0) - y(4, 4, 0) = 3. 

From Racah's recurrence relation: 

y(4, 2, 2) = y(4, 3,1) = 1, 

:. y(4, 2, 0) = 2, 

y(4, 1) = 2y(4, 1,3) + 2y(4, 1, 1) - 2y(4, 3,1) = 4, 

:. y(4, 1, 1) = 2, 

.9(4,0) = 2y(4, 0, 4) + 2y(4, 0, 2) + y(4, 0, 0) - 2y(4, 2, 2) - y(4, 2, 0) = 5, 

:. y(4, 0, 0) = 3, 

y(3, 3) = 2y(3, 3,2) - 2y(4, 2, 2) - y(4, 2,0) + y(3, 3, 0) = 1. 

From Racah's recurrence relation: 

y(3, 3, 2) = y(3, 4,1) + y(4, 2, 2) - y(4, 4, 0) = 1, 

:. y(3, 3, 0) = 3, 

.9(3,2) = 2y(3, 2, 3) + 2y(3, 2,1) - 2y(4, 1,3) - 2y(4, 1, 1) - 2y(3, 4, 1) = 2, 

(Bl) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

:. y(3, 2, 1) = 4, (BI0) 

.9(3,1) = 2y(3, 1,4) + 2y(3, 1,2) + y(3, 1,0) - 2y(3, 3,2) - y(3, 3, 0) - 2y(4, 0, 4) - 2y(4, 0, 2) 

- y(4, 0, 0) + y(4, 4, 0) = 3, 

:. y(3, 1,0) = 6, (B11) 

.9(3,0) = 2y(3, 0, 3) + 2y(3, 0,1) - 2y(3, 2, 3) - 2y(3, 2,1) - 2y(4, -1,3) - 2y(4, -1, 1) 

+ 2y(4, 3,1) = 4 = 20 - 16, 

y(2, 2) = 2y(2, 2, 4) + 2y(2, 2, 2) + y(2, 2, 0) - 2y(2, 4, 2) - y(2, 4, 0) - 2y(3, 1,4) - 2y(3, 1,2) 

- y(3, 1,0) = 1. 

From Racah's recurrence relation: 

y(2, 2, 2) = y(2, 2, 4) + y(2, 3,1) + y(3, 1,2) - y(3, 1,4) - y(3, 3, 0) - y(4, 1, 1) + y(4, 2, 0) 

= 5, (BI2) 

:. y(2, 2, 0) = 9, (B13) 

y(2, I) = 2y(2, 1,3) + 2y(2, 1, 1) - 2y(2, 3, 3) - 2y(2, 3,1) - 2y(3, 0, 3) - 2y(3, 0,1) + 2y(3, 4, I) 

= 2, 

:. y(2, 1, 1) = 10, (BI4) 
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y(2,0) = 2y(2, 0, 4) + 2y(2, 0, 2) + y(2, 0, 0) - 2y(2, 2, 4) - 2y(2, 2, 2) - y(2, 2, 0) - 2y(3, -1,4) 

- 2y(3, -1,2) - y(3, -1,0) + 2y(3, 3, 2) + y(3, 3, 0) = 3, 

:. y(2, 0, 0) = 13, (B1S) 

y(1, 1) = 2y(l, 1,4) + 2y(l, 1,2) + y(l, 1,0) - 2y(1, 3,4) - 2y(1, 3,2) - y(l, 3,0) - 2y(2, 0, 4) 

- 2y(2, 0, 2) - y(2, 0, 0) + 2y(4, 0, 4) + 2y(4, 0,2) + y(4, 0, 0) + 2y(2, 4,2) + y(2, 4,0) 

-y(4,4,0) = I, 

:. y(1, 1,0) = 16, (BI6) 

y(O, 0) = 2y(0, 0, 4) + 2y(0, 0, 2) + yeO, 0, 0) - 2y(4, 0, 4) - 2y(4, 0, 2) - y(4, 0, 0) - 2y(0, 2, 4) 

- 2y(0, 2, 2) - yeO, 2, 0) + 2y(4, 2, 2) + y(4, 2, 0) - 2y(l, -1,4) - 2y(l, -1,2) 

- y(l, -1,0) + 2y(3, -1,4) + 2y(3, -1,2) + y(3, -1,0) + 2y(l, 3,4) + 2y(1, 3, 2) 

+ y(l, 3, 0) - 2y(3, 3, 2) - y(3, 3,0) = 1, 

:. yeO, 0, 0) = 22. (BI7) 
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A general expression for the coefficients connecting the Stark (parabolic coordinates) and field-free 
(spherical coordinates) wavefunctions for hydrogen is obtained. The result, which involves a generalized 
hypergeometric function, has been numerically evaluated through principal quantum number n == 10. 

I. INTRODUCTION 

Consider a field-free region of space with a density 
Nnlm of hydrogen atoms in the state with quantum 
numbers n, I, and m and wavefunction <Pn1m in spheri­
cal coordinates. If at some instant a strong electric field 
is switched on,1 the appropriate representation of the 
states is in terms of the quantum numbers n, n1, n2, 
and m (with n = n l + n2 + m + 1) and the "Stark" 
wavefunctions un(nlnBm) expressed in parabolic co­
ordinates. This transition is described by 

(1) 

and the density of atoms in the state urdnln2)m is 
n-l 

NlI (1I1n2m) = 2: IA~:::'212 Nn1m • (2) 
l=m 

The purpose of this paper is to obtain a closed 
expression for the coefficients A~}::'2. 

II. CALCULATION OF THE COEFFICIENTS 
A. The General Case 

Before beginning the calculation, it is convenient to 
define the generalized hypergeometric function 

F [aI' ... , ap; X] =.i (al}n' .. (ap)nXn (3) 
p q {JI"", {Jq; ,,=0 ({JI)n ... ({Jq}"n! ' 
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y(2,0) = 2y(2, 0, 4) + 2y(2, 0, 2) + y(2, 0, 0) - 2y(2, 2, 4) - 2y(2, 2, 2) - y(2, 2, 0) - 2y(3, -1,4) 

- 2y(3, -1,2) - y(3, -1,0) + 2y(3, 3, 2) + y(3, 3, 0) = 3, 

:. y(2, 0, 0) = 13, (B1S) 

y(1, 1) = 2y(l, 1,4) + 2y(l, 1,2) + y(l, 1,0) - 2y(1, 3,4) - 2y(1, 3,2) - y(l, 3,0) - 2y(2, 0, 4) 

- 2y(2, 0, 2) - y(2, 0, 0) + 2y(4, 0, 4) + 2y(4, 0,2) + y(4, 0, 0) + 2y(2, 4,2) + y(2, 4,0) 

-y(4,4,0) = I, 

:. y(1, 1,0) = 16, (BI6) 

y(O, 0) = 2y(0, 0, 4) + 2y(0, 0, 2) + yeO, 0, 0) - 2y(4, 0, 4) - 2y(4, 0, 2) - y(4, 0, 0) - 2y(0, 2, 4) 

- 2y(0, 2, 2) - yeO, 2, 0) + 2y(4, 2, 2) + y(4, 2, 0) - 2y(l, -1,4) - 2y(l, -1,2) 

- y(l, -1,0) + 2y(3, -1,4) + 2y(3, -1,2) + y(3, -1,0) + 2y(l, 3,4) + 2y(1, 3, 2) 

+ y(l, 3, 0) - 2y(3, 3, 2) - y(3, 3,0) = 1, 

:. yeO, 0, 0) = 22. (BI7) 
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I. INTRODUCTION 

Consider a field-free region of space with a density 
Nnlm of hydrogen atoms in the state with quantum 
numbers n, I, and m and wavefunction <Pn1m in spheri­
cal coordinates. If at some instant a strong electric field 
is switched on,1 the appropriate representation of the 
states is in terms of the quantum numbers n, n1, n2, 
and m (with n = n l + n2 + m + 1) and the "Stark" 
wavefunctions un(nlnBm) expressed in parabolic co­
ordinates. This transition is described by 

(1) 

and the density of atoms in the state urdnln2)m is 
n-l 

NlI (1I1n2m) = 2: IA~:::'212 Nn1m • (2) 
l=m 

The purpose of this paper is to obtain a closed 
expression for the coefficients A~}::'2. 

II. CALCULATION OF THE COEFFICIENTS 
A. The General Case 

Before beginning the calculation, it is convenient to 
define the generalized hypergeometric function 

F [aI' ... , ap; X] =.i (al}n' .. (ap)nXn (3) 
p q {JI"", {Jq; ,,=0 ({JI)n ... ({Jq}"n! ' 
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where 

(<X)o = 1(<X)n = <X(<X + 1)' .. (<X + n - 1). 

The series terminates if one of the <Xi is a negative 
integer. In the above notation the confluent hypergeo­
metric function is written as IF1[abn and the ordinary 
hypergeometric function becomes 2Fl[al'p~; x]. Addi­
tional properties of these functions are given 
elsewhere.2•3 

The expansion coefficients defined in (1) may be 
written as 

(4) 

The hydrogen atom wavefunctions expressed in 
spherical and parabolic coordinates, respectively, are4 

2 (n + I)! )t eimq, 

~nzm = n2(21 + I)! (n - 1 - I)! 7Tt 

(
2r)! x P;"(cos 0) -;; e-rin 

substitutions y = r/2n and x = HI - cos 0), we have 

A til n2 = 1.- (l..)3 (21 + 1)t 
nlm 2n m! (21 + I)! 

where 

x (n + I)! (1 + m)! (nl + m)! (n2 + m)!)t
Ixy

' 
(n -1-1)!(1- m)!nl !n 2 ! 

(8) 

Ixy = LX'i\m+l+2xm(1 - x)me-y 

X 2Fl[m + 1 + 1, -(1 - m); X] 
m + 1; 

x F [-en - 1 - 1); y] 
1 1 21 + 2; 

x IF1[-n l ; (1 - X)Y]lFl [-n 2 ; Xy] dx dy. 
m+1; m+1; 

(9) 

Each of the above hypergeometric functions may be 
expressed as a finite series: 

x F [-en - 1 - 1); 2r/n] 
1 1 21 + 2; , 

F [-en - 1 - 1); y] 
(5) 1 1 21 + 2; 

u* = l(l..)2(nl + m)! (n2 + m)!)t(!:.)m 
n(nln2m) 2, , , 

n m. nl . n2 • n 

-imq, 
X e-rin _e - (sinm 0) 

7Tt 

x F [-n l ; r(l + cos O)/n] 
1 1 m+1; 

F [
-n2; r(l - cos O)/n] 

XII . 
m + 1; 

(6) 

The associate Legendre polynomial may be expressed 
in terms of the ordinary hypergeometric function3 : 

P;"(cos 0) 

= (1 + m)! (21 + l»)t 1.- sin
m 

0 
(1- m)! 2m m! 

F [
m + 1 + 1; -(1- m);(l- cos 0)/2] 

x 2 1 • 
m + 1; 

(7) 

IF
1
[-n2 ; Xy] 

m + 1; 

= ! (-n2)txt/ 2Fl[m + 1 + 1; -(I - m); X] 
t=o(m + l)tt! m + 1; 

=I"f, [-(1 - m)lr(m + 1 + l),x
r 

(lOb) 
,=0 (m + l)rr! 

The X and y integrals are now elementary, and we have 

Ix = i\m+r+t(1 - x)m+k 

f(m + r + t + l)f(m + k + 1) 
= 

f(2m + r + t + k + 2) 
(11) 

I y = i"" yHm+k+t+s+2e-y 

= rem + 1 + k + t + s + 3). (12) 
After performing the ~ integration and making the Thus, 

IX1l =II, nIl! ! (-nlM -n2M -en - 1 - l)]s[ -(1 - m)]r(l + m + l)rf (m + 1) 

r=O .=0 k=O 1=0 k! t! s! r! (m + l)tCm + 1M21 + 2). 

x f(m + r + t + l)r(k + t + s + m + 1 + 3). (13) 
f(2m + r + t + k + 2) 
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Since the sums in rand s are uncoupled, it is con­
venient to evaluate these first: 

n-l-l [( I 1)] L - n - - 8 rem + I + k + t + s + 3) 
8=0 sl (2l + 2)8 

= rem + I + k + t + 3) 

x F [-en - 1- 1), m + 1+ k + t + 3; IJ 
2 1 21 + 2; 

rem + I + k + t + 3)r(21 + 2) 
= 

(n + 1+1) 

by Vandermonde's theorem,2 and 

"I (I + m + IM(l - m)]rr(m + r + t + 1) 

,=0 (m + 1),r(2m + r + t + k + 2) 

rem + t + 1) 

r(2m + k + t + 2) 

F [
-(1 - m), m + I + 1, m + t + 1; 1J x a 2 • 

m + 1, 2m + k + t + 2; 

(15) 

x (I - m - k - t - 1)n-l-l, (14) Cancelling out several terms, we are left with 

I = [rem + 1)]2r(21 + 2)! I(-n1M-n2)tr(m + 1+ k + t + 3)(1- m - k - t - l)n-H 

xy r(n+l+l) k=Ot=O k1t1r(2m+k+t+2) 

The term (l - m - k - t - 1 )n-l-l is nbnzero only 
if k + t ~ / - m - 1 or k + t 2 n - m - 2 = 
nl + n2 - 1. Also, utilizing a transformation2 of the 

3F2[ a, a', -N; 1 ] 
c',l - N - c; 

= (c + a)N 3F2[a, c' - a', -N; IJ, (L7) 
(C)N c', c + a; 

one can show that our 3F2 is zero unless k + t 2 
b - c. Combining these three inequalities, we see that 
it is evident that only the three terms with k + t 2 
nl + n2 - 1 contribute. After algebra, we have 

I = (_1)"-m(m1)\21 + 1)1 (n - 1- 1)1 

xy (n + m)! 

where 

x {en + 1+ 1)(n - 1) 3F2(nl, n2) - (n + m) 

X [nl aF2(nl - 1, n2) + n2aF2(nl, nz - I)]}, 

(18) 

3Fz(k, t) 

= 3F2[m + t + 1, m + 1+ 1, -(1- m); IJ. (19) 
m + 1, 2m + k + t + 2; 

After applying the transformation (17), with c' = 
m + 1 and a' = m + n2 + 1, and noting the relation 
of Rainville,5 

( f3 + 1) F [(Xl' (X2' (X3; 1J 
(Xl - 2 3 2 f3 f3' 

1, 2, 

x a 2 • F [
-(1 - m), m + I + 1, m + t + 1; IJ 

m + 1, 2m + k + t + 2; 
(16) 

we finally have 

I _ m! (2l + 1)! 2n(n - m - I)! (_1)I-m 
rJ!Y- (n+I)! 

F [
m + 1+ 1, -(I - m), -n2 ; IJ x a 2 • 

m + 1, -en - m - 1); 
(21) 

Combining this with (8), we have that our final 
expression for the coefficients becomes 

An1n2 = (_l)"-m (n - m - 1)! 
nlm , 

m. 

X (21 + 1)(1 + m)! (n] + m)! (n2 + m)!)! 

(n + I)! (I - m)! nl ! n2! (n - I - I)! 

F [
m + l + 1, -(1 - m), -n2; 1J 

x 3 2 . 
m + 1, -en - m - 0; 

(22) 
B. Special Properties 

Utilizing Eq. (17) with N = / - m, C = -I, 
c' = -en - m - 1) = -nl - n2, a = m + / + 1, 
and a' = -n2 , one has 

aF2[m + 1 + 1, -(I - m), -n2 ; IJ 
m + 1, -en - m - 1); 

= (_1)"-m
aF2

[m + 1 + 1, -(I - m), -n1 ; 1J, 
m + 1, -en - m - 1); 

(23) 
which yields the symmetry relation 

A~~;:2 = (_1)"-m A:~;:l. (24) 

Thus, for example, if nl = n2 and I - m IS odd, 
A~~;:2 = O. 

In some cases the formula (8) is reducible, viz., the 
hypergeometric function may be summed explicitly 
in terms of gamma functions. For the case I = m one 
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may easily show that 

Using Vandermonde's theorem,3 we have that the 
case I = n - 1 may be reduced to 

(26) 

In Eqs. (25) and (26) the binomial coefficients are 
defined as usual by 

(~) = At 
r p!(A.-p)! 

(27) 

III. TABULATION OF THE COEFFICIENTS 

In Table I, the coefficients A~~;:2 are tabulated for 
n ~ 3. A more extensive tabulation through n = 10 
is given elsewhere.6 The accuracy of these tables has 

TABLE I. The expansion coefficients A:l.;."2 for n S 3. 

(n, I, m; n" n2) An"n, 
nlm (n, I, m; n" n2) Ant ,n2 

.lm 

(1,0,0; 0, 0) 1.000 (3, 1,0; 1, 1) 0.000 
(2,0,0; 0, 1) 0.707 (3, I, 0; 2, 0) -0.707 
(2,0,0; 1,0) 0.707 (3,1, 1; 0, 1) 0.707 
(2,1,0; 0,1) 0.707 (3, I, 1; I, 0) 0.707 
(2, 1, 0; 1, 0) -0.707 0,2,0; 0, 2) 0.408 
(2, 1, 1; 0, 0) 1.000 (3,2,0; 1, 1) -0.816 
(3,0,0; 0, 2) 0.577 (3,2,0; 2, 0) 0.408 
(3,0,0; 1, 1) 0.577 (3, 2, 1 ; 0, 1) 0.707 
(3, 0, 0; 2, 0) 0.577 (3,2, 1; 1, 0) -0.707 
(3,1,0;0,2) 0.707 (3,2,2; 0, 0) 1.000 

been checked using the relations 
n-l 

~ IA~~;:212 = ~ IA~~~212 = 1. (28) 
l=m nlonz 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

'Alternatively, if the atom is moving, a magnetic field will 
generate an effective Lorentz electric field. The original motivation 
for the calculation was an experimental situation in which an ener­
getic beam of hydrogen atoms moved from a field-free region into 
one in which there was a strong magnetic field (see Ref. 6). 

2 W. N. Bailey, Generalized Hypergeometric Series (Cambridge 
Tracts No. 32, Cambridge, 1935). 

3 A. Erdelyi et al., Higher Transcendental Functions (McGraw­
Hill, New York, 1953), Vol.!. 

4 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One 
and Two Electron Atoms (Academic, New York, 1957). 

5 E. D. Rainville, Bull. Am. Math. Soc. 22,370 (1945). 
6 C. B. Tarter, Lawrence Radiation Laboratory Rep!. UCRL-

7493, 1963. Additional information and applications of the present 
work are also given in this unpublished report. 
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The proper vibrations of homogeneous and isotropic space are examined on the basis of the equations 
of the de Broglie wave field (field equations). The time-dependent part of the wavefunction, which is a 
solution of the Klein-Gordon equation, satisfies the differential equation which coincides with the 
differential equation derived from field equations for the time-dependent part of the Robertson-Walker 
metric. 

1. INTRODUCTION 
The wave processes in homogeneous and isotropic 

closed space are studied in Refs. 1-6. In the case when 
the space is closed, D'Alembert's, Maxwell's, Klein­
Gordon'S, and Dirac's equations provide eigenvalue 
problems. Our analysis here seems to point toward a 
possibility which differs considerably from the ones 
mentioned above. We are considering a possibility of 
proper vibration of the homogeneous and isotropic 
space itself. In the case when the space is closed, its 

proper vibration might be discontinuous and thus 
provide an adequate description of the observed 
atomicity of matter and light. 

We now give a brief review of the conclusions 
reached in this paper. We start from field equations7 

which are a system of simultaneous second-order 
nonlinear partial-differential equations for the 
components of metric tensor gab' They have real char­
acteristic surfaces,S which are identical with the 3-
dimensional wavesurfaces of the de Broglie waves. 7•9 
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Under the assumption that the space X O = const 
is homogeneous and isotropic, we can solve the field 
equations using the Robertson-Walker metric. The 
Robertson-Walker metri~ is a relatively simple 
metric which can be associated with the particle 
at rest in the customary comoving coordinate system. 

The field equations yield a single differential equa­
tion for the scalar factor which describes the time 
development of the metric of space. This differential 
equation coincides with the differential equation for 
the time-dependent part of the wavefunction, which 
is the solution of Klein~Gordon equation for the 
Robertson-Walker metric.4 

It is a property of the Robertson-Walker metric 
that the distance of two points in space is proportional 
to the scalar factor and thus it is a function of time. 
The time dependence of distance is determined by the 
nonlinear differential equation which represents an 
autonomous (not explicitly containing the independent 
variable), conservative (not containing a first deriva­
tive) oscillation. 

The volume of the space shares the common 
oscillation. The function which describes the time 
dependence of the volume is a solution of a nonlinear 
differential equation which also represents an autono­
mous, conservative oscillation. 

The equation for the distance oscillation and the 
equation for the volume oscillation are coupled. The 
nonlinear term in the equation of the distance oscilla­
tion is proportional to the conserved energy of volume 
oscillator, and the nonlinear term in the equation of 
the volume oscillator is proportional to the conserved 
energy of the distance oscillator. 

The conserved energy of the distance oscillator is 
identical, within the sign, to the constant curvature of 
space. This means that in the case of Euclidean space 
the distance oscillator has zero energy. When the 
space is pseudospherical or spherical (the spherical 
space is closed), the energy of the distance oscillator 
is positive or negative, respectively. 

Generally, the frequency of the distance oscillation 
and the frequency of the volume oscillation vary with 
the time. For a sufficiently large volume both fre­
quencies are constant and the distance oscillation 
frequency is one-third of the volume-oscillator 
freqeuncy. 

2. FIELD EQUATIONS 

The field equations? are 

3£2 
Rab - tRgab - h2 gab 

= - (R + 4 ~:)(tgab - xaxb), (1) 

where gab = gba' Je2 is the rest mass,lO h is Planck's 
constant and the xa are components of the unit 
normal 4-vector to the 3-surface of the de Broglie 
wave. On the left-hand side of (1) is a well-known 
tensor whose covariant divergence vanishes. Thus, 
from (I) we have the conservation equations 

gbl[ (R + 4 ~2)(tgab - XaXb)ll= 0. (2) 

Because of 
~x~b=l, 0) 

we have from (2) that 

a~a[( - g)i( R + 4 ~2)\aJ = O. (4) 

For any given set of four functions xa(xk), sufficiently 
smooth (for simplicity let us suppose them to be of 
class C2) for which (3) is valid, the system (1) is a set 
of 10 nonlinear partial-differential equations to be 
satisfied by 10 'unknowns gab' The four conservation 
equations (2) are a consequence of (1) and imply no 
restrictions on the chosen xa(xk) since they contain 
the unknowns gab not only in the coefficients but also in 
the derivatives. Since the given xa(xk

) do not uniquely 
determine the coordinate system we have to add 
coordinate conditions. There are only three of these 
because of (3) which represents the fourth coordinate 
condition. 

The Eqs. (1) do not contain sources; hence, we are 
dealing with continuous and nondualistic field theory. 
There is no reason to distinguish between exterior 
and interior solutions of Eqs. (1). 

3. THE PARTICLE AT REST IN 3-SPACE 

For the particle at rest in 3-space we will assume 
that the components of the unit 4-vector xa(xk

) are 
(0,0,0,1). Since the 4-vector xa is unitary,we have 
from (3) that 

(5) 

This equation is one coordinate condition. To solve 
the field equations, we need add any further three 
coordinate conditions. 

Let us assume as these coordinate conditions 

ga( = 0, IX = 1,2, 3, (6) 

and hence we use the Gauss normal coordinates. 
Since the particle is at rest in the observer's 3-space, 
we will further assume that we have no reason to 
prefer any direction in 3-space. Consequently, we 
will consider that the geometry of space-time admits 
coordinates in which the first metric form is 

(7) 
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where V(XO) is an arbitrary function and 

do} = haP(x\ X2, X3) dxa dxP (8) 

defines the 3-space of constant curvature k in which 
dro2 > 0 for any two neighboring points. Since the 
signature of (7) is -2, we will put Je2 = Je2 and con­
sider Je as the rest mass of the particle. 10 From the 
field equations we now have 

Je2 
Rap + h2 gaP = 0, 

Je2 
R44 - R - 3 h2 = 0, (9) 

~ (-g)!(R + 4 Je
2)! = 0 

dxo h2
' 

where 
(10) 

For the Ricci tensor and the scalar curvature R of 
space-time we getll 

Rap = - (VO + 2k + 202)haP' 
R44 = 30U-1, (II) 

R = 6(VO + 0 2 + k)V-2. 

Substituting from (II) into (9) we find that the first 
two Eqs. (9) are identical a-nd we obtain the following 
equation: 

Je2 
UtJ+20 2 + h2 U2 +2k=0. (12) 

From the last of Eqs. (9) we get 

~(6)!U2(UtJ + 0 2+ ~Je2 U2 + k)* = O. (13) 
dxo . 3 h2 

Thus, for the function V we have two simultaneous 
equations 

tJ 
. 2 Je2 2 

U + 2 V + h2 U + 2k = 0, 

U4
( UtJ + 0 2 + ~ ~: U2 + k) = tP2, (14) 

where {3 is a constant of integration. The compacti­
bility condition of these equations is 

1 Je2 1 p2 

tJ + - - U = - - . (15) 
3 h2 3 U5 

The nonlinear differential equation (15) represents an 
autonomous (not explicitly containing the independent 
variable), conservative (not containing a first deriva­
tive) oscillation. Hence, simultaneous solutions of 
Eqs. (14) are all solutions of equation 

U4
( 0 2 + ~ ~: U2 + k) = _tp2. (16) 

For further considerations the constant {32 is no 
longer convenient. We will write (32 = -tw where 
W is a constant, the meaning of which will be dis­
cussed later. 

4. TIME-DEPENDENT DISTANCE AND 
VOLUME OF SPACE 

From the line element (7) it follows that the distance 
of two points in space is proportional to V and the 
volume of space is proportional to ua. Let us denote 
V == U3. Then, we can transcribe Eq. (16) as 

·lJ/2 + ~ Je2 V + JtkV! = W. (17) 
2 2 h2 2 

Differentiation of (17) gives 

.. Je2 1 
V + 3 h2 V + 6kV = O. (18) 

Equation (18) describes the volume oscillations. The 
constant W, introduced in connection with the integra­
tion of the conservation law (4) which, in our special 
case, is given by the last Eq. (9), is the energy of the 
oscillator described by Eq. (18). Now, if we rewrite 
Eq. (16) in the form 

. 2 1 Je2 2 1 W 
1.V + - - U - - - = -1.k (19) 
2 6 h2 9 U4 2 

and differentiate it, we get 

. 1 Je2 4 W o + - - U + - - = O. (20) 
3 h2 9 U5 

From Eq. (19), we see that the quantity -tk, where 
k is a constant curvature of space, is the energy of 
distance oscillator described by Eq. (20). Equation 
(18), which describes the volume oscillation, and 
Eq. (10), which describes the distance oscillations, 
are coupled. The nonlinear term in (18) depends on 
the curvature k, which essentially gives the energy 
- tk of the distance oscillator (20). On the other hand, 
the nonlinear term in (20) depends on W, which is 
the energy volume oscillator (18). 

The time varying frequency of the oscillator (18) is 

3 (Je
2 

2k)* 
v = (2J3)7T h2 + Vi (21) 

and the oscillator (20) has varying frequency 

1 (Je
2 

4 W)* v = (2J3)7T h2 + :3 V2 . (22) 

In Eqs. (21) and (22), as before, V == V3. When the 
volume V is very large, we learn from (22) and (21) 
that 

v = lv. (23) 
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The frequency of the distance oscillator is one-third 
the frequency of the volume oscillator. There are three 
cases when Eq. (16) can be integrated immediately by 
means of elementary functions. 

As a first case let us consider k = W = 0. The 
energy of the distance and volume oscillator is zero 
and the space is Euclidean (k = 0). However, there 
is no real solution for U as a function of xu. This 
violates our basic assumption that U is a real function 
of the time xo. Let us remark that the frequency 
relation (23) is exactly valid in this case. 

In the second case let us consider k = 0 and W :rtf O. 
The energy - ik of the distance oscillator is zero and 
the space is Euclidean (k = 0). The energy W of a 
volume oscillator is a constant. For the time depend­
ence of volume V, we obtain from Eq. (18) 

V = A sin (J3 ~ Xo + B) , (24) 

where A and B are constants of integration. We can 
write W = jA2(Je2jh2). The frequency (21) of the 
volume oscillator is a constant but the frequency of 
the distance oscillator varies with time. 

The third case, k :rtf ° and W = O. The energy W 
of the volume oscillator is zero. The energy -ik of 
the distance oscillator is positive for k < 0 (pseudo­
spherical space). In this case, we have 

U = A sin --::. - X + B (
I.le o ) 

J3h ' 
(25) 

where A and B are integrating constants. One easily 
verifies that 

(26) 

Thus, for real U, we have necessarily k < 0 (pseudo­
spherical space) and the energy -ik of distance 
oscillator is positive. The frequency (21) of the volume 
oscillations varies with time and the frequency (22) 
of the distance oscillations is constant. 

We observe that, under the cases introduced above, 
the space with positive curvature k, i.e., spherical 
space which is finite,does not appear. 

To obtain the solution of Eq. (16) for k :rtf 0 and 
W :rtf 0, the variable XO is no longer convenient. Using 
new independent variable d'T = U-l dxO and writing 
U2 == y, we obtain from (16), after differentiation, 

d 2y .le2 
2 - + 4ky + 2 - Y = 0. 

d'T2 h2 

The foregoing equation has general solution given by 
Jacobi elliptic function. 

5. KLEIN-GORDON EQUATION 

Schrodinger4 solved the familiar wave equation of 
the second order, 

1 0 ( abJ- O'IjJ ) 2 J - g oxa g - g OXb + fl 'IjJ = 0, (27) 

where'IjJ is the wavefunction and fl = 271mfh (m is rest 
mass and h is Planck's constant) for the line element 
(7). For the time-dependent part l(xO) of the wave­
function '1p, Schrodinger obtained the equation 

d'1 
-2 + [m(m + 2)U4 + ,,2U6]f = 0. (28) 
d'T 

(The symbol U is used for the scale-factor function 
and not R as was used by Schrodinger.) 

Here 
dT = U- 3 dxo (29) 

and m is a nonnegative integer, and m(m + 2) is a 
constant of separation. Equation (16) can be rewritten, 
with the help of (29), as 

(
dU)2 = _1 Je2 US _ kU6 + 1.WU2 (30) 
d'T 3 h2 9 

and hence, 

~:~ + (tw + 3kU
4 + ~~: U

6
) U = O. (31) 

Now, if we put in (31), 
4 Je2 2 

W = 0, 3k = m(m + 2), "3 hi = fl, (32) 

then from (31) and (28) we have that 

d
2
f U _ d

2
U f = O. 

dT2 dT2 
(33) 

The relation 

df2 dfl 
f - - I" - = const 

I dT )2 dT (34) 

holds for any two solutions 11 and 12 of" Eq. (28) 
and thus, because of (33), U is a solution of (28). In 
this way we arrived at the result that if the scalar factor 
function U is given as a solution of Eq. (30) then, by 
replacing the constants therein and with the help of 
relations (32), we directly obtain the time-dependent 
part of the wavefunction 'IjJ. 

CONCLUSION 

It is well known that the 3-space, with k > 0 is an 
analog of the surface of an ordinary sphere. The 



                                                                                                                                    

THE PROPER VIBRATION OF THE SPACE 3199 

vibrations of a spherical surface12 are characterized 
by discrete eigenfrequencies. The discreteness is a 
consequence of the fitting of wavelengths into a finite 
span. 

The vibrations of 3-space with k > 0, which are 
considered in this paper, are similar to a pulsating 
sphere. This particular motion of a spherical surface 
is characterized by eigenfrequency which is zero.12 
The assumed isotropy of 3-space ruled out the higher 
eigenfrequencies. However, it is possible that the 
eigenfrequencies of nonisotropic and finite 3-space 
might provide an adequate description of the observed 
atomicity of matter and light. 
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The equations of the de Broglie wave field (field equations) [J. Kulhanek, Nuovo Cimento Supp. 4, 
172 (1966) I under special conditions require a very particular geometry together with a specific inter­
pretation of the curvature scalar. The purpose of the present paper is to show that the same condition 
turns the conservation law (which is a consequence of the field equations) into an identity and that the 
Rainich [Nature 115, 498 (1925)1 decomposition of Riemann's curvature tensor gives only one component. 

A SPECIAL CASE OF THE FIELD EQUATIONS 

The general form of the field equations1 is 

Je2 
Rab - tRgab - h2 gab 

= - (R + 4 Je2

2

) (tgab - XaX/,) , (1) 
h , 

where gab = gba' Je2 is the rest mass, h is Planck's 
constant, and the xa are components of the unit 4-
vector normal to the 3·wavesurface of the de Broglie 
wave. On the left-hand side of (1) is a well-known 
tensor, whose covariant divergence vanishes. Thus, 
from (1) we have the conservation equations, 

gbf ( R + 4 ~:) (tgab - XaXb) l! = O. (2) 

It is well known that the quantity Rik;i;k is the 
scalar curvature of a 3-dimensional space which is 
perpendicular to ;a. If we put ;a == xu, then from (1) 
it follows that 

RabxaXb = R + 3 (Je2/ h2
) • (3) 

Thus quantity R + 3 (Je2/h2) represents scalar curvature 
of the 3-wavesurface of the de Broglie wave. 

In the case when we assume that 

R + 4 (Je2/ h2
) = 0, (4) 

then the conservation law (2) is trivial and Eqs. (1) 
are red uced to 

(5) 

From Eqs. (3) and (4) we have that 

(6) 
or 

(7) 

The scalar curvature of the 3-wavesurface of the de 
Broglie wave is given as -Je2/h2 or iR. 

Rainich2 showed that Riemann's curvature tensor 
Rab ek in the 4-dimensional space can be decomposed 
into two parts which have different properties of 
symmetry. Considering the Riemannian curvature in 
the 2-direction defined by the unit bivector Vab and 
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the Riemannian curvature in the perpendicular 2-
direction defined by the unit bivector j7ab, we can 
then write2 

(8) 

For the 2-directions Vab and vub the component 
Sik 1m defines the same sign curvature while Aik 1m 

defines curvature of the opposite sign. We can write 
that 

and 

(10) 

Now, in Ref. 2 it is shown that 

Aik 1m = t(gi/Kkm + gkmKa - gimKkl - gkIKim), (11) 

where we denote 

Kim == Rim - !Rg1m • 

From (11), (12), and (5) it follows that 

(12) 

Aik 1m = 0. (13) 

We see from (11) that (13) and (5) are equivalent. 
The field equations (1) with condition (2) imply that 
Riemann's tensor is equal to the component Sik 1m 

of the Rainich decomposition (8). 

1 J. Kulhanek, Nuovo Cimento Suppl. 4, 172 (1966). 
2 C. Y. Rainich, Nature 115,498 (1925). 
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In this paper we use the "smoothing method" to calculate the correlation functions of the solutions 
of the equation 

d 2u 
dz2 + P~[1 + 1jN(z)]u = 0, 

s~tisfying nonstochastic initial conditions, ~.here N(z) is a r~l, wide-sense stationary stochastic process 
With zero ~ean and Po and 1j « 1 are posItive constants. It IS shown that an appropriate application of 
the smoothIng method lea~s to the e:,~ct results in the case when N(z) is the random telegraph process. 
Mor~over, under approprIate co~dltl?ns on the general process N(z), approximate expressions are 
obtaIned for the correlation functions In terms of the first- and second-order moments of the solutions 
and approximate expressions are given for these moments. ' 

1. INTRODUCTION AND SUMMARY 

In a previous paperl we used the "smoothing 
method" to calculate approximately the first- and 
second-order moments of the solutions of the stochas­
tic differential equation (1.2). Our interest was in 
the propagation of an electromagnetic wave through 
a randomly stratified dielectric slab, but Eq. (1.2), 
in which the stochastic process N(z) satisfies (1.1), also 
corresponds to a harmonic oscillator with a random 
spring and arises in many other contexts. In this 
paper we apply the smoothing method to calculate 
approximately the correlation functions of the solu­
tions of (1.2). We also show that the results are in 
fact exact in the particular case in which N(z) is the 
random telegraph process T(z) , defined in Sec. 3. 
We derived the exact results in this case in an earlier 
paper.2 

The smoothing method3 for calculating the ex­
pected value of the solution of a linear stochastic 
equation has been developed extensively by Keller4- lo 

and Bourret.ll- l6 In Sec. 2 we give an outline of the 
method in a form which is appropriate for our 
purposes, and is close to that given by Keller. How­
ever, our application of the smoothing approxima­
tion to the calculation of the correlation functions of 
the solutions of Eq. (1.2) differs considerably from 
that proposed by Keller.8 - lo In our approach it is 
necessary to solve only ordinary differential and 
integro-differential equations, whereas the scheme 
proposed by Keller leads to partial differential and 
integro-differential equations. 

Let N(z) be a real, wide-sense stationary stochastic 
process with 

(N(z» = 0, (N(y)N(z» = r(y - z), (1.1) 
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where () denotes the ensemble average. Each 
sample function N(z) defines two real functions 
Um(Z) , m = 1, 2, on 0::::;; z < 00 which are the 
linearly independent solutions of 

satisfying the initial conditions 

ulO) = 1 = u~(O), u~(O) = 0 = U2(0), (1.3) 

where {Jo and 1]« 1 are positive constants. The 
ensemble of functions {um(z)}, m = 1, 2, forms two 
real random processes. We assume that almost all 
the sample functions N(z) are smooth enough so 
that the solutions um(z) of (1.2) exist. Throughout 
the paper we adopt the notation 

(
dum , 

Vm z) = - = um(z), m = 1,2. 
dz 

We introduce the matrix of solutions 

F(z) = [UI(Z) U2(Z)] 
VI (z) V2(z) , 

with initial conditions, from (1.3), 

F(O) = [~ ~J = I. 

(1.4) 

(1.5) 

(1.6) 

The procedure we adopt is to write down the equation 
satisfied by the Kronecker productI7 

W(z, {) = F(z + {) x F(z), {;;::: 0, (1.7) 

regarded as a function of {. [A x B = (aij) x B = 
(ajiB).] The initial condition is 

W(z,O) = F(z) x F(z), (1.8) 

and hence is stochastic for z > O. Thus, in the appli­
cation of the smoothing method to the equation for 
W(z, '), a knowledge of the incoherent part of 
W(z,O) is required. But, by application of the 
smoothing approximation to the equation satisfied 
by W(z,O), this quantity may be represented as an 
integral involving (F(z) x F(z», which we have al­
ready calculated by the smoothing method. I 

The equation obtained for (W(z, m is solved by 
means of Laplace transforms, and the case in which 
r(z) = exp (-2b Izl) is considered in detail in Sec. 3. 
It is shown that the results are exact in the case 
N(z) = T(z), where T(z) is the random telegraph 
process, so that 1] is not restricted to be small in this 
particular case. In showing this, more explicit ex­
pressions than those which we gave previously2 are 
obtained for the Laplace transforms of some of the 

quantities that arise. We previouslyl showed that, 
when N(z) = T(z), the smoothing method gives the 
exact results for the first- and second-order moments 
of the solutions of (1.2), thus verifying the indirect 
proof given by Bourret.l5•16 However, it is not clear 
that Bourret's proof can be extended to the correla­
tion functions. In fact, in Sec. 5 we consider another 
application of the smoothing method to the calcula­
tion of the correlation functions which does not ap­
pear to give the exact result in the random telegraph 
case. 

In Sec. 4 the general case is considered. It is assumed 
that yea), the Laplace transform of r({), as defined 
by (3.5) and (4.7), is analytic for Re (a) ;;::: -a, where 
a > 0 is independent of 1]. Then, it is shown that 

(F(z + {) x F(z» ~ [(Fa» x I](F(z) x F(z», (1.9) 

on the intervals 0 ::::;; 1}2{JO{ ::::;; Sand 0 ::::;; 1]2{JoZ ::::;; Z, 
where Sand Z are 0(1). Moreover, from the expres­
sions for the Laplace transforms of the first- and 
second-order moments, which we obtained previouslyl 
by the smoothing method, we derive approximate 
expressions for the quantities on the right-hand side 
of (1.9) [see (4.8)-(4.17)]. These expressions are shown 
in Appendix D to be consistent with those derived 
from the results of Papanicolaou and Keller,ls who 
applied a 2-variable method to calculate the first­
and second-order moments of the solutions of (1.2). 
The approximations to the first- and second-order 
moments, and the approximation (1.9) to the corre­
lation functions, may also be derived from earlier 
results of Khas'minskii19 and Stratonovich,20 as we 
will show in another paper. 

2. FORMULATION AND APPLICATION OF 
THE SMOOTIDNG METHOD 

We first give a formulation of the smoothing 
method, in the context in which it is needed here. 
Thus, consider a linear stochastic equation for the 
matrix U, 

(2.1) 

where Lo is a nonstochastic matrix differential opera­
tor, but LI is a stochastic one, and 1] is a small 
positive parameter. It is supposed that the stochastic 
average of LI is zero, that is, 

(LI ) = O. 

We define the incoherent part of U as 

cU=> = U - (U), 
so that 

(cU=» = O. 

(2.2) 

(2.3) 

(2.4) 
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If we substitute for U from (2.3) into (2.1) and 
take the stochastic average, we obtain 

Lo(U) + 1)(LI cU::» = O. (2.5) 

We next subtract (2.5) from (2.1) and obtain 

LoCU::> + 1)Ll(U) + 1)[L1cU::> - (LICU::»] = O. 

(2.6) 

So far no approximations have been made. However, 
neglecting terms of order 1)2 in (2.6), we obtain the 
smoothing approximation 

LocU::> = -1]LI(U), (2.7) 

If the inverse operator Lijl is applied to this equation 
and the resulting expression for cU::> is substituted 
into (2.5), the equation for (U) as given by Keller5 

is obtained, with terms of order 1)3 and higher being 
neglected. However, the above form is more conven­
ient for our purposes. 

We proceed to derive an equation for the quantity 
W(z, ') defined in (1.7). We first obtain an equation 
for F(z) from (1.2), (1.4), and (1.5). Let 

A = [0 -1J C = [0 OJ. (2.8) 
pg 0' 1 0 

Then, 

dF + [A + 1]P~N(z)C]F(z) = O. (2.9) 
dz 

It follows from (2.9) that, for' > 0, 

~ F(z + 0 + [A + 1]pgN(z + OC]F(z + ') = o. a, 
(2.10) 

We now take the Kronecker product of the expression 
in (2.10) with F(z) and obtain, from (1.7), 

aw + ([A + 1]P~N(z + OC] x I}W(z, 0 = 0, a, 
, > O. (2.11) 

The initial value W(z, 0) is given by (1.8). 
The equation for W has the form of the equation 

for U in (2.1), with 

Lo = (I :, + A) x I, LI = P~N(z + ,)(C x I). 

(2.12) 

Note that (2.2) is satisfied by virtue of (Ll). Thus, in 
the smoothing approximation, from (2.7), and from 
(1.8) , 

LoCW::> = -1]LI(W), 

cW(z,O)::> = cF(z) x F(z)::>. (2.l3) 

Also, from (2.5) and (1.8), 

Lo(W) = -1](LIcW::», (W(z, 0» = (F(z) x F(z». 

(2.14) 
Now let 

[

COS Po' 
P(O = 

- Po sin Po' 

1 sin Po'] Po . 

cos Po' 

(2.15) 

It may be verified, using (2.8), that 

dP - + AP = 0, P(O) = I, (2.16) d, 
so that P is a fundamental matrix. Thus, with Lo 
given by (2.12), 

Lo[PW x I] = 0, P(O) x 1=1 x I. (2.17) 

Hence, from (2.12) and (2.13), 

cW(z,O::> 

= [pa) x l]cF(z) x F(z)::> 

-1]p~f[p(' - ;) x I]N(z + ;)(C x I) 

X (W(z, m d;. (2.18) 

Before writing down an equation for (W), we turn to 
the calculation of cF(z) x F(z)::>. 

Now, from (2.9) it follows that 

~ [F(z) x F(z)] + [(A x I) + (I x A)][F(z) x F(z)] 
dz 

+ 1]pgN(z)[(C x I) + (I x C)][F(z) x F(z)] = O. 

(2.19) 

But previously! we analyzed this equation by the 
smoothing method and derived an expression for 
the Laplace transform of (F(z) x F(z». Let 

'I'(z) = [P(z) x P(z)][(C x I) + (I x C)]. (2.20) 

Then, from the equation corresponding to (2.7), 
since CF(O) x F(O)::> = 0 from (1.6), we obtain, from 
(2.16) and (2.19), 

cF(z) x F(z)::> 

= -'f]{J~ 50" 'I'(z - nN(~)(Fa) x Fe;) d~. (2.21) 

Thus, from (Ll), (2.12), (2.14), (2.18), and (2.21), 
we have 

a(w) + (A x I)(W(z, n> a, 
= 1]2{J~fra - ~)([Cpa - ~)C] x I}(W(z,;» d; 

+ 1]2{Jwcpm] x I} f r(z + , - ~)'¥(z - ~) 
x (F(;) x F(;» d;. (2.22) 
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The initial condition is as in (2.14). We consider the 
solution of Eq. (2.22) in the next two sections. 

3. PROCESS WITH AN EXPONENTIAL 
CORRELATION FUNCTION 

In this section we consider the particular case in 
which 

(3.1) 

In an earlier paper2 we obtained exact solutions for the 
first- and second-order moments, and the correlation 
functions, of the solutions of (1.2), in the case in which 
N(z) = T(z), where T(z) is the random telegraph 
process, defined in the following way.2l A given 
function of the ensemble {T(z)} can assume only the 
values ± 1 , and as a function of z it makes independent 
random traversals from one value to the other. For 
fixed z, a sample function chosen at random will 
equal 1 or -1 with probability 1/2. The probability 
that a given sample function makes n traversals in an 
interval of length z is given by the Poisson distribution 

(bzt -bz pen, z) = -- e , n = 0, 1,2, .. " (3.2) 
n! 

where b is the average number of traversals per unit 
length. A straightforward calculation yields21 

(T(z» = 0, (T(y)T(z» = e-2b
/
Y

-
z /. (3.3) 

We showedl that the smoothing method leads to 
the exact results for the first- and second-order 
moments of the solutions of (1.2), subject to (1.3), 
when N(z) = T(z). Here we show that the smoothing 
method, as outlined in the previous section, leads to 
the exact results also for the correlation functions, 
in this case. We relegate the details to Appendix A, 
but give the results in this section in a more explicit 
form than we gave earlier. Previously2 we obtained, in 
the case N(z) = T(z), the exact result 

(F(z + 0 x F(z» 

= tk~[ Ctl(4)m I O)jk x I) (F(z) x F(Z»k} (3.4) 

The reader is referred to Ref. 2 for the meanings of 
the functions occurring in (3.4). 

Expressions were given for the Laplace transform 
of (<pm I O)jk' We define 

A(H) = LOO e-u'Hm d~. (3.5) 

Let 

d(a) = {(a2 + p~)[(a + 2b)2 + pg] - 'i]2P~}. (3.6) 

Then 

A( 2 2 4> ° ) _ ~( area + 2b)2 + P~] [(a + 2b)2 + P~])' 
k~ j~( I )jk - d(a) -PW(a + 2b)2 + P~] - 'i]2pn area + 2b)2 + P~] , 

(3.7) 

and 

(3.8) 
We remark that2 

2 2 

(Fm) = t! ! (4)<') I O);k' (3.9) 
j~l k~l 

Expressions were also given for the Laplace trans­
forms of the elements of (F(z) x F(z», and we 
remark that2 

2 

t! (F(z) X F(z»k = (F(z) x F(z». (3.10) 
k~l 

We define 

qG) = i'" e-szG(z) dz. (3.11) 

Let 

~ = ~(s) == {s(s + 2b)(S2 + 411~)[(s + 2b)2 + 411~] 
- 16'i]211~(s + bn. (3.12) 

Then2 

L(ui» = (1/~){(s + 2b)(S2 + 2P~)[(s + 2b)2 + 4P~] 
- 8'i]2P~(S + b)}, (3.13) 

C«vi» = (2/~)I1~(s + 2b){[(s + 2b)2 + 4P~] 

and 
+ 'i]2[S(S + 2b) - 411m, (3.14) 

C«u~» = (2/~)(s + 2b)[(s + 2b)2 + 4P~]. (3.15) 

The remaining elements of C«F x F» are given by 

(3.16) 

C«Ul U2» = C«U2V2» = rsL(u~», (3.17) 

and 
C{(U1Vl» = C«VlV2» = i[sL(ui» - 1] (3.18) 

L«U1V2) + (V1U2» = ts2L«U~», 

L«U1V2) - (V1U2» = l/s. (3.19) 

Finally, expressions were given2 for the Laplace 
transforms of the elements of (F(z) x F(z»k' but 
these involved the products and inverses of certain 
2 X 2 matrices. The evaluation of these expressions 
is somewhat tedious, and only some of the details 
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are given in Appendix B. It is found that 4. THE GENERAL PROCESS 

de( (UD2 - (ui\) = 41]P'~[S2(S + 2b) + 4P'~b], (3.20) 

dC«U IVI)2 - (UIVI)I) 

= 21]P'~(s + 2b)[S2(S + 2b) + 4p'gb], (3.21) 

dC( (V~)2 - MIl) 
= -81]P'~(s + b)[s(s + 2b) + 2(1 _1]2)P'~], (3.22) 

de( (U~)2 - (Ui)l) = 161]P'~(s + b), (3.23) 

dC(U2V2)2 - (U 2V2\) = 81]P'~(s + b)(s + 2b), (3.24) 

dC( (V~)2 - M\) = 41]P'~[s(s + 2b)2 - 4P'~b), (3.25) 

dC{(U1U2)2 - (U IU2)1) = 81]P'~s(s + b), (3.26) 

dC«VIV2)2 - (VIV2)1) = 21]P'Ms(s + 2b)2 - 4p'gb), 

(3.27) 
and 

dC«U1V2)2 - (U1V2)1) = 41]p'gs(s + b)(s + 2b) 

= dL( (V1U2)2 - (V1U2\)· (3.28) 

With the aid of the above results, we establish 
in Appendix A that, when r(z) is given by (3.1), the 
smoothing method leads to the expression given in 
(3.4) for (F(z + ~) x F(z», so that the results are 
exact in the case N(z) = T(z). Now, Eqs. (3.13)­
(3.19), together with (3.20)-(3.28), determine the 
elements of C(F x F)h, k = 1,2, in view of (3.10). 
Denote the roots of the equation des) = 0, as given 
by (3.12), by sp, p = 1, ... , 6, and let So = O. Then, 
inverting the Laplace transforms, we obtain 

6 

(F(z) x F(z)\ = I Cp,keSpZ, k = 1,2, (3.29) 
p~o 

where the Cp,k are constant 4 X 4 matrices, which 
are calculated from the residues at s = sp. It is 
remarked that for small 'YJ one of the roots of des) = 0 
has a positive real part. Similarly, the elements of 
A(I~~1 (w I O)ik) are given by (3.7) and (3.8). Denote 
the roots of the equation d(a) = 0, as given by (3.6), 
by ar , r = 1, ... ,4. Then, inverting the Laplace 
transforms, we have 

2 4 

L(4-a) I O)ik = LBr,keur~, k = 1,2, (3.30) 
i~l r~l 

where the Br,k are constant 2 X 2 matrices. It can be 
shown that Re (ar ) < 0 for r = 1,2,3,4, as long as 
'f} < 1. Combining (3.4), (3.29), and (3.30), we have 

2 4 6 

(F(z + ~) x F(z» = t L L L(Br,k x I)Cp,keur~+Sp •. 
k~l r~l p~o 

(3.31) 

We return now to the general case, and consider 
first the calculation of the first-order moments by 
the smoothing method. We did this previouslyl in 
scalar form, but it is desirable here to have the 
results in matrix form. Applying the smoothing 
method to Eq. (2.9), with the variable z replaced by 
~, and solving the equation corresponding to (2.7), 
using (1.6) and (2.16), we obtain 

CFap = -1]P'~ fpa - ~)N(~)C(F(~» d~. (4.1) 

Then, from (Ll) and the equation corresponding to 
(2.5), 

d(F) + A(F(O) 
d~ 

= 'YJ2p'~fra - ~)Cpa - ~)C(F(~» d~, (4.2) 

with initial condition, from (1.6), (F(O» = I. Taking 
Laplace transforms, as in (3.5), we obtain 

[0'1 + A - t}2p'tA(rCPC»)A«F» = I. (4.3) 

An explicit formula for A( (F» is given in Appendix 
C, but for the moment (4.3) suffices. Note, from (Ll), 
(3.3), (3.9), (A3), and (AS), that (4.3) is exact in the 
case N(z) = T(z). 

We now consider Eq. (2.22) for (W(z, m. Taking 
Laplace transforms with respect to ~ and using the 
initial condition in (2.14), we obtain 

{[al + A - 'YJ2p'~A(rCPC») x I}A«W» 

- (F(z) x F(z» 

= 'YJ2P'~A( {[CP(m x I} fr(Z + ~ - ~)'I'(z - ~) 

X (F(~) x F(~» d~). (4.4) 

But, from (4.3), 

([al + A - 1]2p'~A(rCPC)] x I}-l 

= A«F» x I = A«F) x I). (4.5) 

Hence, from (1.7), (4.4), and (4.5), solving for 
A«W» and inverting the Laplace transforms, we get 

(F(z + 0 x F(z» - [(F(W x I)(F(z) x F(z» 

= 'YJ2p'~f{[(Fa - O»CP(O)] x I} 

x fr(Z + 0 - ~)'I'(z - ~)(F(~) x F(~» d~ dO, 

(4.6) 
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for ~ ~ o. It follows from the results of the previous 
section that (4.6) is exact in the case N(z) = T(z). 

Now, we previously! applied the smoothing method 
to determine the first- and second-order moments of 
F, and expressions were obtained for the Laplace 
transforms of these quantities. It is shown in Appendix 
C that the expression for A«F» obtained from (4.3) 
is consistent with our previous results. Let 

y( a) = A(r). (4.7) 

The expression for A«F» is inverted approximately 
in Appendix C, under the assumption that yeo) is 
analyti~ for Re (a) ~ -a, where a > 0 is independent 
of 1). This condition implies that rm is exponentially 
small for large ~. It is found that, for sufficiently small 
1) and rlf3o~ ::;; 0(1), 

and 
(UIW) = (v2W> ~ !(eO"'{ + e0"2') (4.8) 

(vim ~ iif3o(eO"" - e0"2'), 

-i 
(U2W) ~ 2f3o (eO"" - e0"2'), (4.9) 

where 

0 1 = a: ~ if30 + t1)2f3~[y(2if3o) - yeO)]. (4.10) 

Now consider the second-order moments, the 
Laplace transforms of which we obtained previouslyl 
and now give in Appendix C. The transforms are 
inverted approximately, under the above assumption 
on yeo). The expression in (C7) has simple poles at 
SI' S2' andss where 

SI ~ l1)2f3~[y(2if3o) + y( -2ifJo)] (4.11) 
and 

S2 = s: ~ 2if3o + l1)2f3~[y(2if3o) - 2y(0)]. (4.12) 

As noted previously,1 the expression on the right-hand 
side of Eq. (4.11) is nonnegative, a consequence of the 
fact that r(z) is the correlation functioh of a real 
process. It is found that, for sufficiently small 1), and 
1)2f3oz ::;; 0(1), 

(ui(z» = (v;(z» ~ Hes2Z + 2eSlZ + eS8Z
), (4.13) 

M(z» ~ -lf3~(eS2Z - 2eS,
% + e'S%) ~ f3~(u;(z», 

(4.14) 
-i 

(ul(z)ub» = (ub)vb» ~ - (e82Z 
- eS3%), (4.15) 

4{3o 

(u 1(z)vtCz» = (vtCz)v2(z» ~ lif3o(eS2
% - e83Z

), (4.16) 

and 

(utCz)v2(z» ~ !(eS2% + 2 + eS3%), 

(Vl(Z)U 2(z» ~ HeS2Z 
- 2 + eS3Z

). (4.17) 

We remark that Papanicolaou and KeIlerl8 investi­
gated the solution of (1.2), in the case of m = 1, by 

means of a 2-variable expansion procedure. The 
above approximations to the first- and second-order 
moments may be obtained from their results, and we 
give a few of the details in Appendix D. 

Let us now return to (4.6), and consider the double 
integral therein. From (2.15) and (2.20), P(O) and 
'I'(z - $) are bounded. From the above approxima­
tions, for 1)2 « 1, to the elements of (F) and (F x F), 
these quantities are bounded on fixed intervals 
o ::;; 'Yj2f3o~ ::;; Sand 0 ::;; 'Yj2f3oZ ::;; Z, where Sand Z 
are 0(1). Moreover, 

ffW(Z + 0 - $)1 d$ dO = ffW($ + 0)1 d$ dO 

(4.18) 

is clearly bounded for ~ ~ 0 and z ~ 0, under our 
assumption on yeo), which implies that rm is 
exponentially small for large ~. It follows that the 
right-hand side of (4.6) is 0(1)2) for 0 ::;; 'Yj2f3o~ ::;; S 
and 0 ::;; 1)2f3oZ ::;; Z, so that (1.9) holds. 

5. ANOTHER APPLICATION OF THE 
SMOOTHING METHOD 

In conclusion, we consider another application of 
the smoothing method to the calculation of the 
expectation of the matrix W(z, ~) defined in (1.7). In 
Sec. 2 we derived an equation for W regarded as a 
function of C but here we derive one for W regarded 
as a function of z. Thus, from (2.9), 

~ F(z + n + [A + 1)f3~N(z + nC]F(z + ~) = O. 

(5.1) 

We now take the Kronecker product of the expression 
in (5.1) with F(z) and of F(z + ~) with the expression 
in (2.9), and add, to obtain 

oW + [(A x I) + (I x A)]W(z, s) 
OZ 

+ 1)f3~[N(z + s)(C x I) 

+ N(z)(1 x C)]W(z, S) = O. (5.2) 

From (1.6) and (1.7), the initial condition is 

(5.3) 

Note that, if S = 0, then (5.2) reduces to (2.19). 
Applying the smoothing method to Eq. (5.2) and 

solving the equation corresponding to (2.7), using 
(2.16) and (5.3), we obtain 

CW(z, sP 
= [P(z) x P(z)][cF(O:J x 11 

- 'f}fJ~ f[P(Z - ~) x P(z - n][N($ + O(C x I) 

+ N($)(I x c)1(W($, m d$. (5.4) 
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But, in the smoothing approximation, cF( n:J is 
given by (4.1), in terms of (F), which has already 
been determined. From (5.2) and the equation 
corresponding to (2.5), it follows that 

a(w) + [(A x I) + (I x A)](W(z, OJ 
az 

= -1JP~([N(z + ,)(C x I) 

+ N(z)(1 x C)]cW(z, '):J). (5.5) 

Combining Eqs. (4.1), (5.4), and (5.5) and using 
(1.1), we obtain an equation for (W), which we re­
frain from writing down. From (5.3), the initial 
condition is 

(W(O, m = (Fa) x I. (5.6) 

The equation for (W) may be solved by means of 
Laplace transforms. However, it appears that the 
exact result is not obtained in the case N(z) = T(z) , 
whereas it is obtained from Eq. (2.22) in this case. 
This could be explained by the occurrence of both 
N(z + ') and N(z) in (5.2), whereas only the process 
N(z + '> occurs in (2.11). 

APPENDIX A 

We here consider the solution of Eq. (2.22), 
subject to the initial condition given in (2.14), in the 
particular case in which the correlation function of 
the process N(z) is given by (3.1). Thus, in (2.22) we 
have 

(Al) 
and 

r(z + , - ~) = e-2b'e-2b(z-~), ,~o, ° ~ ~ ~ z. 

(A2) 

We will take Laplace transforms with respect to " as 
in (3.5). Note, from (2.16), that 

A(P) = (al + A)-l = 1 (a 1) (A3) 
(a2 + P~) -P~ a' 

from (2.8), which is consistent with (2.15). Then, 

from (2.22), using (2.14) and (AI)-(A3), we obtain 

({al + A -1J2p~C[(a + 2b)1 + ArlC} x I)A«W» 

- (F(z) x F(z» 

= 1J2p~({C[(a + 2b)1 + A]-I} x I) 

X f e-2b(z-s)'I'(z - ~)(F(~) x F(m d~. (A4) 

Now, from (2.8), (3.6), (3.7), and (A3), it is found, 
in a straightforward manner, that 

{al + A -1J2p~C[(a + 2b)1 + ArlC}-1 

= tAct ~1(4l1 O)ik) , (AS) 

and, from (3.8), that 

1JP~{aI + A -1J2p~C[(a + 2b)I + A]-IC}-I 

X C[(a + 2b)1 + A]-I 

= tA(t(-l)k~I(4l1 O)ik)' (A6) 

Hence, solving (A4) for A«W» and inverting the 
Laplace transforms with the help of (AS) and (A6), 
we obtain 

(W(z, m = tk~[ (~I(4lm I O)ik x 1)9k(z)} (A7) 

where 

9 k (z) = (F(z) x F(z» 

+ (-lt1JP~ f e-2b(z-'l'l'(z - ') 

X (F(~) x F(m d~. (A8) 
We will show that 

(A9) 

whence, from (1.7) and (3.4), the smoothing method 
leading to Eq. (2.22) gives the correct result for the 
random telegraph process T(z). C 

Now, taking Laplace transforms with respect to z, 
as in (3.11), and using the convolution theorem, it 
follows from (AS) that 

qak) = {(I x I) + (-1l1JP~qe-2bZ'l'(z)]}C«F x F». 

(AIO) 

But, from (2.8), (2.15), and (2.20), it is found that 

( fJ;;' ,in 2P., p-2 . 2 P o SIll OZ p-2 . 2 P o SIll oZ 

~) 'I' cos 2poZ (2porl sin 2poz (2PO)-1 sin 2poz 
(z) = 

(2Porl sin 2poz 
(All) 

cos 2poz (2Porl sin 2poz 

-Po sin 2Poz cos2 Poz cos2 Poz 
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Thus, 

( 

2(s + 2b) 

(s + 2b)2 
(s + 2b)[(s + 2W + 4f3~]qe-2bz'l'(Z)] = 2 

(s + 2b) 

-2f3~(s + 2b) 

2 

(s + 2b) 

(s + 2b) 

2 

(s + 2b) 

(s + 2b) 

[(s + 2b)2 + 2f3~1 [(s + 2b)2 + 2f3~1 

Now, in view of (1.5), the elements of I:«F x F» 
are given by (3.13)-(3.19). Then the elements of 
qek) may be calculated from (AIO) and (AI2). But, 
the elements of q <F x F)k)' as we show in Appendix 
B, are given by (3.20)-(3.28), in conjunction with 
(3.10) and the expressions for the elements of 
I:«F x F». It may be verified that 

I:(ek) = 1:( (F x F)k)' k = I, 2, (A13) 

so that (A9) holds, as we wanted to show. 

APPENDIX B 

We here simplify the expressions we obtained 
previouslt for the elements of 1:( (F x F)k)' First, 
for m = I, 2, let 

X - I:[(U~)IJ Y = 1:[(UmVm>l] 
m- 2)' m ( >' (U m 2 UmV m 2 

Zm = I:[(V~)IJ. (81) 
(Vm>2 

Define 

S = [(S + b) -b], 
-b (s + b) 

B = f3~[(1 + 1) 0 J, E = [IJ. (B2) o (1 - 1) 1 

Then, it was found that 

Xl = (BS + SB + iS3r\B + iS2)E, 

X2 = (BS + SB + iS3r 1E, (83) 

YI = 1(SX1 - E), Y2 = iSX2, (B4) 

and 

ZI = [(B + tS2)XI - tSE), Z2 = (B + tS2)X2. 

(B5) 
Now introduce the row vector 

D' = [-1 1]. (B6) 

Note, from (B2), the relationship 

D'E = 0, D'S = (s + 2b)D'. (B7) 

Hence, from (B4), 

D'Y 1 = -Hs + 2b )D'X1 , D'Y 2 = t(s + 2b )D'X2' 

(88) 

(Al2) 

and, from (B5), 

D'ZI = D'(B + tS2)XI' D'Z2 = D'(B + tS2)X2 • 

(B9) 
But, from (B2) and (B7), 

D'(B + tS2
) = U(s + 2b)2 + 2f3~lD' -1)f3~E'. 

(B10) 

However, we previously2 calculated E'Xm' and in 
fact, from (3.10) and (Bl), 

tE'Xm = !.:(u~», m = 1,2. (Bll) 

Hence it suffices to calculate D'Xm and then to use 
(3.13), (3.15), and (B8)-(B11). After some tedious 
calculations, the details of which we omit, it is found 
from (B3) that 

D'XI = 41)f3~[S2(S + 2b) + 4f3~bJ/~, 
D'X2 = 161)f3~(s + b)/~, (B12) 

where 
~ = det [2(BS + SB) + S3], (B13) 

and is given explicitly by (3.12). We thus obtain 
(3.20)-(3.25). 

Secondly, let 

G = 1:[(U1U2)1], 
(U1U2>2 

H = 1:[(U1V2)1], 
(u1 V2)2 

(B14) 

J = L[<V1U2>1], 
(V1U2)2 

K = L[<VIV2>1 
<V1V2>2 

(B15) 

Then, it was found that2 

G = t(BS + SB + tS3)-lSE, K = -S-lBSG, 

(B16) 
and 

H + J = SG, (H - J) = S-lE = s-lE. (B17) 

But, since SE = sE, from (B3) and (B16) we have 

G = !sX2 , D'G = isD'X2 • 

Also, from (B3), (B5), and (BI6)-(BI8), 

tsZ2 - K = tsS-l(BS + SB + tS3)X2 

(BI8) 

= iSS-IE = tEo (BI9) 



                                                                                                                                    

3208 J. A. MORRISON 

Hence, since D'E = 0, 

D'K = isD'Z2' (B20) 

Finally, from (B7) and (B17), 

D'(H + J) = (s + 2b)D'G, D'(H - J) = O. (B21) 

Equations (3.26)-(3.28) follow from (BI8), (B20) , 
and (B21). 

APPENDIX C 

We consider here the approximate inversion of the 
Laplace transforms of the first- and second-order 
moments. We first consider the expression for 
A{(F) obtained from (4.3). Now, from (2.8) and 
(2.15), 

CpmC = (Pol s~n Po' ~). (Cl) 

Hence, from (4.7), 

1}2PtA(rCPC) = (~ ~), (C2) 

where 

t5 = r/p~ 50
00 

e-a
{ sin ,8o,r(n d, 

2p3 

= 1}2; 0 [yeO' - i,8o) - yeO' + ipo)]' 

Thus, from (2.8), 

[0'1 + A - 1]2ptA(rCPC)] = 2 ( 0' -0'1). 
(,80 - t5) 

Then, from (4.3), 

A«F» = [0"1 + A - 1} 2PtA(rCPC)tl 

(C3) 

(C4) 

= (0"2 + ~~ _ t5X(t5 ~ ,8~) !} (C5) 

which is consistent with our previous results.l 
Now, according to the complex inversion formula,22 

1 10+ioo 
(FW) = -. ea~A«F» dO", (C6) 

211'1 o-ioo 

for sufficiently large c. We assume that yeO") is analytic 
for Re (0') ~ -a, where a > 0 is independent of 1]. 
Then, for sufficiently small 1}, A{(F» has simple poles 
in the neighborhood of 0' = ±i{3o, which we denote 
by 0'1 and 0'2 = a~. The approximate values of 0'1 

and 0'2' using (C3), are given by (4.10). Moreover, 
for sufficiently small 1}, the remaining singularities 
of A{(F» lie in Re (a) < -tao Accordingly, we shift 
the contour of integration in (C6) to the line Re (a) = 
-ia, and include the contributions from the poles 
at a = al and 0' = 0'2' But, the integral along 
Re (0') = -ta vanishes for 'fJ = O. Hence, for small 
1}, the main contributions to (F(D) arise from the 
poles at 0" = 0'1 and a = 0'2' Thus, from (C5), we 
obtain the approximations given in (4.8) and (4.9). 

Consider next the second-order moments. We 
found previously! that 

tL(u~) = Q 

== {S(S2 + 4P~) - i1]2{3g[2s2y(S) 

- (s + 2i(30)2y(S - 2i(30) 

- (s - 2i(30)2y(S + 2i(30)]}-t, (C7) 

L(ui» = Q{(S2 + 2{3g) 

- t1}2,8g[2sy(s) - (s + 2i,80)Y(s - 2i,80) 

- (s - 2i,8o)Y(s + 2ipo)]), (C8) 
and 

L(vi» = Q{3~(2 + 1]2[(S + 2ipo)Y(s - 2i(30) 

+ (s - 2i,80)Y(s + 2i,80)] 

+ 1]2P~{2y(s - 2i,80)Y(s + 2i(30) 

- y(s)[y(s - 2i,80) + yes + 2i,80)]}). (C9) 

The remaining elements of S:«F x F» are given by 
(3.l6)-(3.19). Under the above assumptions on yeO') 
it follows that, for sufficiently small 1], the expression 
for Q has simple poles in the neighborhood of s = 0 
and s = ±2i{3o, which we denote by Sl' S2, and Sa = S:. 

Their approximate values are given by (4.l1) and 
(4.12). Proceeding as above, it follows that the main 
contributions to (ui(z», (vi(z», and (u;(z» arise 
from these three poles, and from (3.16) and (C7)­
(C9) we obtain the approximations given in (4.13) 
and (4.14). The approximations in (4.l5)-(4.17) may 
be obtained by inverting the relationships in (3.17)­
(3.19), with the help of the initial conditions 

(F(O) x F(O» = I x I, 

and using (4.13), (4.l4),and thezero-orderapproxima­
tions to Sl' S2' and Sa· 

APPENDIX D 

We give here some details of the calculation of the 
first- and second-order moments of the solutions of 
(1.2) from the results of Papanicolaou and Keller.1s 
With some changes in notation and generalization 
to the matrix solution in (1.5), the first-order mo­
ments are given by 

where 
(Fa») ""'" Re(Q+lMl){R-r, (01) 

Q = (i{3o 0) , R = ( 1 I) (D2) 
o - i{3o i{3o - ifJo. ' 

[y( -2j,8~ - Y(O)])· 

(D3) 



                                                                                                                                    

CALCULATION OF CORRELATION FUNCTIONS 3209 

Hence, from (4.10), 

(04) 

for 'YJ2f3o~ S; 0(1). Equations (4.8) and (4.9) follow, after some further straightforward algebra. 
The second-order moments are given bis 

(F(z) x F(z» R:;i (R x R) exp {[(Q x I) + (I x Q) + 'YJ2N1lz}(R x R)-l, (D5) 

where 

o o 

(

[Y(2iPO) - 2y(O)] 

2 0 
Nl = tPo o 

o 

Re [y( -2ipo)] 

Re [y( -2ipo)] 

o 

Re [y( -2iPo)] 

Re [y( -2ipo)] 

o 

(06) 

Hence, from (4.11), (4.12), (02), and (06), 

[

S2 

I(Q x I) + (I x Q) + n'N,J '" ~ 
o 

(D7) 

Equations (4.13)-(4.17) follow after some further 
straightforward calculations. 
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Mixed-basis D functions are introduced as a tool for deriving Clebsch-Gordan coefficients of induced 
representations of semis imp Ie groups. The Clebsch-Gordan coefficients of SU(l, 1) and SL(2, C) are 
computed as examples. 

1. INTRODUCTION 

In previous papersl Mackey's induced representa­
tion theory2 has been used to compute Clebsch­
Gordan coefficients for those noncompact groups 
which can be written as semidirect product groups. 
In these papers it was conjectured that it might be 
possible to use similar techniques for the semisimple 
noncompact groups. The point of this paper is to show 
that mixed-basis D functions, obtained from integrals 
over D functions of certain subgroups, provide a tool 
by which the Clebsch-Gordan coefficients for some 
representations of the semisimple groups can be 
computed. 

The motivation for computing Clebsch-Gordan 
coefficients of induced representations of semisimple 
groups arises from a model in which the energy 
dependence of reduced amplitudes of 2-body reactions 
is given in terms of such Clebsch-Gordan coefficients.3 
But even aside from such a physical motivation, there 
is the interesting mathematical question of the 
functional form and analytic behavior of Clebsch­
Gordan coefficients of noncompact groups. 

Two semisimple groups of current interest in high­
energy physics are SU(l, 1) and SL(2, C)4; the tensor 
product reduction for both of these groups is given in 
the mathematical literature.5 The Clebsch-Gordan 
coefficients of SU(l, 1) have been computed in various 
degrees of generality by a number of authors6 ; 

recently, the Clebsch-Gordan coefficients for the 
principal series of SL(2, C) were also computed. 7 Now 
the techniques to be presented in Sec. 2 for computing 
Clebsch-Gordan coefficients are different from any 
of those used in Refs. 6 and 7; hence, after the Clebsch­
Gordan coefficients of SU(I, 1) and SL(2, C) are 
computed in Secs. 3 and 4, a comparison between 
the methods will be given in the conclusion. 

vector I [X]x): 

U(g) I[x]x) = ~ J D;.",(g) I[X]x'). (2.1) 

[x] denotes the set of labels specifying a unitary 
irreducible representation of the group G. x denotes a 
set of "eigenvalues" arising from a complete set of 
commuting elements of the Lie algebra of G; the sum 
and integral sign in (2.1) indicates that x may have 
both discrete and continuous parts. 

The vectors I (xlx) are generally not elements of the 
Hilbert space on which the unitary operators U(g) 
act; rather, they are generalized functions on a 
suitably defined rigged Hilbert space.8 In this work 
the complication of treating the vectors I [X]x) (or for 
that matter the D functions or Clebsch-Gordan 
coefficients9) as generalized functions will not be 
considered. 

However, it should be pointed out that, when 
dealing with the orthogonality and completeness 
properties of the D functions, the fact that the D 
functions are generalized functions becomes impor­
tant. In contrast, for compact groups, where the 
D functions are finite dimensional, the orthogonality 
and completeness relations are readily obtained.lo 

Only the invariance of Haar measure and Schur's 
lemma are needed. 

Equation (2.1) can be transformed into a more 
useful form by taking the matrix elements of the 
operator U(g): 

([x]x'i U(g) I[x]x) = D~ . .,(g). (2.2) 

For those representations of G which can be written 
as induced representations,I.2 the D functions are 
readily computed. To see this, we denote by H the 
subgroup of G which induces irreducible representa-

2. GENERAL ANALYSIS OF D FUNCTIONS tions of G. Let L be a I-dimensionalll representation 
AND CLEBSCH-GORDAN COEFFICIENTS of H acting on the vector space Je(L) and j(g) a 

D functions are usually defined in terms of the function from G to Je(L) satisfyingj(hg) = L(h)j(g); 
action of the unitary operator U(g) of a group the class of such functions, suitably restricted, forms 
element g E G acting on an (in general improper) a Hilbert space denoted by Je(UL) on which the 

3210 
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induced representation acts: 

U(g')f(g) = [meg, g')]!f(gg'), g' E G, f E Je(UL ). 

(2.3) 

meg', g) is a multiplier, so chosen as to make U(g) 
unitary. 

Before showing how meg', g) is calculated, note 
that the natural framework for induced representations 
is in terms of vector bundles over the homogeneous 
space G/H.12 However, this setting is rather awkward 
when defining the mixed-basis D function, and for 
that reason it is not used here. 

Rather, f(g) will be considered as a function over 
cosets f(ge) [since f(g) = L(h)f(gJ], where {ge} is a 
set of elements of G labeling the right co sets : 

G = U H ge' g = h(g)gc(g)· (2.4) 
e 

Then 
1 

u(g)f(ge) = [m(h(geg))]lrf(geg) 

= [m(h(geg))]iL(h(geg))f(ge.(gcg)), (2.5) 

where h(geg) and gAgeg) are defined by 

geg = h(gcg)ge,(geg) 
and Eq. (2.4). 

The multiplier m(h) is given by 

det adiH(h) 
m(h) = -----'---'. 

det adiG(h) 
(2.6) 

where adiG(h) is the adjoint representation of G 
defined in matrix form by 

adiG(g)(Xi ) == hXih-1 = I (adiG(h»jiX ;, (2.7) 
j 

with {Xi} a basis in the Lie algebra of G. 
With the multiplier given by (2.6), it can be shown 

that U(g) is a unitary operator: 

II U(g)f 112 = r dge I U(g)f(ge)1 2 

JOIH 
= r dgem(h(geg» If(ge,(geg)W JOIH 
= r dge. \ oge I m(h(gcg» If(ge.)1 2 

Jam oge' 

= r dge. II(ge.)1 2 

JOIH 
= IIf 11

2
, (2.8) 

where the multiplier-by definition-has been so 
chosen as to cancel the Jacobian resulting in the 
change of variable from ge to ge' . 

Consider now, as (in general improper) realizations 
of the functions [(ge), D functions arising from a 

subgroup of G whose elements include {gc}. It will be 
shown how the D functions of G can be built from 
those D functions of appropriate subgroups of G. 
The D functions of the subgroups of G, when restricted 
to the coset labels ge' can be thought of as "unit" 
vectors spanning the representation space of G 
labeled by X. We follow the mathematical literature 
in denoting such vectors as e.,(ge); although defined 
in general only for coset labels ge' it is possible to 
extend e",(ge) to all elements g in G by setting 

(2.9) 

just as f(g) = L(h)f(ge) [L(h) is the (I-dimensional) 
representation of the inducing subgroup H]. D func­
tions over G are then 

D~,.,(g) = r dgee.,":(ge)[U(g)e.,(gc)], (2.10) JOIH 
which is seen to be a concrete realization of the 
defining Eq. (2.2) for D functions. 

By defining an operator which translates g to the 
right, it can further be seen that D~,,,,(g) is a concrete 
realization of I [X]x) for x' held fixed: 

O(go)D~·X<g) == D~,.,(ggo) 

= ~ J D~'Ag)D~".,(go) 
= ~ J D~"igo)D~,.,,,(g). (2.11) 

It will prove necessary in the following development 
to broaden the definition of D functions. In Eq. 
(2.10) the "eigenvalues" x' and x both came from 
the same complete set of commuting elements of the 
Lie algebra of G. Consider, however, the possibility 
of allowing the two sets of "eigenvalues" to arise 
from two different complete sets of commuting 
observables of the Lie algebra of G. 

In order to obtain Clebsch-Gordan coefficients, the 
left set of "eigenvalues" of such "mixed-basis" D 
functions must arise out of a special set of commuting 
elements of the Lie algebra of G. In the following 
paragraphs attention will be focused on how to choose 
this set for the principal series of representations of the 
semisimple group G, although the ideas probably 
generalize to the discrete and exceptional series. 

For the principal series of unitary irreducible 
representations of G, the inducing subgroup H is 
obtained from the Iwasawa decomposition to be 
N AM, where N is nilpotent, A is Abelian, and M 
is the centralizer of A in G.12 We choose the set of 
"eigenvalues" y-the left index in the mixed-basis D 
function-to include the eigenvalues of A and M, 
and then extend this set to be a complete set by 
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choosing any other convenient elements from the 
Lie algebra of G. This special complete set will 
generate D functions and, hence, vectors denoted by 
ej/(ge), which, as before, can be extended to 

The mixed-basis D functions are then 

Such a D function has the virtue that under the opera­
tor O(go), defined in Eq. (2.11), it transforms to the 
right as a vector I [X]x), while to the left, in the Y 
variable, it transforms like an induced representation 
element J(ge) , where gc E G and n are defined below: 

O(go)D~,,(gc) == D~,,(gego) 

= DMh(gcgo)gc·(gcgo» 

= L(h(gcgo»D~.,(gAgego». (2.13) 

The mixed-basis D functions are thus seen to play a 
dual role, serving, on the one hand, as concrete 
realizations of I [X]x) and as (improper) functions 
transforming properly as required by induced repre­
sentation theory. 

It is precisely this dual role which is exploited in 
computing Clebsch-Gordan coefficients, for Mackey 
has shown how the tensor product of two (or more) 
induced representations can be decomposed into a 
direct integral over double co sets of induced repre­
sentations. Such a decomposition does not, in general, 
lead to irreducible representations, but this problem 
is readily handled when computing Clebsch-Gordan 
coefficients. It is merely necessary to know the in­
ducing subgroups appearing in the double coset 
decomposition. If these subgroups are denoted by n, 
the Clebsch-Gordan coefficients, as shown in Ref. 1, 
can be written as 

([x]x; 'fj I [XI]X1 ; [X2]X2) 

= N(XXIX2) r dgcDg:(ge)D~~"t(gDtgc)D::xigD2gC)' 
JG/l1 

(2.14) 

where {gel is a set of coset representatives of G relative 
to n. gD

t 
and gDz are elements of G labeling the 

double cosets of the outer product group {(g, g'l}, g, 
g' E G, relative to the outer product inducing sub­
groups (HI, H 2) and the diagonal subgroup {(g, g)} = 
G. fl, as shown in Ref. 1, is 

while N(XXIX2) is a normalization factor depending 
only on the irreducible representation labels. The 
left indices Yl and Y2 are chosen so that DXt and 

tlIXl 

D!:xz transform properly to the left relative to the 
irreducible representations Xl and X2' The y appearing 
on Dgx is chosen to transform to the left like the tensor 
product of Xl and X2' Finally, 'Y) refers to a set of 
degeneracy parameters (having to do with multi­
plicity) arising from both the labels YI' Y2 and y, and 
the double coset labels gD

t 
and gDz ' 

3. CLEBSCH-GORDAN COEFFICIENTS 
OF SUO, 1) 

The classic analysis of a semisimple noncompact 
group was carried out by Bargmann13 on SU(I, 1). 
The tensor product decomposition of various classes 
of irreducible representations of SU(l, 1) has been 
carried out by Pukanszky.5 In this section, as an 
example of the formalism developed in Sec. 2, the 
Clebsch-Gordan coefficients arising from the tensor 
product decomposition of the principal series will 
be computed, for comparison with the results of 
Ref. 6. 

A general element g of SU(I, 1) can be written 

(;* :*), ICll
2 

-1131
2 

= 1. 

Its Iwasawa decomposition is g = sk with 

k E K = e~~ e~~)' 
S E S = ( cosh 6 + in i sinh 6 + n). (3.1) 

- i sinh () + n cosh () - in ' 

K is the maximal compact subgroup of SU(l, 1), 
while S, the solvable subgroup, has an Abelian part 
A, obtained by setting n = 0 in (3.1), and a nilpotent 
part N, obtained by setting e = 0; thus, a(6) = 
s (e, n = 0), n = s (e = 0, n). 

The principal series of SU(I, 1) is induced from 
the subgroup S = NA, with representations 

S E S - H«() = eipO
, p real. (3.2) 

The function space on which the induced repre­
sentation acts is generally chosen to contain functions 
over K, so that the Hilbert space Je( UP) has norm 

(3.3) 

To compute the action of an arbitrary element of 
SU(I, 1) on J(cp), it is necessary to see how group 
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elements of SU(l, 1) move coset labels [viz., (2.4)]: 

(;* !*) = (~~:~n~ ~ ~n n ~~:hh:! i:) 
X (ei

'" 0.) o e-'''' , 

ex = i"'(cosh () + in), 

f3 = e-i"'(i sinh () + n), 

cp(ex, f3): ei'" = (ex - if3*)/lex - if3*I, 

{)(ex, f3): e-6 = lex - if3*I. 

(3.4) 

n(ex, f3) is not needed since, as can be seen from (3.2), 
it gets sent into the identity. 

The multiplier m(s), according to (2.6), is 

det [adiS(s)]/det [adiSU(1, 1)(s)]. 

Since SU(1, 1) is semisimple, det [adiSU(l, 1)(s)] = 1. 
Using the definitions of adis(s) given in (2.7), we 
readily see that det [adis(s)] = e26. 

Hence, the principal series of representations of 
SU(l, 1), labeled by P, can be written as 

U(exo, f30)f( cp) = e6(rp.ao,fJo)eip6(<p,ao,/io>.!c cp') 

= [e-6(", ,ao ,/io)]-I-ipf( cp') 

= lexoei'" - if3*e-i"'r1-
ip 

f( cp') 

with cp' (cp, exo, Po) given by 

(3.5) 

i", 'f3* -i", 
ei",· = exoe - I 0 e. . (3.6) 

locoe'''' - iNe-''''1 

To obtain D functions for SU(l, 1), we choose 
e",(gc) [Eq. (2.9)] to be the D functions of K, namely 
eim"" so that e",(g) = eiP6eim",. Then 

D:'.m(exo, f3o) = r dgce-im''''[U(exo, f3o)im",] 
JSU(I,I)/H 

= (27T)-1 flT d cpe-im''''[U( exo, f3o)eim",], 

(3.7) 

where the action of (oco, f30) on cp is given in Eq. (3.6). 
The D functions [Eq. (3.7)] were first obtained by 
Bargmann.13 

However, as was pointed out in Sec. 2, in order to 
calculate the Clebsch-Gordan coefficients of SU(l, 1), 
it is necessary to compute mixed-basis D functions. 
For the group SU(1, I) it is sufficient to choose, as 
a complete set containing the Lie algebra element 
of A, just this element itself. Then the S-A double 
cosets must be computed. This is done in the Appen­
dix; the basis vector evCgC> is chosen to be eiP '6 and 
extended to 

ep,(g) = L(h)ep.(gc) 
= eip61(U)eip·6.(u). (3.8) 

Then the mixed-basis D functions are 

D~'m(g) = r dgcep.(gc)[U(g)emCgc)] 
JSU(1.1)/H 

= (27Tr1fl1 dcp I(sin 2cp)-II-1ip 

x Itan cpl-1ip' [U(g)eim",]. (3.9) 

As will be seen below, only D~'m(nk(cp» and 
D~'m(grllk(cp» are actually needed in computing 
Clebsch-Gordan coefficients. Thus, 

D~'m(gDnk(cp» = D~'m(gDn)eim"" (3.10) 

and letting z±(n, cp) = (1 + in)ei
'" ± ine-i

'" gives 

D~'m(n) = (27Trlfdcpep.(cp) Iz-l-1-ip (~)m, 
Iz_1 

D~'m(gDn) = (27TrlfdCPep'(cp) Iz+I-1
-

iP (...:±-)me!imlT. 
Iz+1 

(3.11) 

To compute the Clebsch-Gordan coefficients for 
the principal series of SU(l, 1), it is necessary to 
compute the double cosets arising in the SU(I, 1) 
outer product group. It is not difficult to see that this 
is equivalent to computing the S-S double co sets. 
The Appendix shows [Eq. (A6)] that the double 
coset S(~ ~i)S is dense in S U (1, 1) and, further, the 
inducing subgroup for the diagonal group is 

Ii = (i o.)-IS(i 0.) n S o -, 0 -, 

= A. (3.12) 

Hence the Clebsch-Gordan coefficients will be given 
by an integral over SU(l, 1)/A: 

([p]m I [Pl]m1; [P2]m2) 

i d ~ p' (~ 
= N(PPIP2) gcD-Pd'P2m gc) 

SU(I,l)!A 

X D!'..~lmJgc)D!'..~.m.(gDge) 

= N(PPIP2)f dn 27T-
1
fdcp 

IV 

X ([p] - PI + P21 U(n) I[p]m)* e-im", 

X ([pd - Pll U(n) I[pdml> 

x eim1'" ([P2] - P21 U(gDn) I [P2]m2) e
im.", 

= ~m ml+m.N(PPIP2) 

X f dn ([p] - Pl + P21 U(n) I[p]m)* 
N 

x ([pd - PII U(n) I[pdml > 
x ([P2] - P21 U(gnn) I [P2]m2); (3.13) 
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the matrix elements are given in Eq. (3.11). The factors 
- Pi + P2' - Pi, and - P2 appearing as the left 
indices on the three D functions are so chosen that 
the D functions will transform properly to the left. 
gD is the double coset representative (~ ~J 

4. D FUNCTIONS AND CLEBSCH-GORDAN 
COEFFICIENTS FOR SL(2, C) 

Both the D functions and Clebsch-Gordan coeffi­
cients of SL(2, C) have been previously derived,? 
using techniques different than those given in Sec. 2. 
For that reason the results for SL(2, C) will only be 
sketched. 

A general element of SL(2, C) can be written 
(~ ~), rx{J - {Jy = 1; the inducing subgroup for the 
principal series of unitary irreducible representations 
of SL(2, C) is 

H = NAM = {C~l ~)} (4.1) 

with representations 

h E H ~ Lmp = IAl ip (AiIAD m, P real, 

m an integer or half integer.14 (4.2) 

As far as applications to physics are concerned, the 
representations of SL(2, C) are of most interest in a 
spherical basis. The D functions and Clebsch-Gordan 
coefficients will also be computed in this basis. Hence 
we choose, as right coset representatives, elements 
of SL(2, C) over the sphere: 

gives 

(

COS ie, 
i<p sin to, 

_e-i<p sin to) E SL(2, C) 
cos te 

(
OC

y 
fJ) (1.-1 

ft) ( cos ie, 
15 = 0 A eitp sin to, 

- e-i<p sin le), 

cos to 
g = hgc> 

() = A cos te, y = Aeitp sin te, 
fJ = 1.-1 cos to - fte- itp sin ie, tan iO' = Iy/bl, 

cp = arg y - arg b, 11.12 = Irl2 + 1151 2
, 

arg A = arg b. (4.3) 
Then 

U(g)f(e, cp) = IA(e, cp, g)l ip- 2 

X [A(e, cp, g)/IAI)mfce', cp'), (4.4) 

where fee, cp) has norm 

IIfII2 = C47T)-lf dOlfCB, cp)12 < 00. (4.5) 

The coset labels (B, cp) are moved to (0', cp') under the 
action of g E SL(2, C), where (0', cp') are defined by 
ge(B, cp)g = hgc(8', ((!'), which can be solved using 

(4.3). The term 11.1-2 in Eq. (4.4) is the multiplier, 
making U(g) unitary in the Hilbert space of functions 
[Eq. (4.5»). 

Now we choose as functions f(O, cp) the D functions 
of SU(2), namely D~M(O, cp), J ~ Iml, and extend 
D~M(O, cp) to all elements g E SL(2, C) by writing 

eJ M(g) = IA(g)l ip [A(g)/lAI]m D~M(e(g), cp(g». (4.6) 

The usual D functions of SL(2, C) in a spherical 
basis are then given by 

D~fM'JM(g) 

= f dgeej' M'(ge)[U(g)eJ M(ge)] 
JSL(2,c)III 

= (47T)-lJ dOej'M,(e, cp)[U(g)eJM(O, cp)]. (4.7) 

However, it is more to the point to find the 
mixed-basis D functions in order to calculate the 
Clebsch-Gordan coefficients of SL(2, C). To obtain 
the mixed-basis D functions, it is necessary to know 
the H-AM double cosets, where AM consists of 
matrices of the form 

These double cosets are found in the Appendix 
[Eq. (A8)]. The relevant basis vector is em'p,(g), 
which is of the form 

em'p,(g) = IA1(g)l ip [A1(g)/IA1Ir IA2(g)l
ip

' [A2(g)/IA2Ilm
', 

(4.8) 

with the dependence of 1.1 and 1.2 on g given in Eq. 
(A9). 

Then the mixed-basis D function is 

D::!fp'JM(g) 

= ([mp]m'p'l U(g) l[mp]JM) 

= f dgee!'p,(ge)[U(g)eJM(gc)] 
JSL(2.c)IH 

= (47Tr1 f dcpd(cos e)e!'p,(e, cp)[U(g)D~M(e, cp)] 
JSPhere 

= (47T)-1 f dcpd(cos e) Ii sin BI-!ip Icot tel-iip' 
JSPherc 

X i<P/2(m'-m)[U(g)D;{.M(O, cp»). (4.9) 

Actually, as will be seen, only Dr;:,'!p'JM.(gDftO), 
where gD = L~ ~), ft = (~ i), and 0 a point on the 
unit sphere, need be computed. Thus, 

D;:::l'p' J M(gDft0 ) 

= L(47Tr1fd({!d(COs B)e~"p,(B, CP)U(gD)U(ft) 
M' 

X D~.7Ir(B, ({!)Dit'M(O). (4.10) 
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With the help of the H-H double co sets [Eq. 
(AlO)], the inducing subgroup occurring in the tensor 
product decomposition of two irreducible representa­
tions, [m1pd and [m2P2], is seen (using Ref. 1) to be 
fj = AM. Hence the Clebsch-Gordan coefficients 
are 

([mp]JM I [m1Pl]J1M I ; [m 2P2]J2M 2) 

= N(mp, m1PI' m2P2) 

X r dgcD~::':+-m2'-Pl+P'JM(gC> 
JSL(2,0)!AM 

X D~;':;'~pdlMl(gc)D~:!::-P2J2M2(gDgc) 

= N Ld,u(47T)-lJ dQD~::':+m2-Pl+p2J21;J(,uQ) 

X D"!!i,i/-pdlMJ,uQ)D'.!!::!:''-P2hM2(gD,uQ) 

= N L (47T)-lJdQD"'M(Q)D~l'Ml(Q) 
M'Ml'M2' 

X D:{J'lIIz(Q) Ld,uD,,!!::':+m2- Pl+P2JM'(,u) 

X D"!!~~~PlhMl,(,u)D'.!!::::''-P2hM2(gD,u) 

= NOM Ml+M2 

X L ([J]M'MI + M21 [JdM~M1; [J2]M;M2)2 
"'t' Ml' M2' 

X f d,uD"!!::':+m2-Pl+p,J1If'(,u) 
.v 
DmlPl ( )Dm2P2 () X -ml-PlhJtl',u -m2-P2hM' gD,u , (4,11) 

where (J, M~ + M~, Ml + M21 JIM~MI;J2M~M2)is 
an SU(2) Clebsch-Gordan coefficient15 and N is a 
normalization factor depending on how the basis 
states I [mp]JM) are normalized. 

5. CONCLUSION 

In the process of computing D functions and 
Clebsch-Gordan coefficients a number of assumptions 
were made restricting the generality of the results. It 
is interesting to see to what extent the assumptions 
can be relaxed. 

This paper has dealt only with semisimple groups. 
Presumably most of the nonsemisimple groups have 
unitary irreducible representations which can be 
written as induced representations, according to a 
theorem of Mackey.16 For example, the theorem has 
been applied to the nilpotent class of Lie groups17; 
but, for semisimple noncompact groups, it is well 
known that there exist classes of unitary irreducible 
representations, such as the discrete and exceptional 
series, which cannot be written as induced repre­
sentations. However, such classes of representations 

can be generated as induced representations by 
choosing appropriate subgroups. Thus the discrete 
series can be generated by representations of K, the 
maximal compact subgroup of G; such representa­
tions are realized on the G(K homogeneous spaces. 

For these classes of representations the method for 
computing D functions would not work. However, it 
may be possible to analytically continue the D 
functions obtained for the principal series to the 
discrete series. For SU(1, 1) it has been shown that 
such analytic continuation not only gives the D 
functions for the discrete series of SU(I, 1), but also 
the D functions of the compact group SU(2).18 Once 
the D functions for classes of representations like the 
discrete and exceptional series are known, it should 
be possible to calculate the Clebsch-Gordan coeffi­
cients. 

Other classes of representations of semisimple 
groups present another difficulty. Classes of repre­
sentations such as the supplementary series cannot 
be generated by induced representations acting on 
homogeneous spaces; rather, the appropriate func­
tion spaces are defined in terms of bilinear kernels.14 
For such classes of representations, the Clebsch­
Gordan coefficients could not be obtained using the 
techniques discussed in this paper. 

Finally, the restriction to I-dimensional repre­
sentations of the inducing subgroup was made. It 
should be clear that such a restriction is for conven­
ience only, and easily lifted. The Poincare group 
probably provides the best example of a group whose 
inducing representations are not 1 dimensional-when­
ever the spin for the positive mass representations 
is nonzero. 

With these restrictions in mind, how are the 
techniques for computing Clebsch-Gordan coefficients 
presented in Sec. 2 to be compared with the standard 
method for computing Clebsch-Gordan coefficients, 
as given, for example, in Ref. 7? The usual formula 
for Clebsch-Gordan coefficients can be written 

where the D functions under the integral are generally 
chosen to be the ordinary (nonmixed basis) D func­
tions as given, for example, in Eq. (2.10). The impor­
tant thing to notice about the above formula is that the 
normalization factor N now depends not only on 
the irreducible representation labels, but also on the 
primed indices. If these primed indices are set equal 
to their respective unprimed ones, it is possible to 
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show that the above equation can be written 

I([x]x I [xdx1 ; [X2]X2)1 2 = LdgD~:(g)D~~!l)1(g)D~:!l)2(g), 
so that, after a phase convention has been chosen, 
the Clebsch-Gordan coefficient itself is given by a 
square root of the above integral. 

In contrast, the normalization factor appearing in 
Eq. (2.14) depends only on the irreducible representa­
tion labels, and thus, after a phase convention has been 
chosen, the Clebsch-Gordan coefficients are given by 
an integral over G / n. The formulas are then simpler 
than those given by the standard formula for Clebsch­
Gordan coefficients, but, on the other hand, less 
general in that Eq. (2.14) can be written only for 
representations which can be written as induced 
representations. 

Finally, if in the tensor product reduction a repre­
sentation appears more than once (multiplicity 
greater than one), the standard Clebsch-Gordan 
formula provides no means for distinguishing between 
these representations, and hence an ambiguity 
appears. In contrast, Eq. (2.14) contains a multi­
plicity parameter 1J which generally will handle the 
multiplicity problem. In fact, as shown in Refs. I, it 
is possible to compute the Clebsch-Gordan coeffi­
cients arising from the n-fold tensor product reduction, 
where the multiplicity generally is greater than one. 
For example, in the Poincare group, a spin multi­
plicity already appears in coupling two positive mass 
nonzero spin representations together. When more 
than two representations are coupled together, 
enormous mass multiplicity can also occur. All such 
multiplicity is readily handled in Eq. (2.14). 
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APPENDIX 

Various double coset decompositions of SU(I, 1) 
and SL(2, C) are required to compute the mixed­
hasis D functions and Clebsch-Gordan coefficients. 
This appendix will show how such decompositions 
are obtained. 

Consider first SU(l, 1). What is required are 
the S-A double cosets, in order to compute the 
mixed-basis D functions [Eq. (3.8)]. It seems easiest 
to construct the homogeneous space SU(l, I)/A and 
then compute the action of S on points of SU(l, I)/A. 

SU(I, I)/A can be realized as the following mani­
fold. Consider the transformations 

H(x') = gH(x)gt, g E SU(I, I), 

and 

H(x) = ( z. x - iY) ; 
x + IY z 

then it is readily seen that g carries a point H(x) 
into H(x'). Further, the point (~ ~) can be chosen 
as a stability point since it is left invariant by A 
[recall that A consists of matrices of the form 
( cosh 9 i sinh 9)] The . f 0 th'n _; sinh 9 cosh 9' space IS, 0 curse, no 1 g 
other than the hyperboloid Z2 - (x2 + y 2) = -1. 

An arbitrary element of S moves a fixed but 
arbitrary point H(xo) of SU(I, I)/A into H(x), where 

x = Xo + (zo + Yo)2ne-9
, 

Y = yoe26 
- xo2ne9 

- (zo + Yo)(2n 2 + sinh 20). (AI) 

Using (AI), we can show that all points H(x), x 2 + 
y2 ;;::: 1, can be reached from three points (which 
will fix the double cosets), one of which is the stability 
point. It is the quantity (zo + Yo) which distinguishes 
the various regions, chosen in the following way: 

Region I, Zo + Yo = 0, corresponds to the point 

( ° ±I); 
±l ° 

Region II, Zo + Yo > 0, generates H(x) such that 

y > 0, x arbitrary; (A2) 

Region III, Zo + Yo < 0, generates H(x) such that 

y < 0, x arbitrary. 

Region I corresponds to the identity double coset. 
A convenient choice of points generating Regions II 
and III is Zo = Xo = 0, Yo = 1 (Region II), Yo = -I 
(Region III). An element of SU(l, 1) which carries 
the stability point to the generating points for Regions 
II and III [that is, ± C~i (ii)] can be chosen to be 

(

ei'l' 0.) with cp = ±!1T. o e-''I' 

Thus, we have three double cosets 

with cp = 0 corresponding to Region I, cp = !1T 
corresponding to Region II, and cp = -!1T corre­
sponding to Region III. 
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In order to be able to write an arbitrary element of 
SU(l, 1) in terms of the S-A double coset decomposi­
tion 

(A3) 

with cp taking on the three values corresponding to 
the three double cosets, it is necessary to make sure 
that each element of SU(l, 1) is uniquely determined 
by ()l> n, ()2, and cpo From (AI) it is readily shown 
that, if cosh 2() > 2n2 , uniqueness holds. Which of 
the three double co sets are to be used in (A2) depends 
on the value of IX and p; in particular, 

Zo + Yo = 2 Re IXP* + 1m (1X2* + p2
*) 

= -2(IXR - Pr)(lXr - Pn), (A4) 

which, according to (A2), determines the region of 
the hyperboloid and hence the double coset. 

When (A3) is written out, for the two nontrivial 
double co sets one obtains 

292 :::r:: IX1 - Pn 
e =-. 

IXn - Pr ' 
(AS) 

where the upper sign refers to Region II (zo + Yo > 0), 
the lower sign to Region III (zo + Yo < 0). From 
Eqs. (A4) and (AS) it is thus possible to compute 
([pJp'l [pJm) [Eq. (3.10)]. 

To compute the Clebsch-Gordan coefficients of 
SU(l, 1), it is also necessary to know the S-S double 
coset decomposition. It has been shownI9 that there 
are a finite number of such double cosets, the number 
being equal to the order of the Weyl group, defined 
as the quotient of the normalizer of K divided by the 
centralizer of K.I2 Further, one of these double co sets 
is dense in G. For S U(1, 1) the order of the Weyl 
group is 2, so that besides the identity double coset, 
which is obviously never dense in G, the Weyl group 
yields the element (~ .!!J as a suitable choice of double 
coset representative; then 

S(i O.)s 
o -I 

(A6) 

is dense in SU(l, 1). 
Since Gel'fand20 has listed many of the homogeneous 

spaces of SL(2, C), the relevant double coset decom­
positions are easier to work out than for those of 
SU(l, 1). In particular, it is possible to realize the 
homogeneous space SL(2, C)/H, where H is the 
inducing subgroup for the principal series [Eg. (4.I)J, 
as the set of complex numbers k (including (0) with 
the group action given by 

k' = (lXk + y)/(pk + 6). (A7) 

With k = 0 chosen as the stability point, it is clear 
that the stability group is H. 

Then the H-AM double coset decomposition can 
be given by the following representatives: 

Region I: 

when acted on by AM the point k = I is sent 

into A,-2, which covers all values of the mani­

fold except k = 0 and k = 00 

Region II: 

the identity element (Region III, with k = 00 

will be ignored). (AB) 

Since the point k = 1 can be reached from k = 0 by 
the element (~ V, Hq VAM is dense in SL(2, C). 
Finally for g E SL(2, C), hI E H, h2 E AM, and 
gD = (~ V (g rt H, 6 #: 0), 

g = hI(g)gD(g)h2(g), 

(lXy ~) = ct ~:) G ~) C~l ~2)' 
(A9) 

The H-H double cosets, required for the Clebsch­
Gordan coefficients, can be obtained either from the 
Weyl group (again of order 2) or from the SL(2, C)/H 
homogeneous space. The two double coset representa­
tives can be chosen to be the identity element and 
C~ ~), so that 

H( 0 I)H 
-1 0 

(AIO) 

is dense in SL(2, C). 
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It is shown that every p matrix has a dual matrix which describes the p-hole properties of the system. A 
general procedure is given for using particle-hole equivalence to obtain new N-representability conditions. 
In particular, necessary and sufficient conditions are given for both pure and ensemble N-representability 
of p matrices whose I-rank is N + p. 

I. INTRODUCTION 

Recently, there has been considerable interest in 
the so-called N-representability problem.1- 3 Many 
necessary conditions are known, but sufficient 
conditions have been given in only a few very special 
cases. In this paper, particle-hole equivalence is used 
to obtain a general procedure for deriving new N­
representability conditions from known conditions. 
The procedure is applicable to both necessary con­
ditions and to sufficient conditions. In particular, one 
can obtain necessary and sufficient conditions for both 
pure and ensemble N-representability of p matrices 
whose I-rank is N + p. 

It is well known that by considering I-particle 
states to be occupied by either particles or holes, one 
can obtain two completely equivalent descriptions of a 
quantum mechanical system. However, this equiv­
alence has never been used explicitly to study the 
N-representability problem. Even the interpretation 
of Garrod's Q-matrix condition4 as a dual hole 
condition does not seem to have been given previously. 
Because the pth-order density matrix is explicitly 
constructed to describe p-particle properties, the 
particle-hole equivalence is obscured when one uses 
reduced density matrices to describe the properties of 
a system. To describe p-hole properties, one must 
consider a different, but related, kernel called the 

p-hole matrix.5 The second quantization formalism 
provides an elegant language for discussing particle­
hole equivalence and for defining the dual p-particle 
and p-hole matrices. Nevertheless, we prefer to begin 
with the more pedestrian Slater determinant approach; 
and then make the simple connection with the second 
quantization approach. 

A review of relevant terminology is given below. 
An N-particle ensemble density matrix p is defined as 

where 

p = L Q(rn'f m(1 ... N)'f!(1' ... N'), (1) 
rn 

o ~ Q(m ~ 1, 

I Q(m = 1, 
m 

(2a) 

(2b) 

and 'Y m is an anti symmetric N-particle function. p 
describes a pure state when the sum in (1) consists of a 
single term, i.e., 

p = 'Y'Y*. (3) 

The pth-order reduced density matrix of p is defined? as 

DP(x; x') = J p(x, y; x', y) dy, (4) 

where x stands for all space and spin coordinates of 
particles 1··· P and y for those of particles p + 1 
... N. p (or'Y if p is pure) is called the pre-image of 
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I. INTRODUCTION 

Recently, there has been considerable interest in 
the so-called N-representability problem.1- 3 Many 
necessary conditions are known, but sufficient 
conditions have been given in only a few very special 
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to obtain a general procedure for deriving new N­
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The procedure is applicable to both necessary con­
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can obtain necessary and sufficient conditions for both 
pure and ensemble N-representability of p matrices 
whose I-rank is N + p. 

It is well known that by considering I-particle 
states to be occupied by either particles or holes, one 
can obtain two completely equivalent descriptions of a 
quantum mechanical system. However, this equiv­
alence has never been used explicitly to study the 
N-representability problem. Even the interpretation 
of Garrod's Q-matrix condition4 as a dual hole 
condition does not seem to have been given previously. 
Because the pth-order density matrix is explicitly 
constructed to describe p-particle properties, the 
particle-hole equivalence is obscured when one uses 
reduced density matrices to describe the properties of 
a system. To describe p-hole properties, one must 
consider a different, but related, kernel called the 

p-hole matrix.5 The second quantization formalism 
provides an elegant language for discussing particle­
hole equivalence and for defining the dual p-particle 
and p-hole matrices. Nevertheless, we prefer to begin 
with the more pedestrian Slater determinant approach; 
and then make the simple connection with the second 
quantization approach. 

A review of relevant terminology is given below. 
An N-particle ensemble density matrix p is defined as 

where 

p = L Q(rn'f m(1 ... N)'f!(1' ... N'), (1) 
rn 

o ~ Q(m ~ 1, 

I Q(m = 1, 
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(2a) 

(2b) 

and 'Y m is an anti symmetric N-particle function. p 
describes a pure state when the sum in (1) consists of a 
single term, i.e., 

p = 'Y'Y*. (3) 

The pth-order reduced density matrix of p is defined? as 

DP(x; x') = J p(x, y; x', y) dy, (4) 

where x stands for all space and spin coordinates of 
particles 1··· P and y for those of particles p + 1 
... N. p (or'Y if p is pure) is called the pre-image of 
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DP. A P matrix, also denoted DP(x; x'), is a function 
of 2p particles which is Hermitian, nonnegative, 
anti symmetric in each set of indices, and satisfies 
Tr DP = 1. A P matrix is said to be pure or ensemble 
N-representable if it can be derived from an anti­
symmetric N-particle pure state or ensemble according 
to (4). The I-rank R of a p matrix is the number of 
nonzero eigenvalues of its I-matrix. The eigenfunctions 
of the I-matrix are called natural spin orbitals (NSO). 

The hole matrix is discussed in Sec. II; p matrices 
with R = N + P in Sec. III; and general N-repre­
sentability conditions in Sec. IV. 

II. THE HOLE MATRIX 

Before defining the hole matrix, it will be useful to 
derive a new expression for the expansion coefficients 
of DP. The hole matrix is then discussed in the second 
part of this section. Finally, the hole matrix is con­
sidered in the second quantization formalism. 

A Useful Formula 

One can expand DP in a set Uk} of R orthonormal 
I-particle states as 

X [ki ... kp][li ... /p)'*, (5) 

where [k1 '" k p ] is the Slater determinantS formed 
from fk, ... lieD' The expansion of 'Y in I-particle 
states can be written as 

'Y = I bk""kAkl ' .. kN ], (6) 
k, <kz'" <kN 

but it will be more useful to write it in the form 

'Y = I Ck, ... kM<I\"··kM' (7) 
I" <kz .. · <leM 

where R = M + Nand IPk''''kM is the Slater 
determinantS which does not contain the states 
fk, ... fk M' It will be convenient to use, instead of 
Ck""kM' the anti symmetric tensor Xk''''kM defined by 

_ (_)k,+k2+"'kM * 
Xk""kM - ck""leM 

when kl < k2 < ... < k]',I. (8) 

To further simplify the notation, capital letters wiII be 
used to indicate ordered sets of indices. In particular: 

1/1 = i1 ... i/1' 

JT=h"'j" 
K = k 1 '" kv' 
L = 11 ••• Iv, 

i1 < i2 < ... < i/1' 

h <j2 < ... <jT' 

kl < k2 < ... < kv' 

II < 12 < ... < lv' 

M" = ml ... rna' m1 < m2 < ... < ma, 

N/1_" = n 1 ••• n/1_" , n1 < n 2 < ... < n/1-a' 

One writes I c J if every i in I is equal to some j in J, 
I n J ¥- 0 if there is at least one i in I and one j in J 
with i = j, and 1 n J = 0 if i ¥- j for all i in 1 and 
j in J. Finally, define DO = 1. 

First, let DP be the pth-order reduced density matrix 
whose pre-image is given by (7), and consider only 
those elements of DP which have the first 7" indices 
equal (and all others unequal). Then 

djrlCJrL = d;""i,k""kv.;'·"i,l,···/v 

= (-y I XI/1K X f/1L 
[/1 

I/1(\JT~O 

= (-r(dk.L - I S[m] 
mCJT 

(9) 

(10) 

+ I S[M2] - ••• + ... (- rS[JT ]) , 

M2 C J T 

where 7" + v = p, f.l + v = M = R - N, and 

S[M,,] = ~ XM"NIl_"KX~"N/1_"L' 
l\/l-tr 

(11) 

(12) 

To derive (11) from (10), one must verify that, when 
III n JT ¥- 0, the term XI KXj L has been subtracted 

11 /l 

exactly once. If 1/1 has exactly K elements in JT , the 
term x[ Kxj L occurs in the sum over S[M"J exactly 

11 fl. 

(~) times. Since9 

± (_),,(K) = -1, 
,,=1 (J' 

each term has indeed been counted exactly once. 
Equation (11) can be inverted to obtain an expression 
for S[J,,), i.e., 

(-tS[J"J = (-)'dtK.JaT. - d~CL + I S[mJ 
mCJ" 

-···+ .. ·(-t I S[Ma_I), (13) 
M"_,CJ,, 

where q = (J' + v. Now one can use (13) to succes­
sively eliminate S[M"J terms from (11). One substitutes 
for all S[MT_ 1 ) terms, then for S[MT_ 2), etc. Each 
substitution leaves only lower-order S[M,,) terms. 
Finally, d'5- K J L will be written as a linear combina-

T • r 

tion of S[JT ) and elements of Dq with v S q < p. In 
fact, 

+ ... - ... (-y+WK.L + (- y+vS[J
T
1. 

(14) 
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If d~l'''m",nJ'''n" has any arbitrary I-l indices equal, 
one can derive an expression differing from (14) in 
only + or - signs. Simply define 

where 

:1'1 and :1'2 being permutations, and where €j is the 
parity of:1'j. Then (14) is correct if dJaK.IaL is replaced 

by d!aK.laL . 

Properties of the Hole Matrix 

The general hole matrix obtained from an arbitrary 
p matrix is now considered. 

Definition 1: The pth-order hole matrix r;P corre­
sponding to a p matrix DP is defined by 

x [mI' .. mp][nl ... np]'*, (16) 

when N + P ~ R < 00 and 

(17) 

where El, E2, JT , K, and L are related to m1 ••• mp 

and n1 ... np as in (15). The matrix of expansion 

coefficients, HP = {h!:n ... m".nl.""'}' will also be 
called the hole matrix. Although r;P is well defined 
only when N + P ~ R < 00, HP is welL defined for 
ailR. 

For the important cases p = I and p = 2, (18) 
becomes 

(19) 

ht.kl = dt.kl - Oikd~l + Ojkd}l - Ojld!k 

+ Oad}k + 0ikOjl' (20) 

It is clear from (20) that r;2 is identical (except for 
normalization) to the Q matrix discussed by Garrod.4 •1o 

It is not immediately obvious from its definition 
that rJP describes the hole properties of a system. The 
next few theorems show that r;P has properties which 
are analogous to those of DP. Theorem 4 then shows 
why r;P really describes hole properties. 

Theorem 1: The hole matrix r;P has the following 
properties: 

(a) r;P is Hermitian; 

(b) Tr r;P = I orTrHP = (R;N); (21) 

(c) r;P is anti symmetric in each set of indices; 

(d) Jr;p(1 ... p -l,p; 1'··· p -l',p)dp 

= r;P-1. (22) 

Proof: Proofs of (a) and (c) are trivial. To prove (b), 
note that 

1 ( 1 do ) = (N) (R - q) 
J. laC J" / • .I. q P - q . 

Some simple manipulations with Gould's formulas9 

give 

Ic_)a(N)(R - q) = (R - N), 
Q=O q p - q P 

which proves (b). Part (d) can be proved similarly. 
An easier way is to use Theorem 3 to first prove (d) 
when DP has a pure pre-image and then extend this 
to arbitrary p matrices. 

Theorem 2: Every hole matrix corresponds to a 
unique p matrix, i.e., if Df =fi D;,then r;f =fi rJ~. 

Proof: Using (22), one can determine all lower­
order r;a, q < p, from r;p. Therefore, one can deter­
mine all DQ with q < P so that (18) can be inverted to 
give DP from r;p. 

Theorem 3: If DP has a pure state pre-image, then 
every element of its hole matrix HP satisfies 

where 

h:1·"kp,11···I. = E1E2S[JTJ = 1 XKIX~I' (23) 

K=k1 ···kp , 

L = /} .. '/p, 

I 

I = i1 ... i M-p, M = R - N, 

JT = K n L. 

In particular, if M = p, 

Note that Eq. (23) is completely analogous to the 
equation 

where biC'
iN 

is defined by (6) and antisymmetry. 
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The Second Quantization Approach 

One can obtain the elements of any reduced-density 
matrix DP as expectation values of second quantiza­
tion operators. Then, in the state loc), 

d:l""k .•. lr" l " = (ocl aip ••• atalt ••• az" loc), (26) 

where at and aj are the usual fermion creation and 
annihilation operators. Since _ Dl1 describes all p­
particle properties of the state loc), one expects the 
p-hole properties to be given by something of the form 

(ocl bi" ... btbh •.• blp loc), (27) 

where bJ creates a hole in the jth state and bi annihi­
lates a hole. The next theorem states that Hl1 does 
indeed have the form (27). 

Theorem 4: If DP has a pure state pre-image loc), 
then every element of its hole matrix Hl1 satisfies 

h:1 ... k".lt'''lp = (ocl ak" ... akla11 ... at loc). (28) 

Proof: This is really just Theorem 3 in a new 
notation. One can also obtain a more direct proof by 
using the anticommutation relation 

a!a j + ajal = bij 

to change (26) to (28); this is simply equivalent to 
deriving (14) in a different notation. Since aj can be 
considered as either annihilating a particle or creating 
a hole, one can identify b 1 with aj. Thus (28) shows 
that rt (or Hl1) has exactly the form required to 
represent hole properties. 

III. N-REPRESENTABILITY: R S N + p 

In this section N-representability conditions are 
given for p matrices with R = N + p. 

For R < N + P one can always formally add 
unoccupied states (completely filled holes) to the set 
of I-particle states. Then 

where 

QP = (HP 0) 
o A' 

Ql1 has R = N + p, 

Hl1 has R < N + p, 
A is a nonnegative matrix. 

(29) 

Theorems 5-8 can then be applied to Qp. In fact, one 
can show that a necessary condition for ensemble 
N-representability when R < N + p is that Hl1 = 0, 
so that Theorems 5-8 must actually be valid for A. 

Pure States 

The solution to the pure N-representability problem 
can be stated quite simply in terms of the hole matrix. 

Theorem 5: A p matrix Dl1 with R = N + P is pure 
N-representable if and only if its hole matrix is 
'd '( P)2 P 1 empotent, I.e., 17 = 17 • 

Proof: Necessity follows directly from (24). For 
sufficiency, note that the matrix HP = {h1cCk",h"'I) 

satisfies 

Tr Hl1 = (R ~ N) = ~) = 1. (30) 

Then idempotency implies that HP can be written as 

Hl1 = wwt , (31) 

where w is a normalized column vector 

w = {Wk1 ,,,1c,, (kl < k2 ... < kiln. 

Now let'Y be given by (7) with 
_ (_)k 1+k2+"'+k" * 

Ckr" kp - W1c1• .. k ,,· (32) 

Then r;11 is the p-hole matrix corresponding to 'Y, and 
Theorem 2 implies that 'Y is the pre-image of Dl1. 

Recently, Y oseloff and Kuhnll have given a neces­
sary condition for pure N-representability when 
R = N + P in the form of an inequality on the 
diagonal elements of DP. Theorem 5 implies that this 
condition needs not be checked explicitly when testing 
for N-representability; when 17 11 is idempotent, 
Yoseloff's inequality is automatically satisfied. In 
particular, when p = 2, Yoseloff's inequality was 
previously shown' to follow directly from the fact 
that, when r;2 is idempotent, it will also be nonnegative. 

It is interesting to note that the case p = 2, R = 
N + 2 has been solved previously. The solution 
depends on the fact that the eigenvalues of the 1-
matrix must satisfy a paired degeneracy condition 
which is reflected in the natural expansion of the 
pre-image.12 In the absence of extra degeneracy, 
degenerate NSO's will always be paired in the pre­
image.13 Then the solution of the pure N-represent­
ability problem for D2 can be obtained as a special 
case of a known result for a class of functions with 
special pairing properties. IUS 

Ensembles 

The connection between the theory of convex sets 
and the N-representability problem is well knownl and 
has been discussed in considerable detail by Kummer.16 
It provides a means of relating the pure and ensemble 
N-representability problems. The space of ensemble 
N-representable p matrices $~ is convex, and the 
extreme points of $~ are contained in the set of pure 
N-representable p matrices. There are some topo­
logical difficulties involved in applying the Krein­
Milman theorem to $~, but for all practical purposes 
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"PRr is the convex hull of its extreme points. Therefore, 
any ensemble N-representable p matrix DP can be 
written as 

DP - Ioc DP - m m, (33) 
m 

where 

o ~ OC m ~ 1, (34a) 

~ OC m = 1, (34b) 
m 

and D:;' is extreme and therefore pure N-represent­
able. 

With this result it is a simple matter to use Theorem 
5 to solve the ensemble N-representability problem 
for R = N + p. 

Theorem 6: An ensemble N-representable p matrix 
with R = N + p is an extreme point of "PRr if and 
only if it has a pure state pre-image. 

Proof: DP is ensemble N-representable if and only 
if it can be written as 

where OC m and D:;' are as in (33). The corresponding 
hole matrix is 

(35) 

where 1]:;' is the unique hole matrix corresponding to 
D:;'. By assumption, 

(1]:;')2 = 17:;' . 

Thus, if DP has R = N + p, Theorem 5 implies that 
DP is pure N-representable: 

<=? (rJ'P)2 = 1]P 

<=? 1]r = 1]~ = ... = 1]~1 

<=? Dr = D~ = ... = D~ 

<=? D'P is extreme. 

Theorem 7: A p matrix with R = N + p is ensemble 
N-representable if and only if its hole matrix 1]'P is 
nonnegative. 

Proof: Theorem 6 implies that a p matrix DP with 
R = N + p is ensemble N-representable if and only 
if it can be written as 

m 

where OCm and D~ are as in (33) and (34). D~ is pure 
N-representable, and one can assume, without loss 
of generality, that the pre-images of D~ are ortho­
normal. Then Theorem 5 implies that H~ = wmw;;' 
and w;;' W n = b mn. Since the correspondence between 

H:;' and D~ is unique, DP is ensemble N-representable 
if and only if 

(36) 
m 

(37) 
m 

Since the vectors Wm were assumed to be orthonormal, 
(37) is just the eigenvector expansion of HP. The non­
zero eigenvalues OCm are> 0 by definition. Thus, 1]P 

is nonnegative if and only if DP is ensemble N­
representable. 

Davidson17 has given a procedure for obtaining 
inequalities on the elements of the 2-matrix which are 
necessary for ensemble N-representability and which 
are independent of Garrod's condition4 that the Q 
matrix (20) is nonnegative. However, Theorem 7 
implies that, when R ~ N + p, these inequalities are 
reduced to a finite set which can be derived from the 
Q matrix condition. 

Theorem 8: The pre-image p of any p matrix with 
R = N + p is unique, and (HP)* is the matrix of 
expansion coefficients of p in a Slater determinant 
basis. 

Proof: The proof of Theorem 7 implies that the 
pre-image of DP is 

p = I OC m 0/ m'¥ ! , 
m 

where '¥ m is given by (7) with expansion coefficients 
Ck1 ... k • determined by Wm according to (32). Clearly, 
p is unique if OCm is nondegenerate. But any linear 
transformation on wm induces the same linear trans­
formation on {o/ m} so that p is always unique. Expand­
ing '¥ m as in (7), one gets 

where 

and (f>kl".k. is the Slater determinant defined pre­
viously.8 

Theorem 8 implies that, in order to test DP for N­
representability, one must generate its pre-image. The 
unfortunate connection between N-representability 
tests and finding the pre-image occurs in all known sets 
of sufficient conditions for N-representability. It has 
been discussed in general elsewhere.2.18.19 

When R = N + p, HP describes an ensemble p-hole 
state. Theorems 5-8 are simply the hole versions of the 
well-known results on p-representability of p matrices. 



                                                                                                                                    

N-REPRESENTABILITY PROBLEM: PARTICLE-HOLE EQUIVALENCE 3223 

For purposes of comparison, these results are: 

Theorem 5: A p matrix is pure p-representable if 
and only if it is idempotent. 

Theorem 6: The extreme points of ~~ are the pure 
states. 

Theorem 7: A p matrix is ensemble p-representable 
if and only if it is nonnegative. 

Theorem 8: The p-particle pre-image of a p matrix 
is itself. 

IV. N-REPRESENTABILITY: GENERAL HOLE 
CONDITIONS 

The Basic Theorem 

The results of the previous section are just a special 
case of a more general result which we discuss now. 

Definition 2: A hole matrix 'YJP is said to be pure 
M-representable if there is an antisymmetric tensor 
X

k1 
.. '

kM 
satisfying (23); it is ensemble M-representable 

if there are J such tensors satisfying 

(39) 

where I, K, and L are as in (23) and {lXj } is as in (2). 
Now, if 'YJP is M-representable, each tensor xt."kM 

defines an anti symmetric (R - M)-particle function 
'!'; according to (7). Then consider the (R - M)­
particle ensemble density matrix 

P = L 1X;'!'j'!': 
j 

and the unique p matrix DP corresponding to 'YJ P. Then 
it is clear from Theorem 2 that p must be the pre­
image of DP. Conversely, whenever DP is ensemble 
N-representable, tensors X~CkM satisfying (39) will 
exist. Thus one can conclude that N-representability 
of DP and 1]P are equivalent problems. 

Theorem 9: A p matrix DP with R = M + N is 
pure (ensemble) N-representable if and only if its 
hole matrix 'YJP is pure (ensemble) M-representable. 
In addition, for every condition on DP, there is a 
corresponding condition on 'YJP and vice versa; 
corresponding conditions are obtained by making the 
exchanges 

(a) N~M, R =M+ N, (40) 

(b) d~'.'kp.ll···lp ~ h~l···kp.ll···lp' (41) 

(c) bk1 ···kN ~-+ X k1 ···kM • (42) 

Examples: Necessary Conditions 

Using Theorem 9, one can extend the nonnegativity 
of reduced density matrices to hole matrices. 

Theorem 10: A necessary condition for ensemble 
N-representability of a p matrix DP is that the corre­
sponding hole matrix fJP is nonnegative. When p = 1, 
this is equivalent to the well-known fact that the 
eigenvalues of Dl must be bounded above by liN. 
When p = 2, it is simply Garrod's Q matrix condition.4 

One can try to generate new necessary conditions 
by applying Theorem 9 to all known conditions.3 We 
mention, as examples, only two such results here. In 
the Slater determinant basis, the diagonal elements 
h~l .. 'kv,kl"'kv are bounded above by 1. The rank of 
'YJP must be greater than (R;N). 

The application of Theorem 9 to known conditions 
does not always generate new conditions. For example, 
if one makes the substitutions dii ~ hii and dij.i; ~ 
h7; i; in one of the Davidson inequalities,17 one merely 
generates another inequality in the same set. 

If G is the hole analog of the G matrix,6 one finds 
that 

(43) 

Therefore, 

where P is a matrix which permutes the rows of G. 
Thus, although G ¥= G, they are unitarily equivalent, 
and one cannot obtain any new conditions from G. 

Bounds on Eigenvalues of 17 2 

We now try to use Theorem 9 to obtain an upper 
bound on the eigenvalues of 'YJ2. Let J. and w be the 
maximum eigenvalues of D2 and 'YJ2, respectively. 
Recall that 

(44) 

and that one can obtain D2 with J. arbitrarily close to 
the upper bound by considering extreme antisymme­
trized general power (EAGP) functions.l.2°-22 An 
EAGP function has an R-fold degenerate I-matrix, 
and the largest eigenvalue of its 2-matrix is 

J. = (N - l)-l[(R - N + 2)/R]. (45) 

Now Theorem 9 implies that the eigenvalues of any 
2-hole matrix are bounded by 

Os w S (R - N - I)-I. (46) 

The interesting question is whether or not (46) is the 
best possible bound on w. It is not difficult to see that 
pre-image of nP will be the hole analog of an EAGP 
function if and only if the pre-image of DP is. It is 
then easy to show that the largest eigenvalue of an 
EAGP 'YJ2 is 

w = (R - N - 1)-l[(N + 2)/R]. (47) 
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Clearly (47) cannot be made arbitrarily close to the 
upper bound (R - N - 1)-1. This appears to 
contradict the duality principle which we have stated. 
However, the contradiction is easily resolved. To 
make A large, one must take R » M. But, if N is fixed, 
one cannot make R » M = R - N. In order that w 
reach its bound, one must fix M and increase N with R. 
Thus, for fixed N, (46) may not be the best possible 
bound. Indeed, one can obtain a better bound on w 
as follows. First, define 

A (R - N) w = 2 w, 

Then one can show from (20) that 

cO~A+l. 

This clearly implies that 

(48) 

w ~ (R - N - l)-I[(N + 2)/(R - N)]. (49) 

By taking R» N for an EAGP function, one can 
make (47) arbitrarily close to (49). Thus, (49) gives 
the best possible bound on w. 

Theorem 11: The eigenvalues of 'Y)P are bounded 
above by (R - N - l)-I[(N + 2)/(R-N)]. 

It is interesting to note that the analog of (48), 

A ~ cO + 1, (50) 

also holds. Combining (48) and (50), one gets 

A-I ~ cO ~ A + 1, (51) 

cO - 1 ~ A ~ cO + 1. (52) 

Sufficient Conditions 

One can also use Theorem 9 to obtain new sufficient 
conditions for N-representability. As mentioned 
previously, the results of Sec. III can be easily derived 
in this way. Unfortunately, there are not many known 
sufficient conditions to which one can apply Theo­
rem 9. 

When p = 2, sufficient conditions for pure N­
representability are known in the following cases: 

(a) N = 3 (see Ref. 23); 
(b) N odd, with a very restricted class of pre­

images with triple excitations and pairing properties2,l5; 
(c) N odd, with (N + 1)/2 pairs of degenerate 

NSO'S2.l5; 
(d) Single excitation pre-images24 ; 

(e) the gl matrix defined from the N-completeness 
conditions bas a sufficiently small degeneracy.2.19 

Case (a) can be used to obtain sufficient conditions 
when R = N + 3. Cases (b) and (d) involve very 
specialized pre-images which do not have interesting 
hole analogs. Case (c) is itself the hole analog of a 
special class of functions with N = 3. The N-complete­
ness conditions can certainly be extended to 'Y)2, but 
this is not a particularly useful procedure. 

* Much of this work was done at the Theoretical Chemistry 
Institute of the University of Wisconsin, where the author held an 
NSF predoctoral fellowship. 
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The twofold multiplicity problem associated with the Wigner supermultiplet reduction SU(4) => 
SU~2) ~ SU(2) .is re~olved by spin-iso.spin projection techniques analogous to the angular momentum 
I?roJ.ectlon techmque Introduced ?y Elho~t to :esolve th~ SU(3) => R(3) multiplicity problem. The pro­
Jectl~n . quantum ~umbers, wh~ch furnIsh either ~n. lI;lteger or half-integer characterization of the 
multIplICIty, are assIgned accordIng to an (ST)-multlphclty formula derived from a consideration of the 
symmetry properties of spin-isospin degeneracy diagrams. An expression is obtained for the coefficients 
which relate the SU(4) => SU(2) ® SU(2) projected basis states to states labeled according to the 
natura.l U(4) => U(3) =>. U(2) =>. U(1) chain. Gene~al e~pressions for SU(4) => SU(2) ® SU(2) coupling 
coefficIents and tensonal matnx elements are gIven In terms of the corresponding U(4) => U(3) => 
U(2) => U(I) quantities. 

1. INTRODUCTION 

In 1937 Wignerl pioneered work that established 
SU(4) as a group of major importance in nuclear 
structure studies. Its basis, the charge independence 
of nuclear forces, followed from an observed approxi­
mate fourfold degeneracy of nuclear energy levels. The 
result was the introduction of a nucleon distinguishing 
isospin quantum number which was combined with 
that of ordinary spin in the development of a spin­
isospin supermultiplet theory. Group-theoretically, 
it corresponds to a state labeling scheme based upon 
the spin-isospin reduction SU(4) :::> SU(2) ® SU(2). 

In general, a complete specification of states in the 
supermultiplet scheme requires six labels in addition 
to those of the irreducible representation (IR) of 
SU(4). The direct product SU(2) ® SU(2) provides 
only four; two additional labels are needed. Techniques 
that can be used to resolve the multiplicity have been 
proposed by several authors. 2 In particular, Moshinsky 
and Nagel2 have given a recipe for the construction of 
two operators whose eigenvalues may be used to 
complete the labeling. Labels obtained in this manner 
do not, however, exhibit any obvious symmetry 
properties, nor do they correspond in any way to 
know quantities of physical interest. In addition, 
the labels are not necessarily rational numbers. 

A mathematically more convenient reduction is 
the natural or Gel'fand3 chain U(4):::> U(3) :::> 

U(2) :::l U(I). In this case, the IR labels of U(3), 
U(2) , and U(1) provide the required six labels. 
Unfortunately, the reduction is unphysical. Neverthe­
less, since calculations are simpler within such a 
framework, the scheme has been used to calculate 
quantities of physical interest which depend only 
upon the IR labels of SU(4). An example in point is 
that of the SU(4) unitary recoupling coefficients 
(U functions) given by Hecht and Pang.4 

The purpose of the present paper is to state and 
prove the existence of another solution to the SUe 4) :::> 

SU(2) ® SU(2) multiplicity problem, one in which 
the two additional labels are chosen so as to furnish 
an integer or half-integer characterization of the 
multiplicity that exhibits spin-isospin symmetry 
properties. The technique used is one of spin-isospin 
projection; it parallels closely Elliott's5 resolution of 
the multiplicity problem in the SU(3) :::> R(3) reduc­
tion. The simplifications associated with the U(4) :::> 

U(3) :::> U(2) :::> U(l) reduction are incorporated into 
the scheme via coefficients which relate the projected 
SU(4) :::> SU(2) ® SU(2) basis states to those labeled 
according to the U(4) :::> U(3) :::> U(2):::> U(l) chain. 

To establish notation, Sec. 2 is devoted to a brief 
review of SUe 4) operator and state labeling techniques. 
In Sec. 3 a discussion of SU(4) spin-isospin degeneracy 
diagrams is given, and a new rule for determining the 
number of occurrences of a spin-isospin pair (ST) 
in a given IR of SU(4) is derived. In Sec. 4 the pro­
jection hypothesis is stated, and the completeness of 
the states so defined is proved. In Sec. 5 an expression 
is obtained for the coefficients which relate the pro­
jected basis states to those labeled according to the 
canonical U(4):::> U(3) :::> U(2):::> U(l) reduction; 
general expressions for SU(4) :::> SU(2) ® SU(2) cou­
pling coefficients and tensorial matrix elements in 
terms of the corresponding U(4) :::> U(3) :::> U(2) :::> 

U(1) quantities are also given. 

2. BASIC NOTATION 

A. Infinitesimal Generators 

The 16 infinitesimal generators of U(4) are given in 
terms of nucleon spin-charge creation and annihilation 
operators by 

(2.1) 
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where s denotes the full set of space quantum num­
bers. The Aap satisfy the U(4) commutation relations 

[A ap , ApaJ = oppAaa - oaaApp. (2.2) 

Deletion of the operator N = La Aaa which commutes 
with the Aap leads to a set of 15 infinitesimal generators 
for the group SUe 4). If rJ. = 1, 2, 3, and 4 represent 
the spin-isospin quantum numbers ms and mt in the 
sense 

11) = I+t. +i), 12) = I+i, -i), 
13) = I-i, +i), 14) = I-i, -t), (2.3) 

then the SUe 4) generators can be expressed in terms 
of SU(4) ::J SU(2) ® SU(2) tensors as4 

So = HAn - A33 + A22 - Au), 

To = HAn - A22 + A33 - A44), 

Eoo = HAn - A22 - A33 + A44), 

S_ = A31 + A42 , S+ = A13 + A24 , 

T+ = A12 + A34 , L = A21 + A43 , (2.4) 

E10 = Au - A24 , E_10 = A31 - A42 , 

E01 = A12 - A34 , Eo -1 = A21 - A43 , 

En = A14 , E-1 - 1 = A41 , 

E1 -1 = A23 , E-11 = A32 · 

The commutation properties of S, T, and E follow 
from the commutation properties of the Aap given by 
Eq. (2.2). 

B. Irreducible Representations 

Gel'fand patterns of the type 

IG) = 

h14 h24 h34 h44 

h13 h23 ha3 

h12 h22 

hn 

(2.5) 

furnish a complete set of labels for the basis states of 
an IR of U(4). The hall' 1 ~ rJ. ~ {3 ~ 4, specify the 
IR's of U({3) in the canonical chain U(4) ::J U(3) ::J 

U(2) :;) U(l) to which the state belongs. The hap are 
integral and satisfy the Young tableau or between­
ness conditions 

haP ~ ha,p_1 ~ ha+1,p ~ O. (2.6) 

Replacing each hap by hap - h44 leads to the corre­
sponding basis state for SU(4); it differs from the 
U(4) state by at most an h44-dependent phase 
factor. 

Other characterizations for the IR's of SU(4) in-

elude the set of three numbers (A'lA2Aa) given by 
Al = h14 - h24 • A2 = h24 - h34' and Aa = h34 - h44 • 

SU(4) conjugation properties can then be expressed 
as relating the (A1A2A3) and (A3A2A1) IR's.6 Wigner1 

introduced the triplet of numbers (PP'P") given by 
P = teAl + 2A2 + A3), P' = HAl + Aa), and P" = 
HAl - As)· They are associated with the maximum 
eigenvalues for the operators Eoo , So, and To (e.g., 
P = maximum eigenvalue of Eoo contained in the 
IR, P' = maximum eigenvalue of So for states with 
Eoo = P, and P" = maximum eigenvalue of To for 
states with Eoo = P and So = P').7 In what follows, 
simplicity of formulation will determine which 
labels are used. In all cases the relationships as given 
above apply. 

The states IG) are eigenstates of the operators Aaa 
with eigenvalues Wa , 

Aaa IG) = Wa IG), 

Wa = LrowrJ. - Lrow(rJ. - 1) 

= L hpa - L hp,a-1' (2.7) 
p fJ 

States of particular interest in the present develop­
ment are those for which the operator Eoo = HAn -
A22 - A3S + A44) assumes either its (a) maximum 
(E~ax = P) or (b) minimum (E~in = - P) eigenvalue. 
The hap for such states are uniquely specified by Ks 
and KT , the eigenvalues of HAn + A22 - Aa3 - A44) 
= So and HAn - A22 + A33 - A44) = To, respec­
tively. Explicitly, 

where 

h1-p 

o ~ P ~ AI' 0 ::;; q ::;; A3 , (2.8a) 

h3 -q 

O::;;p::;;A1,O::;;q::;;Aa, (2.8b) 

Ks + KT = hI - h2 - 2p = Al - 2p, 

Ks - KT = h2 - h3 - 2q = A3 - 2q, (2.9a) 

Ks + KT = hz - ha - 2q = Aa - 2q, 

Ks - KT = hI - h2 - 2p = A} - 2p (2.9b) 

for IGEt) and IGE~>' respectively.s The solid curves 
in Fig. 2 of Sec. 4 illustrate the result schematically. 
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Note that for (a) (A1Aa)-(odd, even) Ks and KT are 
half-integral with Ks differing from KT by twice an 
integer, for (b) (A1Aa)-(odd, odd) Ks and KT are 
integral with Ks differing from KT by twice an 
integer plus one, for (c) (A1Aa)-(even, odd) Ks and KT 
are half-integral with Ks differing from KT by twice 
an integer plus one, and for (d) (AIAa)-(even, even) 
Ks and KT are integral with Ks differing from KT 
by twice an integer. That is, the odd-even charac­
teristics of Al and Aa furnish a complete characteriza­
tion of distinct symmetry types for the {KsKT }-values 
associated with the IGE ). 

3. SPIN-ISOSPIN MULTIPLICITIES 

Racah9 has given a relatively simple algebraic 
formula for determining the multiplicity N(ST)(A1A2Aa) 
of (ST)-values in an IR (A1A2Aa) of SU(4). Some 
simplifications in his result follow from the investiga­
tions of Kretzschmar10 and Perelomov and PopovY 
In each case the expressions given are based upon the 
Littlewood rules12 which allow N(ST)(A1A2Aa) to be 
related to a sum over terms of the type N(sT)(A~A~A~), 
where the IR's (A~A~A~) have particularly simple 
multiplicity structures. In this section an expression 
for N(ST)(A1A2Aa) is given which involves a sum over 
terms of the type N(S'T') (A10Aa) where the (S'T')-values 
are related to the (ST)-values in a very simple way. 
Since Racah's expression for NST(A10Aa) is quite 
transparent, the result is particularly convenient for 
a study of the origin of (8T)-multiplicities and leads 
quite naturally to a rule for the projection numbers of 
Sec. 4. 

A. Degeneracy Diagrams 

A spin-isospin degeneracy diagram for the IR 
(AI A2Aa) of SUe 4) is a regular lattice of points (ST) 
each of which is labeled by the numerical value of 
N(ST) (AIA2Aa), the multiplicity of the pair (ST) in 
the IR (A1A2Aa)' Figure 4 of Sec. 4 gives examples. 
The spin-isospin symmetry property N(ST)(A1A2Aa) = 
N(TS)(A1A2Aa) corresponds to reflection symmetry in 
the 8 = T plane. The conjugation properties of 8U(4) 
imply that N(ST) (AIA2Aa) = N(ST)(AaA2A1). A systematic 
study of SU(4) spin-isospin degeneracy diagrams 
can therefore be limited to a consideration of those 
IR's of 8U(4) for which Al ~ A3 and within such IR's 
those (8T)-values for which SsT. 

Figure 1 illustrates features common to all 8U(4) 
spin-isospin degeneracy diagrams. The heavy solid 
curve EP(A1A2Aa) is, in the terminology of Perelomov 
and Popov, 11 the enveloping polygon for the spin­
isospin degeneracy diagram associated with the 
(AIA2Aa) IR of 8U(4). It circumscribes all (8T)-values 

T 

A 
u 

v 

B' 

5 

. FIG. I. General features of an SU(4) spin-isospin degeneracy 
diagram. The heavy solid curve EP(A,A2 A3) is the enveloping polygon 
for the spin-isospin degeneracy diagram associated with the (.1.,.1.2.1.3) 
IR of SU(4). The (ST)- and [UVj-coordinates of the boundary 
points are given by 

A :(r, P), [Q, +.1.2]; B :(P", P), [Q', +Q"]; C :(0, Q"), [Q", +Q"], 

A':(P, r), [.Q, -.1.2]; B':(P, r), [Q', -Q"j; C':(Q", 0), [Q", -Q"], 

where (PP'P") are the Wigner super multiplet quantum numbers 

and the (Q Q' Q") triplet of numbers is given by 

The dashed curve EP(A,0A 3) is the corresponding result for .1.2 = O. 

for which N(ST)(A1A2Aa) is nonzero. The boundary 
points for the polygon are as given in the figure. The 
axes U = T + S and V = T - S have been included 
as a simplifying feature for the discussion that is to 
follow. The dashed curve EP(A10Aa) is the corre­
sponding result for ,12 = 0. As shown, the figure 
corresponds to Al + Aa even and hence integral (ST)­
values. For Al + Aa odd and hence half-integral 
(8T)-values, the schematics are identical, the only 
difference being that the lines OC and OC' are 
shifted one-half unit from the coordinate axes. 

As can be seen from Fig. 1, EP(A1A2Aa) and 
EP(A10Aa) are simply related; for SsT, EP(A1A2Aa) 
corresponds to EP(A10Aa) shifted ,12 units along the 
T axis, and, for 8 > T, EP(A1A2Aa) corresponds to 
EP(A10Aa) shifted ,12 units along the S axis. More 
precisely, EP(A1A2Aa) is the envelope of all isosceles 
right triangles built by A2 regular lattice displace­
ments1a upon the (8T)-values of EP(A10Aa). Therefore, 
EP(A10Aa) is a characteristic structure common to all 
IR (A1A2Aa) (AI and Aa fixed; ,12 arbitrary) of SU(4). 
Furthermore, note that for ,12 = ° the boundary points 
Band B' coincide with the boundary points {P", P'} 
and {P', P"} of Fig. 2a (Sec. 4). Therefore, like rule 
(2.9) for the {KsKT}-values associated with IGE ), a 
classification scheme based on the odd-even charac­
teristics of the fundamental lengths U A - U C = Al 
and VB - VA = Aa furnishes a complete characteriza­
tion of distinct EP(A10Aa) and hence EP(A1A2Aa) 
symmetry types. 
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The results for EP(A1A2As) suggest that N(ST) (AIA2AS) 
may be simply related to N(S'T,)(A10As) and, further­
more, that the classification scheme (a) (AIAs)-(odd, 
even), (b) (AIAs)-(odd, odd), (c) (AIAs)-(even, odd), 
and (d) (AIAs)-(even, even) may furnish a complete 
characterization of distinct N(ST)(A10As) and hence 
N(ST)(A1A2As) symmetry types. To test the hypothesis, 
a quantitative study of the numerology of related 
degeneracy diagrams was made (e.g., see Fig. 4 in 
Sec. 4). In terms of NWVj(AIA2AS) == N(ST)(A1A2As), 
u = T + S, and V = T - S, the result of the in­
vestigation, with V ~ 0, is that 

NWVPIA2AS) = NW V] (AI , A2 - 1, As) 

+ NW'V,PIOAa) + °WV](AIA2Aa), 

U' = U - A2 , 

V' = map [V - A2 , Imod (V - A2 , 2)1], (3.1) 

where 0WVPIA2Aa) = ° for cases (a), (b), and (c) 
and, for case (d), 

O[UVj(AIA2Aa) = 1, A2 > U ~ V, U - A2 even, 

= -1, A2> U ~ V, U -A2 odd, 

= 0, otherwise. (3.2) 

The formula is recursive and therefore may be iterated 
to yield 

N[uvlAIA2AS) = ~ N[U'V'j(AIOAs), 
m 

U' = U - m, (3.3) 
V' = max [V - m, Imod (V - m,2)1], 

° :::;; m :::;; A2 , m =;t. U if U - A2 odd, 

which is applicable to all four cases (a)-(d). In terms 
of N(ST) (AIOAa) , Eq. (3.3) has the form 

S> T: 

N(ST)(AIA2Aa) 

= N(ST)(AIOAa) 

+ N(S_l,T)(AIOAa) 

+ 

+ N(TT)(AIOAa) (3.4a) 

+ N(T,T-I)(AIOAs) 

+ N(T_I,T_I)(AIOAs) 

+ 

+ N(S'T,)(AIOAs), 

S' + T' = S + T - A2, 

S:::;; T: 

N(ST)(AIA2As) 

= N(ST)(AIOAa) 

+ N(S,T-I)(AIOAs) 

+ 

+ N(SS)(AIOAa) (3.4b) 

+ N(S,S_l)(AIOAs) 

+ N (S-l,S-l)(AIOAa) 

+ 

+ N(S'T,)(AIOAa), 

S' + T' = S + T - A2 , 

where N(OO)(AIOAa) is not included if S + T - A2 is 
odd. The next section is devoted to an analytic proof 
of this result. 

B. Proof of the Multiplicity Formula 

Racah9 has shown that 

NW V](AIA2AS) = WWVPI + A2, A2 + Aa) 

- WWVPI + A2 + Aa + 1, A2 - 1) 

- WWVj(AI - 1, As - 1), (3.5) 

where w[UVj(xy) vanishes unless 

x + y ~ max (U + V, U - V), 

x + y == U + V == U - V (mod 2), 

and that, if these conditions are satisfied and x ~ y, 

w[UVj(xy) = w[UV](Yx) 

= cp(y + 2 - IVI) 
- cp(y + 1 - U) 

+ cp(U - x + 1) 

- tcp(U - IVI - x + y + 1). (3.6) 

The function cp(z) is given by 

cp(z) = [z2/4], z ~ 0, 
= 0, Z < 0, (3.7) 

where the boldface brackets indicate the greatest 
integer contained in the argument. 

Define 

dNwvPIA2Aa) = NWvPIA2Aa) 

- NWVPI' A2 - 1, As), (3.8a) 

dwWVj(XY) = w[UV1(xy) 
- WWVj(x - 1, Y - 1), (3.8b) 

dcp(z) = cp(z) - cp(z - 1). (3.8c) 
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Then, to prove Eq. (3.1), it is sufficient to demonstrate 
the equivalence of 

~N[UV](AIA2As) 

= ~W[UV](AI + A2, A2 + As) 

- ~W[UV](AI + A2 + As + 1, A2 - 1) 

= ~q:{A2 + As + 2 - V) - ~ip(A2 + As + 1 - V) 

+ ~ip(V - Al - A2 - 1) - ~ip(A2 + 1 - V) 

+ ~ip(A2 - V) - ~ip(V - Al - A2 - A3) (3.9) 

and 

N[U'V,](A10A3) 

= ~w[U'V,](AIA3) 

= ~ip(A3 + 2 - V') - ~ip(A3 + 1 - V') 

+ ~ip(V' - Al - I), (3.10) 

For (A1A3)-(even, even) and A2 > V ~ V, the factor 

t5[UV](A1A2A3) must, of course, be added to 

N[U,V'](A10A3). 

Consider the following special cases: 

Case I: U ~ V ~ A2 • 

Case 2: V ~ A2 ~ V: 

(a) V - A2 = -2n, 

(b) V - A2 = - 2n - 1. 

Case 3: A2 > V ~ V: 

(a) V = V + 2n + I: 

(I) (AIA3)-(odd, even), 

(2) (A1A3)-(even, odd); 

(b) V = V + 2n: 

(I) (AIA3)-(odd, odd), 

(2) (A1A3)-(even, even). 

For case I the result is trivial since V' = V - A2 , 

V' = V - A2 makes ~N[UV](AIA2A3) and N[U'V,P10A3) 
identical functions in ip. In both (a) and (b) of case 2 
an application of the result ~ip(m + 2n) = ~ip(m) + 
n, m, n integer, leads to the desired conclusion. 
Case 3 is somewhat more complicated because 
V' = U - A2 < ° implies that N[U'V,](A10A3) = 0. 
In this case it is therefore necessary to demonstrate 
the equivalence of LlN[UV](A,1A,2A,S) and c5[UV](AIA2AS)' 
The substitution A2 - V = 2m + t5 and A2 + 1 -
V = 2n + v, m, n integer and fl, v being ° or 1, sim­
plifies ~N[UV](AIA2As) to 

~N[UVPIA2A3) = ~ip(A3 + 1 + v) 

- Llip(A3 + 1 + fl). (3.11) 

For 3(a) fl = v so that ~N[UVPIA2A3) = 0. For 3(b) 
fl ¥= v, but the substitution A3 + I = 2k + K, k 
integer and K being ° or I, leads to 

~N[UVPIA2AS) = Llip(V) - ~ip(fl) 

= ° (3.12) 
for (bI) and 

~N[UVPIA2A3) 
= ~ip(v + 1) - ~ip(fl + 1) 

= { 1, V - A2 even, fl = 0, v = 1 , (3.13) 
-1, V - A2 odd, fl = 1, v = ° 

for (b2), which is the desired result. 

4. SPIN-ISO SPIN PROJECTION 

The additional quantum numbers that are required 
to resolve the twofold multiplicity associated with the 
reduction SV(4) ::> SV(2) ® SU(2) may be chosen in 
a variety of ways. The solution proposed by Moshin­
sky and Nage12 is not necessarily the most convenient 
because of the algebraic diffculties inherent with 
the corresponding eigenvalue problem. In this section 
the existence of another solution to the multiplicity 
problem is stated and proved. It is based upon spin­
isospin projection techniques in which the {KsKT }­

pairs associated with the states IGE ) furnish the 
required labels. 

A. Projection Hypothesis 

A projection operator for a state of total angular 
momentum J with projection M may be expressed in 
Hill-Wheeler integral form14 as 

PilK = (21 + 1) f dQD'i:K(Q)RAQ), (4.1) 

where Dfux(Q) is an R(3) rotation matrix and RAQ) 
is an R(3) rotation operator, 

(4.2) 

The integration is over Euler angles (ocpy). From this 
definition it follows that 

P'£,;.'K,Pi.tK = bJ'JbK'MP'!WK' (4.3) 

Jt J 
PMK = PKM , (4.4) 

where Pick indicates the Hermitian conjugate of 
PicK' Cases of interest in the present analysis are 
those for which J is either the spin S or the isospin 
T of Eq. (2.4). 
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Since eigenstates of the total spin and isospin 
operators may be obtained from a state IG> by simply 
applying the projection operators P'it sK sand PIJ TK T' 

we define 

JGKsSMsKTTMT> == p'i.tsKsprITKT IG>. (4.5) 
The complete G symbol has been retained in the 
projected ket as a reminder of the Gel'fand state 
from which it was derived; only the IR labels ha4' 
however, remain valid state labels. In many cases the 
IGKsSMsKTTMT> will turn out to be identically zero. 
It remains to specify the IG> and pairs {KsKT} with 
their corresponding (ST)-values for which projected 
states span the IR space. 

The Projection Hypothesis 

The projected states 
s T 

IGEKsSMsKTTMT> == PMsKsPMTKT IGE>, (4.6) 

with ICE> the Gel'fand states for which the operator 
Eoo assumes its maximum (AI ~ ,13) or minimum 
(AI < ,13) eigenvalue, span the (A1A2A3) IR space of 
SU(4) if with each integer (AI + ,13 even) or half­
integer (AI + ,13 odd) pair {KsKT} satisfying 

Ks + KT = max (,11,13) - 2p, 

Ks - KT = min (AIA3) - 2q, 

05:,. P 5:,. [max (A1A3)/2] , 

K 5:,. q 5:,. min (AI A3), 

K = 0, Ks + KT "e 0, 

K = [min (,11,13)/2], Ks + KT = 0, (4.7) 

is associated the (ST)-values 

a> T: (ST) = (a + {t, T + '1'), 

o 5:,. {t 5:,. ,12' 

o 5:,. 'I' < a - T + A2 - {t, 

(4.8a) 
a 5:,. T "e 0: (ST) = (a + {t, T + '1'), 

o 5:,. 'I' 5:,. ,12' 

o 5:,. {t5:,. T - a + ,12 - '1', 

(4.8b) 
a = T = 0: (ST) = (,12 - 2{t - '1', '1'), 

o S; {t S; [,12/2], 

o S; 'I' 5:,. ,12 - 2, (4.8c) 

where a = IKsl and T = IKTI. The projections Ms 
and M T assume the usual values - S 5:,. M s 5:,. S 
and -T5:,. MT 5:,. T. 

The proof of the hypothesis will be made in two 
steps. First, the value of N(ST)(A1A2Aa) predicted by 
the rule will be shown to be precisely that derived in 

Sec. 3. And, secondly, the assumption that there 
exists a function belonging to the IR space but orthog­
onal to the projected states will be shown to lead to a 
contradiction. Before proceeding, however, we first 
consider in more detail the structure of the rule as 
given by Eqs. (4.7) and (4.8). 

Since the Gel'fand states IGE > are eigenstates of 
So and To, the {KsKT }-pairs of Eq. (4.7) are necessar­
ily a subset of the allowed {KsKT}-pairs given by Eq. 
(2.9). The choice made (see Fig. 2) is not, however, 
unique; other possibilities exist. For example, 
simply replacing each {KsKT}-pair of Eq. (4.7) by 
{ - Ks , - KT} (inversion in the {KsKT }-plane) pro­
vides an equally acceptable set of projection numbers. 
It is also true that any partial inversion in the {KsKT}­
plane provides an acceptable set of projection numbers. 
The essential feature of any such choice is that only 
one of the pairs, {KsKT} or its inversion {-Ks, 
-KT},be included. Inclusion of both pairs leads to 
states which are not linearly independent. The choice 
made by Eq. (4.7) is therefore one of convention; its 
simplifying feature is that it maximizes the number of 
{KsKT}-pairs contained within EP(A10A3). 

In some applications it is convenient to know the 
rule corresponding to Eq. (4.7) for projection from 
IGEt> if Al < ,13 and from IGE~> if Al ~ Aa. It can be 
obtained from Eq. (4.7) by simply interchanging the 
max-min specifications. It follows that the rules for 
determining the {KsKT}-pairs for projection from 
IGEt> and IGE~> without regard to the relationship 
of Al and A3 are given by the following: 

projection from IGEt >: 
Ks + KT = Al - 2p, 

Ks - KT = ,13 - 2q, 

o 5:,. P 5:,. [A.1/2], 

K 5:,. q 5:,. ,13' 

K = 0, Ks + KT "e 0, 

K = [A3/2], Ks + KT = 0; (4.9a) 

projection from IGE~>: 

Ks + KT = ,13 - 2q, 

Ks - KT = Al - 2p, 

o S; q S; [,13/2], 

K5:,.p5:,.Al' 

K = 0, Ks + KT "e 0, 

K = [A 1/2], Ks + KT = O. (4.9b) 

Figure 2 illustrates the result schematically. The 
dashed curves (Ks + KT = 0 not allowed) and the bro­
ken curves (Ks + KT = 0 allowed) divide the {KsKT}­
pairs of Eq. (2.9) into two sets equivalent under 
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P'j,).3) 

(·P:·P") 

p .. "O) 
(-p.:.p' 

KS 

~) W 

FIG. 2. The envelope of {KsKT}-pairs associated with IGE>. (a) 
IGE ) = I GEt), (b) IGE) = IGE {). The boundaries are denoted by 
their (pq)- and {KsKr}-values. The dashed curves (Ks + Kr = 0 
not allowed) and the broken curves (Ks + Kr = 0 allowed) divide 
the {KsKT}-pairs into two sets equivalent under inversion; the 
pairs for which Ks + Kr ~ 0 are by convention the projection 
numbers of Eq. (4.9). 

inversion; the pairs for which Ks + K1, 2: 0 are by 
convention the projection numbers of Eq. (4.9). In 
any case the spectrum of (ST)-values given by Eq. 
(4.8) depends only upon a and T and is therefore in­
dependent of the {KsKT}-rule chosen as long as all 
{KsKT}-pairs belonging to the Gel'fand state IGE ) 

under consideration, but not equivalent under inver­
sion, are included in the rule specification. 

Figure 3 iIIustrates Eq. (4.8) by giving the spectrum 
of (ST)-values associated with a given {KsKT}-pair 
for the cases 0'<7, a = 7 = a', and 0'= 7 = O. 
The schematics of the figure are such that the (ST)­
values labeled by the same symbol are those derived 
from the same {KsKT}-pair. In the examples shown, 
..1.2 = 4. For 0'< 7, both {KsKT} = {aT} and {KsKT} = 
{TO'} have been given. In the case a < T, note that ex­
ceptfor (ST) = (T + ..1.2 - V, 7 + v), 0 S v S .42, for 
each (ST){KsKrl (labeled by +) there exists the trans­
pose set (TS){K rK s} (labeled by 0). The asymmetry can 
be removed for .42 odd by relating (ST) = (7 + .42 - v, 
7 + v), 0 S v S [..1.2/2], to {aT} and (ST) = (7 + 
..1.2 - v, 7 + v), [..1.2/2] + 1 S v S ..1.2, to {7a}. For 
..1.2 even, however, the asymmetry associated with 
(ST) = (7 + tA2' 7 + tA.2) cannot be removed. The 
choice made by Eqs. (4.8) is therefore again one of 
convention. Its simplifying feature is manifest in the 
form of Eqs. (4.8a) and (4.8b). For () = T = a', an 
asymmetry only exists if {KsKT} = {-a', a/}. It is 
related to the fact that the transpose of (ST){Ks.-K s) 

is not allowed because {-Ks , Ks} is related to 
{Ks, - Ks} by inversion. The singularity of the point 
{KsKT} = {DO} is manifest in the form of Eq. (4.8c). 

The eight degeneracy diagrams of Fig. 4 illustrate 
in complete detail the result of associating (ST)­
values as prescribed by Eqs. (4.8) with the {KsKT }­

pairs defined by Eqs. (4.7). The examples shown 

correspond to symmetry types (a) (A.1A.a)-(odd, even), 
(b) (A1Aa)-(odd, odd), (c) (A1AaHeven, odd), (d) 
(Al .4S)"(even, even) for two cases, ..1.2 zero and ..1.2 such 
that the degeneracy of S = T = p' is a maximum. 
On each degeneracy diagram the {KsKT}-lattice 
corresponding to Eqs. (4.7) is given in outline form. 
Note that for symmetry types (a) and (b) the {KsKT}­
lattices are rectangular (Ks + KT = 0 not allowed). 
The corresponding degeneracy diagrams reflect a 
maximum degree of regularity. For symmetry types 
(c) and (d) the {KsKT}-lattices are not rectangular 
(Ks + KT = 0 allowed). Nevertheless, since sym­
metry type (c) is equivalent to symmetry type (a) 
under conjugation (..1.1..1.3 interchange), degeneracy 
diagrams of type (c) also possess a maximum degree 
of regularity. For symmetry type (d), however, the 
singularity of the point {KsKd = {~O} is an inherent 
feature whi.ch propagates an irregularity into the 
multiplicities of the (ST)-values associated with 
(ST) = (00) by A S A2 regular lattice displacements. 

B. Completeness of the Projected States 

First of all, consider the multiplicity N{Jm(AIA2Aa) 
of (ST)-values predicted by Eqs. (4.8). As can be seen 
from Fig. 3, the basic structure of the rule is one 
of triangulation. That is, the (ST)-values associated 
with each {KsKT}-pair for A2 2: 0 are simply those 

0"+ >"2 t--------------:x r;:/ 
xx /' 
x x x 
x x"x X 

O"I------------x".x X X x 
r+A2 + + + + / 

+++61+ 
+++EDe+ 
+ + + e e/e + 

T't-----+v+ +; $/ $ $ e + 
00000 
00000 

0'01----./--+--0 00 0 0 A2 -

10 
o 
1".0/ 0 

o-o--o--o~--~----~~----~---
I I 0' T' 0" O"+A2 S 
o 

FIG. 3. Spectrum of (ST)-vaJues associated with the projection 
numbers {KsKr}: 

{KsKr} = {aT}:+, {KsKrl = {Ta}:O, 

{KsKr} = {a'a'}: x, {KsKr} = {O, OJ: O. 

In the examples shown, A2 = 4. 
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FIG. 4. Spin-isospin degeneracy diagrams for the (.1.,.1. 21.3) IR of SU(4). (a) N(STI{5, 0, 2), (b) N(STI(5, 0, 3), (c) N(ST,(4, 0,3), (d) N(ST) X 
(4,0,2), (a') N(ST,(5, 6, 2), (b') N(sP)(5, 7, 3), (c') N(sT)(4, 6, 3), (d') N\S7,,(4, 6, 2). The {KsKT]-lattices given by Eq. (4.7) are included in 
outline form. The value of). 2 in (a'), (b'), (c'), and (d') corresponds to a maximum value for the degeneracy of S = T = P'. 

(ST)-values contained within the envelope of isosceles 
right triangles built by 1.2 regular lattice displacements 
from the (ST)-values associated with {KsKT} for 
1.2 = O. The one exception, {KsKT} = {OO}, admits 
only the subset of these (ST)-values for which S + T 
differs from 1.2 by twice an integer (U - 1.2 even). It 
therefore follows that the {KsKT }-pairs that contribute 
to Nf1TJ(1.I1.21.a) are the {KsKT}-pairs that contribute 
to the N~'T,,(1.I01.a) related to N~T}(AIA2Aa) in the 
same way as the N(S'T"(1.101.a) are related to 
N(ST,(AI1.21.a)· That is, N~T,(I'l1.21.3) satisfies Eqs. 
(3.4). It remains to prove that 

Consider Eqs. (4.8) for the special case 1.2 = 0: 

a> T: (ST) = (a, T + v), ° S v < a - T; 

(4. lOa) 

a S T: (ST) = (a + fl., T), ° S fl. S T - a. 
(4.l0b) 

Then Nf1T)(1.10Aa) is equal to the number of {KsKT }­

pairs given by Eqs. (4.7) for which (ST) is contained 

in the set given by Eqs. (4.10): 

S > T: N~T)(1.IOA3) 
= number of {KsKT}-pairs for which 

(J' = S, T S T; (4. 11 a) 

SST: N~T,(AIOA3) 
= number of {KsKT}-pairs for which 

a:::;; S, T = T. (4.11b) 

The algebraic formulation is straightforward; it 
leads directly to the result that NfsT,(AIOAa) = 
N(STJ(1.101.a) and hence NfsT)(1.I1.2Aa) = N(ST) (1.I1.21.a)· 
On the degeneracy diagrams of Fig. 4 the {KsKT}­
lattices corresponding to Eqs. (4.7) have been included. 
By using Eqs. (4.11) the result can be verified for 
each of the four cases (a) (A'lAa)-(odd, even), (b) 
(AlA-s)-(odd, odd), (c) (1.11.s)-(even, odd), and (d) 
(1.IAa)-(even, even). 

To complete the proof of the projection hypothesis, 
an adaptation of the method first given by Elliott5 

for the SU(3):::> R(3) reduction and subsequently 
used by Williams and Pursey15 in considering the 
R(S) :::> R(3) reduction problem will be used. It 
proceeds by reductio ad absurdum. That is, the con­
sequence of assuming that the projected states do not 
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span the IR space is shown to be a contradiction. Ex­
plicitly, suppose there exists a function I q;(S' M~T' M~) > 
belonging to the IR but orthogonal to all the 
I GEKsSMsKTTMT), 

(q;(S'M'sT'MT) I GEKsSMsKTTMT) = O. (4.12) 

Since NfJm(AIA2Aa) = N(ST)(A1A2Aa), the only non­
trivial implications of such an assumption are those 
which follow for S' = S, M~ = M s, T' = T, and 
M~ = M T , namely, 

(q;(SMsTMT) I GE{KsKT}) 

= (p~sMsp1TMTq;(SMsTMT) I GE{KsKT}) 

= (q;(SMsTMTI p~sMSpr]TMT IGE{KsKT}) 

= (q;(SMsTMT) I P'itsMsP'1TMT IGE{KsKT}) 

= ij MsKsij MTKT 
X (q;(SMsTMT) I GEKsSMsKTTMT) = o. 

( 4.13) 
As is shown below, Eq. (4.13) implies that 

where (') is an arbitrary element of SU(4). But, by 
definition of irreducibility, functions of the type 
l') IGE{KsKT}) span the IR space. Hence a contra­
diction exists; the hypothesis that there exists a 
function 1q;(SMsTMT» belonging to the IR which 
is orthogonal to all the IGEKsSMsKTTMT> is false. 
It follows that the IGEKsSM SKTTM T > span the IR 
space. 

The argument given above hinges upon a proof 
that Eq. (4.13) implies Eq. (4.14). For this, note that 
the operator l') being an element of SU(4) implies 
that it can be expressed as a power series in the 
generators of the group. Furthermore, note that the 
commutation properties of the generators imply that 
the order of the generators within each term of such an 
expansion can be chosen in any desired manner. 
Then we define 

~~ = t(S± + E±1 0)' 

~~ = t(S± - E±10)' 

rJ~ = t(T± + EO±I), 

rJ! = t(T± - EO±l), 

(4.15) 

and consider the case of projection from IGEt >. It is 
convenient to divide the generators into the two sets 

A: Eoo = t(All - A22 - Aa3 + A44), 

So = HAll + A22 - Aaa - A44), 

To = HAn - A22 + Aa3 - A 44), 

En = Au, E-1 - 1 = A41 , (4.16a) 

E1 - 1 = A2S ' E_11 = A32 , 

~~ = A13 , ~~ = A 42 , 

rJ~ = A12 , rJ~ = A4a , 

B: S+ = Ala + A 24 , S_ = Aa1 + A42 , 

T+ = A12 + Aa4 , L = A21 + A43 • (4. 16b) 

When a generator of the set A operates on IGEt ), the 
result is either another intrinsic state of the same type 
(Eoo, So, To, En, E-1 - 1 , E1 - 1 , E-11) or zero (~~, 
e-, rJ~, rJ~)· Generators of the set B do not reproduce 
intrinsic states but are operators which act only in the 
direct product space SU(2) ® SU(2). Express (') in the 
form 

(4.17) 

where the Co: are constants and 1T Ao; and 1TBo: are 
products of generators of the type A and B, respec­
tively. Then consider 

(q;(SMsTMT)Il') IGE{KsKT}) 

= ~ Co; (q;(SMsTMT) I 1TBo:1TAo: IGE{KsKd). (4.18) 

Each factor 1T Ao; acting to the right changes at most 
Ks and KT , and the 1TBo; factors acting to the left 
change at most M sand M T. Therefore, 

(q;(SMsTMT)I l') IGE{KsKT}) 

= ~ Co:(q;(SMsTMT)I1TBo;1TAo; IGE{KsKT}) 
0; 

= L C;(q;(SM'sTMT I GE{K'sKT}) = o. 

(4.19) 

The equivalent proof for the case of projection from 
IGEi ) follows by merely replacing the n, ~~, rJ~, 'fj~ 
operators of set A by the operators ~~, ~~, rl~, 1J~. 

S. TRANSFORMATION BRACKETS 

Although the projection numbers {KsKd furnish 
an integral or half-integral solution exhibiting spin­
isospin symmetry properties for the SUe 4) ::> SU(2) ® 
SU(2) multiplicity problem, the projected states are 
not normalized nor are they necessarily orthogonal on 
the Ks and KT labels. The difficulties associated with 
the nonorthonormality of the projected states can be 
resolved, however, if an expression for the coefficients 
(transformation brackets) which relate the projected 
states to the orthonormal Gel'fand basis vectors is 
known. This section is devoted to deriving such an 
expression. The method used is similar to that 
developed in Ref. 16, where the analogous problem in 
the SU(3)::> R(3) reduction was considered; it is 
based on the results of Moshinsky and Chacon17 for 
the matrix elements of the permutations (I, 2), (2, 3), 
and (3,4) between the U(4) basis states IG). 
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A. The Expression 

Since the Gel'fand basis vectors IG) for a given IR 
of U(4) form an orthonormal set which spans the 
representation space, an arbitrary projected state 
IGKsSMsKTTMT) belonging to the IR may be ex­
panded in terms of the IG) as 

IGKsSMsKTTMT) 

= 2 (G' I GKsSMsKTTMT) IG'), (5.1) 
n' 

where it is to be understood that h~4 = ha<4' The 
(G' 1 GKsSMsKTTMT) in Eq. (5.1) are the trans­
formation brackets which relate the U(4) :::> SU(2) ® 
SU(2) scheme of Sec. 4 to the Gel'fand U(4) :::> U(3):::> 
U(2) :::> U(l) scheme. By definition of the projected 
states, we have 

(G'I GKsSMsKTTMT) 

= (G'I P~!sKsptTKT IG) 

= (2S + 1) I dOsD~;sKiO)(2T + 1) 

x I dO'l'D f!:K/OT) (G'I Rs(Os)RT(OT) IG). 

(5.2) 
Therefore, an expression for the 

(G' I GKsSMsKTTMT) 

can be obtained if the matrix elements 

are known. Note that the inverse of the transforma­
tion matrix defined by Eq. (5.1) is only guaranteed to 
exist if the IGKsSMsKTTMT) are restricted to the 
projected basis vectors IGEKsSMsKTTM T) defined 
in Sec. 4 by the projection hypothesis. An expression 
for the (G' I GEKsSMsKTTMT> follows as a special 
case of the general result for (G' I GKsSMsKTTMT)' 

For notational convenience let 

hI h2 h3 h4 

IG) = 
x y z 

(5.3) 
p q 

r 

The infinitesimal generators of SU(2) corresponding 
to U(2) in the chain U(4):::> U(3) :::> U(2):::> U(l) are 
given by 

where 

Then, for 

J+ = A 12 , J_ = A 21 , 

Jo = HAn - A 22), (5.4) 

(5.5) 

(5.6) 

it follows that 

(G'I.'Jl(O) IG) = OX'XOY'yOZ'ZOp'poq'qD;"'m(O), 

j = t(p - q), m = r - tep + q), (5.7) 

m' = r' - t(p + q). 

To relate Rs(O) and RT(O) to operators of the type 
:1\(0), the permutation operators (1,2), (2, 3), and 
(3,4) can be used. For example, consider Rs(O). Let 

So = S~ + S~, 
S~ = teAn - A33 ) = (2, 3)Jo(2, 3), 

S~ = teA22 - A44) (5.8a) 

= (1,2)(3,4)(2, 3)Jo(2, 3)(3,4)(1,2), 

[S~, S~J = 0, 

S2 = S~ + SL 

S~ = (2i)-1(A13 - A31) = (2, 3)J2(2, 3), 

S~ = (2i)-1 (A24 - A42) (5.8b) 

= (1,2)(3,4)(2, 3)Jl2, 3)(3, 4)(1, 2), 

[S~, S~] = [S~, S~] = [S5, S~] = O. 
Then 

= (2, 3).'Jl(O)(2, 3)(1, 2)(3, 4)(2, 3) 

x .'Jl(O)(2, 3)(3, 4)(1, 2). (5.9) 

In a similar fashion it can be shown that 

RT(O) = .'Jl(O)(2, 3)(1,2)(3, 4)(2, 3) 

x .'Jl(O)(2, 3)(3, 4)(1, 2)(2, 3). (5.10) 

From Eqs. (5.9) and (5.10) it follows that 

Rs(Os)RT(OT) = RTCOT)Rs(Os) 

Define 

= .'Jl(OT)(2, 3)(1, 2)(3,4)(2,3) 

x .'Jl(OT)(2, 3)(1,2)(3,4) 

x .'Jl(Os)(2, 3)(1,2)(3,4)(2,3) 

x .'Jl(Os)(2, 3)(1, 2)(3, 4). (5.11) 

Mo'o(O) = (G'I.'Jl(O)(2, 3)(1, 2)(3, 4)(2,3) 

X .'Jl(0)(2, 3)(1, 2)(3, 4) IG) (5.12) 
so that 

(G'I Rs(Os)RT(OT) IG) = L MG'G,.(OT)Mana(Os)· 

G
n 

(5.13) 
Let 

..A(,o'G(KJM) = (2J + 1) f dODi:K(O)Mo'o(O). 

(5.14) 
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The transformation brackets of Eq. (5.2) are then 
given by 

(G'I GKsSMsKTTMT) 

= 2,.A(,o'o,,(KTTMT).A(,o"o(Ks SMs ). (5.15) 
0" 

An expression for the matrix .A(,o'o(KJM) can be 
obtained by using the completeness of the ortho­
normal set of states IG) and Eq. (5.7) to put Mo'a(Q) 
into the form 

Ma'o(n) 

= 2, (G'I $,(0.) IG1) (GIl (2, 3) IG2) (G2 1 (1, 2) IG3 ) 

0" 

x (G3 1 (3, 4) IG4 ) (G4 1 (2, 3) IG5 ) (G5 1 :R(n) IG6 ) 

X (G61 (2,3) IG7> (G71 (1, 2) IGs)(Gsl (3, 4) IG) 

= 2, D:{;'K,(n)D:{;"K,,(n) (GIl (2, 3) IG2) 

0,,(,,*1,5) 
Ielli" 

X (G21 (1, 2) IGa)(Gal (3, 4) IG4) (G4 1 (2, 3) IG5) 

X (G6 1 (2, 3) IG 7) (G71 (1, 2) IGs)(Gsl (3, 4) IG), 

J' = Hp' - q'), M' = " - Hp' + q'), 

K' = r 1 - HP' + q'), 

J" = Hp6 - q6), M" = '5 - t(P6 + q6), 

Kif = '6 - Hp6 + q6)' (5.16) 

where, except for '1 (determined by K') and '5 
(determined by M"), the elements of G1 and G5 are 
equal to the corresponding elements in the G' and G6 , 

respectively. Then, by using the well-known result 
expressing the integral of three rotation matrices in 
terms of a product of two SU(2) Wigner (Clebsch­
Gordan) coefficients, it follows that 

.A(,o'o(KJ M) 

= 2, (J'M'; J"M" I JM)(J'K'; J"K" I JK) 
0,,(,,*1,5). 

X (GIl (2, 3) IG2 ) (G2 1 (1, 2) IGa) (Gal (3, 4) IG4 ) 

X (G4 1 (2, 3) IG5) (Gsl (2, 3) IG7)(G71 (1, 2) IGs) 

X (Gsl (3, 4) IG). (5.17) 

The permutation matrices (G'I (n - 1, n) IG), n = 
2, 3, 4, required for an evaluation of Eq. (5.17), have 
been given by Moshinsky and Chacon17 ; they are 
equivalent to special unitary recoupling coefficients 
for the groups U(1), U(2), and U(3), respectively. 
Note that (n - 1, n) operating on IG) changes only 
the h"p for which fJ = n - 1 and these in such a 
manner that the result is zero unless W~_l = Wn . The 
apparent 6 x 6 = 36-fold sum over the G" in Eq. 
(5.17) is therefore in actual fact at worst a sixfold 
sum. The result as given by Eq. (5.17) may, however, 

be the most convenient for the purposes of machine 
coding since the summations over G2 , Ga, G4 and G7 , 

Gs are matrix multiplications involving the permuta­
tion matrices. The remaining summation over G6 

then involves simply the product of two Clebsch­
Gordan coefficients and one element from each of 
the matrix products. 

It is to be noted that the transformation brackets 
are equivalent to normalization and overlap integrals 
of the projected states. This may be seen by con­
sidering 

(G'K'sSMsKTTMT I GKsSMsKTTMT> 

= (G'I p~;sK.l"~r:K~IGKsSMsKTTM T) 
, s T 

= (G I PK~MsPK~JIT IGKsSMsKTTMT) 

= (G' I GKsSK'sKTTKT)' (5.18) 

B. The Application 

In general, the transformation brackets1S 

A(G' I GEKsSMsKTTMT) 

relate the set of non orthogonal basis vectors 
IGEKsSMsKTTMT) to the set of orthonormal basis 
vectors IG') and are therefore the elements of a non­
orthogonal matrix A. The inverse expansion of the 
IG) in terms of the IGEK~S'M~K~T'M~> exists, and 
the coefficients B(GEK~S'M~K~T'M~ I G) can be 
obtained by inverting the appropriate A matrix. An 
equivalent but perhaps somewhat simpler evaluation 
of these coefficients can be obtained by considering 
directly the expansion 

IG) = .! B(GEK'sS'M'sKTT'MT I G) 
K~S'M~ 
K~T'1~1;, 

Then 

IGKsSMsKTTMT> 

= P~lsKsPfITKT IG) 

= z B(GEK'sS'M'sKTT'MT I G) 
K~S'll(~ 
K~T'M~ 

X P'1sKspflTKT IGEK'sS'M'sKTT'MT) 

= z B(GEK'sS'M'sKTT'MT I G) 
K~S'M~ 
K~T'M~ 

X OS'SO"ll~KsOT'TOM~KT IGEK;SMsK ~TM T) 

= Z B(GEK'sSKsKTTKT I G) 
K~K~ 

X IGEK'sSMsKTTMT). (5.20) 
That is, the B(GEK~S'M~KTT'MT I G) are not only 
the coefficients in the expansion of the IG) in terms of 
the IGEK~S'M~KTT' MT), but they are also the 
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coefficients in the expansion of I GKsSMsKTTM T) 
in terms of the IGEK~SMsK~TMT). Using this result, 
we can determine a unique solution for the 

B(G K' S'M' K' T'M' ! G) E SST T 

from the set of simultaneous equations 

A(G'! GKsSMsKTTMT) 
= ~ B(GEK'sSKsK'pTKT I G) 

K~K~ 

X A(G'I GEK'sSMsK'pTMT)' (5.21) 

In those cases for which the {KsKT }-labels are redun­
dant, it follows that the B(GEK~S'M~K~T'M~ ! G) 
are simply given as the ratio of two transformation 
brackets. Since B is the inverse of A, Eq. (5.21) also 
shows that 

L A(G'I GMsSMsMTTMT) = ~G'G (5.22) 
SMsTMT 

I pGaEKsaSaM SaK Ta TaM Ta) 

and 

~A(G I GKsSMsKTTMT) 
G 

(5.23) 

In a fashion similar to that demonstrated in detail 
in Ref. 16 for the SU(3) ::::l R(3) case, quantities of 
physical interest which depend upon the SU(4) ::::l 

SU(2) ® SU(2) labels can be expressed in terms of 
the corresponding quantities labeled according to the 
canonical U(4)::::l U(3)::::l U(2)::::l U(I) scheme by 
means of the A's and B's. For example, for the 
SU(4) ::::l SU(2) ® SU(2) coupling coefficients defined 
by 

= ~ CiGlEKs,SIMslKTl TIMT, ; G2EKs2S2Ms2KT2T2MT2! pG3EKsaSaMs.KTaTaM T3) 

KS,S,Ms l KT,TIMT, 
KS2S2Ms2 KT2T2MT2 

x IGIEKslSIMslKTJlMT) IG2EKs.S2Ms2KT.T2MT.), (5.24a) 

IGlEKslSIMslK'TIT,MTl) IG2EKs.S2Ms.KT.T2MT.) 

= ~ C2(pGaEKsaSaMsaKTaTaMT'! GIEKslSIMslKTlTIMT,; G2EKs2S2Ms.KT.T2MT2) 
pGaEKsaSaMsaKTaTaMTa 

X IpGaEKs.SaMs.KTaTaMTa)' (5.24b) 

it can be shown that 

ClGIEKslSIMs,KTl TrMT,; G2EKs.S2Ms.KT.T2MT.1 pGaEKsaSaMsaKTaTaMTa) 

= (SIMs,; S2Ms2! S3MSa)(TIMT,; T2MT.1 T3M Ta) ~ (SIM's,; S2M's.! S3KSa) 
G~M~,M~l 
G;M~2M~2 

X (TIM!,!; T2M'p.! T3KTa)B(GIEKs,SlM's,KT1TIMpl ! GD 
X B(G2EKs.S2M's.KT.T2Mp21 G~)(G~; G~ I pGaE), (5.25a) 

C2(pGaEKsaS3MsaKTaT3MTal GIEKslSlMs,KTl T1MT,; G2EKs.S2Ms2KT.T2MT.) 

_ ( M' I . I (2S1 + 1)(2Tl + 1) - SI S"S2MS. SaMsa)(TIMT"T2MT2 TaMTa)~-=---'--~---=--'-~ 
(2S3 + 1)(2Ta + 1) 

x ,~ , (SlKs, ; S2M's.1 S3Ms3>(TlKTl; T2M'p.1 TaM'pa)B(GaEKsaSaM'saKTaTaM'pal G~) 
GaM s.MT2 
a;M~aM;'3 

where p is a label that distinguishes multiple occur­
rences of a given IR of Ga in the reduction of the 
direct product Gl ® G2 • In Eqs. (5.25), (Gl ; G2 1 pGa) 
and (pGa \ Gl ; G2) are U(4)::::l U(3) ::::l U(2) ::::l U(l) 
Wigner coefficients, and the (JIMl; J2M21 JaM3) are 
ordinary SU(2) Wigner coefficients. 

Similarly, consider the SU(4)::::l SU(2) ® SU(2) 

tensors defined by 

T(GKsSMsKTTMT) 

= (2S + 1) f dDsDS;sK..{Ds)(2T + 1) 

x f dDTDt*TKiDT) 

X Rs(D.s)RT(D.T)T(G)RTl(D.T)Rsl(D.S), (5.26) 
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where T(G) is the corresponding U(4) ::l U(3) ::l U(2) ::l U(l) tensor defined by 

[A~p, T(G)] = I (G'I A"p IG) T(G'). (5.27) 
G' 

The {KsKT}-quantum-numbers resolve the SU(4) ::J SU(2) ® SU(2) tensorial multiplicity in precisely the 

same manner as described in Sec. 3 for the SU(4) ::J SU(2) ® SU(2) basis states. It can then be shown that 

(pG3EK S3S3M S3K Ta T3 M Tal T( G 1EK S1 S1 M Sl K Tl TIM TJ I G2EK S2S2M S2 K T. T2M T.) 

= (G3 11 T(G l ) IIG2)p ~ C2(pG3EKf,aS3MS.K'-r.T3MTal GIEKslSIMsIKTl7;.MTl; G2EKs.S2Ms.KT2T2MT.) 
1(83I(~3 

where (G3 11 T(G1) IIGz)p is the reduced matrix element 
of T( G1) corresponding to the state IP3)' 

The particularly elegant feature of all such relation­
ships is that a knowledge of the A's and B's allows 
completely general expressions for SU(4) ::J SU(2) ® 
SU(2) quantities to be expressed in terms of a subset 
of the corresponding U(4)::l U(3) ::J U(2) ::J U(l) 
quantities [e.g., all SU(4) ::J SU(2) ® SU(2) coupling 
coefficients are determined in terms of U(4):::J 
U(3) :::J U(2) ::l U(l) Wigner coefficients for which 
one set of labels corresponds to the operator Eoo 
having either its maximum or minimum eigenvalue]. 
Furthermore, the problems associated with phase 
conventions and multiplicity relate simply and directly 
to the corresponding problems in the canonical 
scheme. 

6. DISCUSSION 

The fact that a many-nucleon wavefunction can be 
decomposed into a product of its space and its spin­
isospin parts allows the techniques developed in this 
paper to be applied quite independently of any special 
spatial considerations. A case of particular interest, 
however, is that dealing with shell-model calculations 
up to and through the first half of the 2s-ld shell. 
For such nuclei the most promising theoretical tool for 
the spatial part of the wavefunction is the Elliott 
SU(3) ::l R(3) classification. For this reason the tech­
niques developed in Ref. 16 together with those of the 
present paper furnish expressions which can be used 
to simplify as well as extend such theoretical investi­
gations. 

The simplifications are, of course, in calculational 
technique in that the SU(3):::J R(3) and SU(4)::J 
SU(2) ® SU(2) transformation brackets reduce the 
difficulties inherent in the physically significant 
labeling schemes, but not present in the corresponding 
canonical labeling schemes, to forms which can be 
machine coded. Nevertheless, the solution furnished 
by the transformation brackets to the problems 
associated with the nonorthonormality of the pro­
jected states is indirect and not necessarily the most 

X A(G3E I pG3EKf,3SSKSaK'-raT3KTa)' (5.28) 

convenient for purposes of machine-coding matrix ele­
ment calculations. The difficulty is that the SU(3) ::l 

R(3) coupling coefficients of Ref. 16 and the SU(4) ::l 

SU(2) ® SU(2) coupling coefficients of the present 
paper are not Wigner coefficients. That is, the 
coupling coefficients do not represent the scalar 
product of orthonormalized coupled and uncoupled 
basis states. 

By orthonormalizing separately within each Land 
(ST)-multiplet according to a symmetric recipe (e.g., 
see Ref. 19), the transformations which orthonormal­
ize the SU(3) :::J R(3) and SU(4)::l SU(2) ® SU(2) 
basis states can be given in simple algebraic form as 
the ratio of normalization and overlap integrals. 
Since such integrals are equivalent to transformation 
brackets, the problems associated with the non­
orthonormality of the projected states can be resolved. 
And, in particular, they can be resolved in a form 
convenient for machine coding while still maintaining 
all the simplifications associated with the projective 
processes. In fact, the SU(3) :::J R(3) and SU(4) :::J 

SU(2) ® SU(2) orthonormalizing transformations can 
be incorporated directly into programs which calculate 
the transformation brackets. The result is then 
SU(3) ::l R(3) and SU(4):::J SU(2) ® SU(2) trans­
formation brackets which relate physically significant 
orthonormal basis states to the corresponding canon­
ical basis states. Within such a framework the SU(3) ::l 
R(3) coupling coefficients of Ref. 13 and the SU(4) ::l 

SU(2) ® SU(2) coupling coefficients of the present 
paper become Wigner coefficients, and hence standard 
algebraic techniques introduced by Racahzo can be 
applied to simplify matrix element calculations. 
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We prove, by use of energy inequalities, a theorem of uniqueness and local (Le., for finite time) 
stability for the solution of Cauchy problem relative to the integro-differential system of Einstein and 
Liouville. A global theorem of geometrical uniqueness follows from a general method, previously given. 
We will prove elsewhere an existence theorem. 

INTRODUCTION 
The aim of this paper is to prove a uniqueness 

theorem for the solution of the Cauchy problem for 
the coupled Liouville-Einstein equations, i.e., for a 
collisionless relativistic gas under its own gravita­
tional field. Such a gas provides a model reasonably 
appropriate for physical systems like systems of 
galaxies or some systems of stars (which are then the 
"particles" of the gas) and certain plasmas or radia­
tions (in this last case the particles have a zero rest 
mass). 

With the uniqueness theorem we prove a local 
stability theorem; i.e., we prove that the solution 
(metric and distribution function) depends continu­
ously on the initial data: such a theorem, which 
states that a small initial perturbation gives rise to a 

small perturbation during some finite time, seems the 
first necessary step to be assured of before any more 
elaborate research on stability. 

The plan of this paper is the following: 
In Sec. I, I give a brief review of the fundamental 

concepts of relativistic kinetic theory, and' I recall 
the equations governing the motion of a self-gravi­
tating collisionless, relativistic gas: the coupled 
Einstein and Liouville equations. I also recall, or 
establish, a few general properties of these equations 
which will be used in the following (i.e., local equiva­
lence of Einstein equations in harmonic coordinates 
and tensorial Einstein equations, and use of bounded 
parameters for the momenta in the Liouville equation). 

In Sec. II, I establish some inequalities satisfied by 
the difference of two solutions of the Cauchy problem 
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Liouville. A global theorem of geometrical uniqueness follows from a general method, previously given. 
We will prove elsewhere an existence theorem. 

INTRODUCTION 
The aim of this paper is to prove a uniqueness 

theorem for the solution of the Cauchy problem for 
the coupled Liouville-Einstein equations, i.e., for a 
collisionless relativistic gas under its own gravita­
tional field. Such a gas provides a model reasonably 
appropriate for physical systems like systems of 
galaxies or some systems of stars (which are then the 
"particles" of the gas) and certain plasmas or radia­
tions (in this last case the particles have a zero rest 
mass). 

With the uniqueness theorem we prove a local 
stability theorem; i.e., we prove that the solution 
(metric and distribution function) depends continu­
ously on the initial data: such a theorem, which 
states that a small initial perturbation gives rise to a 

small perturbation during some finite time, seems the 
first necessary step to be assured of before any more 
elaborate research on stability. 

The plan of this paper is the following: 
In Sec. I, I give a brief review of the fundamental 

concepts of relativistic kinetic theory, and' I recall 
the equations governing the motion of a self-gravi­
tating collisionless, relativistic gas: the coupled 
Einstein and Liouville equations. I also recall, or 
establish, a few general properties of these equations 
which will be used in the following (i.e., local equiva­
lence of Einstein equations in harmonic coordinates 
and tensorial Einstein equations, and use of bounded 
parameters for the momenta in the Liouville equation). 

In Sec. II, I establish some inequalities satisfied by 
the difference of two solutions of the Cauchy problem 
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relative to the coupled Einstein-Liouville equations 
by using energy integrals related to these equations. 

In Sec. III, I deduce from the preceding inequalities 
a local uniqueness and stability theorem for the 
solutions of such a Cauchy problem. The local 
uniqueness implies global geometric uniqueness.! 

In the Appendix, I treat the case of continuous 
masses (star clusters). 

I. EQUATIONS AND GENERAL PROPERTIES 

We will in this part recall briefly the origin and 
the form of the Liouville equation for the distribution 
function f on a space-time of general relativity. In 
order that the stress-energy tensor corresponding 
to the particle flow associated with this distribution 
function be bounded, we will have to make some 
hypothesis about the decrease at infinity (in momen­
tum space) of this function ("weighted" distribution 
function). For all metrics verifying, in a local chart, 
the usual hypothesis of boundedness, differentiability, 
and hyperbolicity, we will show that it is possible to 
choose (we treat, for simplicity, the case of particles 
with a given rest-mass) parameters in momentum 
space which take their values in a bounded domain 
of R3: This choice will simplify the establishment of 
inequalities in Sec. III. 

We finally write Einstein equations and give a form 
for the stress-energy tensor adapted to the further 
study. 

A. Phase Space and Distribution Function 

Within the framework of general relativity the phase 
space is the tangent bundle T(M) of a 4-dimensional 
differentiable manifold M, which has a hyperbolic2 

metric g. If x a are local coordinates in M, we call 
(xa, pa) the local coordinates in T(M), where the pa 
are the components of a vector p tangent to M at 
x in the natural frame associated with the local 
coordinates xa. I 

A particle is a path in phase space (x(t), pet»~, 
where x(t) describes the position of the particle and 
pet) its 4-momentum. If m is the proper mass of the 
particle, the length of p in the metric g is m, and the 
path of the particle in the phase space lies in the sub­
bundle 

(1) 

We will suppose, moreover, that M is time oriented 
and that p points toward the future. Then p, for given 
x, is on the future sheet Px of the hyper surface of Eq. 
(1). P", is called the mass-m hyperboloid. 

The volume element in M and Tx(M) being, 

respectively, in the coordinates (xa) and (pa), 

'Y} = Igl k d4x, w = Iglk d4p, 

d4x = dxo /\ dx1 
/\ dx2 /\ dx 3

, (2) 

d4p = dpo /\ dpl A dp2 /\ dp3, 

the volume element in Px is given by the Leray form 
such that 

'1IT /\ d[t(ga/lpap/3 - m2
)] = w, 

which may be written 

'1IT = (lglk/Po)d3p, d3p = dpl /\ dp2 A dp3. (3) 

In the absence of external forces (which we 
suppose3), the particle paths are geodesics, i.e., tra­
jectories of the vector field X on T(M): 

X = [pa, -r~l'p'\pI·]. 

For particles of mass m, these trajectories lie onP(M). 
The distribution function4 I(x, p) is a scalar 

function on T(M). Its interpretation is that the 7-form 
on T(M), 

() = I(x, p)i (n /\ w), 

induces, on each 7-dimensional submanifold ~ of 
T(M), the volume element for the number of particle 
paths crossing ~. 

In the case where particles are microscopic (rela­
tivistic gas or plasma), the proper masses take on a 
finite range of discrete values mi' The distribution 
function is then the finite sum of distribution func­
tions corresponding to each of these values 

Ii being defined on Pi(M). 
In the case where the particles are macroscopic 

(star or galactic clusters), the proper masses take on 
continuous values, and the distribution function 
could be defined on T+(M) (fiber gafJpap/l ~ 0, p 
pointing towards the future). The astronomical data 
prove, however, that the masses of the stars of a cluster 
are bounded from above and from below5 : I(x, p) is 
then to be defined only on the submanifold 

B. Liouville Equation 

If we suppose that particle paths are differentiable 
geodesics (no collisions), the conservation law of the 
number of particles imposes the fact that () is invariant 
under the trajectories of X, i.e., that 

ix(} = 0, 

ixd(} = 0. 

(4) 

(5) 
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Equation (4) is, for any f, a consequence of the 
identity 

(iX)2 = 0. 

(5) gives a differential equation for f, called the 
Liouville equation: 

. a af a;' I' af 
IX df= (df)(X) = p - - r;.I'P p - = 0. (6) 

axa apa 

If we denote by V a vector field on M, strictly 
timelike for the metric g [i.e., V' P == Vapa 2 k > 0, 
V P E T;/(M)] and set (cp is the weighted distribution 
function) 

(uniform hyperbolicity of g, with XO = cte uniformly 
spacelike, and bounded ness of g); 

(b) gaP is C2 and 

I a;. gaP I :::;; M ', la~l'gaPI:::;; M'. 

Remark: The metrics satisfying HI form a bounded, 
closed convex subset of the space (x qu »)10. 

1£1 m =F 0, we may take, as parameters on the m 
hyperboloid P", 

(9) 

cp(x, p) = (V . p)Nf(x, p), (7) We denote by ..A(,,, the image in R3 of P" by the mapping 
p --+ (Vi). For all x E M and all metrics g satisfying HI 
on V, the domains ..A(,,, are contained in a fixed we deduce from (6) that cp satisfies the differential 

equation 

(8) 
let us remark that 

p;'pI'V;,VI' = !p;'pll(V;.VI' + VI'U;.) 

vanishes for all p E Tx(M) if and only if VI' IS a 
Killing vector field of the metric g. 

On the other hand, the inequality 

p;'pIlV;.UI' = ixd(U' p) :::;; ° 
means that V· P is nonincreasing on particle paths. 
The existence of a timelike vector field verifying this 
assumption, for a given metric, has been proved by 
Bitcheler6 and will be called the Bitcheler lemma. 
We will not use this lemma here. 

Remark: The vector field X is tangent to P(M); 
thus Eqs. (6) or (8) may be restricted to partial 
differential equations on P(M). 

C. Bounded Parameters on P x 

In a coordinate chart, it is physically reasonable 
to suppose that the metric of the space-time is 
differentiable enough for the geodesics to be well 
defined, and uniformly hyperbolic, and to choose 
adapted coordinates; more precisely, we state the 
following: 

Hypothesis HI, Definition: A metric, given in a 
local chart by ten functions gap defined on an open 
set V of R4, satisfies hypothesis HI> if on V: 

(a) There exist positive constants a, b, and M such 
that 

_gijXiXi 2 b2~(X'Y, b > 0, 

goo 2 a2 > 0, gOO 2 a2 > 0, IgaPI:::;; M 

bounded domain ..A(, c R3: Eq. (1) may indeed be 

- giigO igoi (pO)2 = m2 , (10) 

where gOi = gihgOh ' with gih being elements of the 
matrix inverse of gih' We deduce from (10) and 
hypothesis HI 

pO 2 m.. = m Igool! 2 ma (11) 
(goo - giit'g01)! 

and 
3 3 3 

b2 ~ (Vi)2 :::;; 2b2 L (Vi + ti)2 + 2b2 L (ti)2 
~l ~l ~l 

3 3 

:::;; -2gii L (Vi + gOi)(Vi + gOi) + 2b2 ~ (ti)2 
i~l i~l 

3 

:::;; 2goo - giititi + 2b 2 L (ti)2 
i~l 

= ~ + 2b2 ± (gOi? (12) 
gOO i~l 

Hence 
3 

L (Vi )2 :::;; K(a, b, M). (13) 
i~l 

A straightforward computation gives the following 
for the Leray form (3) in the parameters Vi on the 
fiber Px : 

(14) 

If we define the functions yap(x, v) on P(M) by 

yaP(x, v) = papP(pO)4j(Vapa)N, (15) 

with Va strictly timelike for all metrics satisfying HI r 
chosen such that 

Vo + ViVi 2 k > 0, V {Vi} E j(" (16) 

then yafJ(x, v) is bounded on .M, if 

N~6. 
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If rp(x, v) is the expression of rp on P., in the param­
eters Vi, Eq. (8) reads 

arp .arp .arp - + v'-. - A'-. - NFrp = 0, (17) 
axo ax' av' 

with 

Ai = r~o + 2Qovi + QhVV 

- virgo - 2vir iOvi - vir~hVV, (18) 

F = (Uo + UiVi)-l 

X [VoUo + Vi(VOU i + ViUO) + VVV;Ui]. (19) 

Under the hypothesis HI' the functions Ai and F 

are CIon U x ..A{" with bounded derivatives of order 
::;; 1 or, if U~ has been chosen8 C2, with bounded 
derivatives of order::;; 2. 

Hypothesis H2 , Definition: We will say that a 

function rp(x, v) on U x .A(, satisfies the hypothesis 

H2 if, on U x ..A{" rp is CI and there exists a constant 
Mil such that 

Irpl < M", la).rpl::;; M", I :; I::;; M". 

D. Einstein Equations 

We will now suppose that the particles are the 
sources of the gravitational field, i.e., that Einstein 
equations are satisfied: 

S~fJ = RafJ - 19afJR = T~fJ, (20) 

with T~fJ, the stress-energy tensor due to the particles, 
given at each point x E M by 

T~fJ =f I(x, p)papfJ71T• (21) 
l1xCM) 

II.,(M) denotes the fiber appropriate to the prob­
lem at hand [i.e., P.,(M), 2i Pi.,(M), r;(M), .. ']. 

To study the solutions of (20) from the point of 
view of analysis, it will be convenient to use local 
coordinates which are harmonic (i.e., a).[lgl! gAil] = 0). 
We know that, in such coordinates, the Einstein 
tensor reads 

a 
a). = ax).' 

(22) 

where HafJ is a rational function (with denominator 
a power of Igl) of gAil and ayg).ll. 

On the other hand, it is known that, if I satisfies 
the Liouville equation, the stress-energy tensor 
(21) satisfies the conservation laws 

(23) 

By standard arguments, it then follows that any 
metric g solution of 

(h)S~fJ = T~fJ 

verifying the constraints on an initial spacelike 
hypersurface will verify the tensorial Einstein 
equations (20). 

If we suppose, for simplicity, that all particles have 
the same mass9 m ¥- 0, the tensor T~fJ reads 

where ..A{,,,, is a bounded domain and p~fJ [cf. Eq. (15)] a 
bounded function on ..A{,.,. 

II. ENERGY INEQUALITIES 

We define, in a coordinate system, norms for the 
difference of two metrics 19 and 2g and of the corre­
sponding weighted distribution functions lrp and 2rp, 
at a given "time" XO = t, and then establish inequali­
ties between the sum of norms and the sum of the 
corresponding norms at an initial time (XO = 0). We 
set Ig).1l - 2gAil = yAIl, lrp _ 2rp = tp, where 19 and 2g 
are two metrics satisfying the hypothesis HI, with lrp 
and 2rp satisfying H2 and the couples (lg,lrp) and 
(2g,2rp) satisfying both of the coupled Einstein­
Liouville equations. 

By subtracting equations satisfied respectively by 
(lg, lrp) and eg, 2rp), we get 

-t 2g<%fJa!/iy).1l - ty~/ia!fJ IgAIl + 2HAil - IH).11 = VAil, 

(24) 

where 

and 

. 2' atp 2 
aoVJ + v'aitp - A' -. - N Ftp=V,(25) 

av' 

V = (2Ai _ lAi) a lrp + NCF _ IF) lrp (26) 
av' 

v).11 = ( 2rpy~/i 12gl! d3v _ ( Irpp~fJ IIgl! d3v, (27) 
)2 JIl. )1 JIlx 

with 2,At", (resp. l,M,,,,) denoting the range of the vari­
ables {Vi} corresponding to the fiber P", for the metric 
2g (resp. 19). Equation (27) may be written 

VAil = [ [elP - lIP) \2g\! 
)2 JIl. f"\ 1 JIl. 

+ (12gl! _ Ilgl!) Irp]p<%fJd3v 

+ f.JIlx_(2J1l,f"\ I J1l,.:rpp<%/i 12gl! d
3
v 

_ [ lrpp<%fJ Ilgl! d3v. 
)1 JIl,,-(2J1l.f"\' JIlx> 
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Our uniqueness will then follow from energy 
inequalities applied to (24) and (25). We will also 
deduce from these inequalities a stability theorem. 

A. Norms and Energy Inequalities for 
Differences in Metrics 

We denote by X the part in the future (XO 2: 0) of 
a subset of V, globally hyperbolic for all metrics 
satisfying HI, with Cauchy surface wo, a relatively 
compact subset of So (i.e., all timelike or null curves 
issuing from x E X, towards the past, cut Wo once and 
only once; the existence of such domains X is easy to 
prove); we denote by W t the hypersurface XO = t of X. 

We setlO 

where 

IlyAIlII; = r [I DIyAI'I2 + lyAIl12]d3x, Lt 

(28) 

I DIyAIl12 = L la~yAll12 (29) 
~ 

and 

Ilyll~ = L IlyAIlII~, (30) 

and analogously 
A,1l 

Ilvll t = r L IUAIl12 d3x. 
JWt)",Jl 

We obtain bounds for (28), as usual,l1 for second­
order partial differential equations: We multiply by 
aoyap and integrate over X (intersection of X with the 
past of W t for the metric 2g), using Stoke's formula 
(the "lateral" boundary of X is characteristic and 
gives rise to a nonnegative integral) and using, more­
over, the fact that, for any differentiable function u 
onX, 

" lu(x~)12 ~ 2xof' laou(xi, TW dT + 2Iu(x i
, 0)1; 

we thus find that there exist constants C1 , C2 , and C3 

depending only on bounds HI such that 

Ilyll~ S CI Ilyll~ + (C 2 + 2t) flIYII;dT + C3fliVIITI dT. 

B. Norm and Energy Inequality for Difference 
in Distribution Function 

Let us denote by Q the subbundle of P( V) with 
basis X: 

(X,p)En~XEX, v = {Vi =pi/pO}E2.A(,x' 

a point (x, p) in the boundary an of 0. is either 

x E aX or p E oP"" i.e., v EO 2.A(,x; 

we see that an is the union of a "lateral" boundary 
L, generated by null geodesics of 2g , and of subsets 
where x belongs to W t or to Wo' 

If we multiply (25) by V' and make some obvious 
transformations, we get 

= (N 2F - ~ 2Ai) 1V'12 + 2VV'. (31) 
au' 

If we integrate (31) over 0. and apply Stoke's 
formula on the one hand, the integral over L vanishes, 
and we get (C4 and Cs depend only on bounds HI) 

111V'lllt ~ 111V'lllo + C4flllV'IIIT dT + Csf!IIVIIIT dT, 

where we have set (recall that 0\ C w
T

) 

and analogous definition for III VIIIT . 

C. Bounds for II VII and Illvlll 

We deduce from (26) and bounds HI and H2 that 
there exists a constant K, depending only on these 
bounds, such that 

III Vilit ~ K Ilyll~ . (32) 

We consider now (27). We remark that 2.A(,x (resp. 
l..;\t,,,,) is defined by 

2~(Vi) ~ 2goo1 [resp. I~(Vi) ~ Igo~], 

where [cf.(9)] 

~(Vi) D~ _ gii(Vi + g-Oi)(Vi + g-Oi); 

it results from the definition of yAIl and hypothesis 
HI that the points Vi of 2.A(,x which are not in I.A(,,,, 
satisfy the following inequalities (C All constants 
depending on bounds HI), 

egOOr l 
- CAlllyAll1 S ~2(Vi) ~ CgOOr\ CAll 2: 0, 

(33) 

from which there results the existence of constants 
DAIl ~ 0 such that the measure of the set 2.A(,x­
(I.A(,,,, n 2.A(,x) is bounded by D;"1l lyAIlI. 

It is then easy to obtain the majoration, where the 
constants K2 and Ka depend only on the bounds 
HI and H 2 : 

(34) 

We then deduce from inequalities (32) and (34) that, 
if 

t S T on X, 

there exists a constant C, depending only on T, HI, 
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and H2 , such that 

Ilyll~ + !!!1f!!!t :::; Cl Ilyll~ + !!!1f!!!o 

+ C f("Y"~ + !!!1f!!!,) dT. (35) 

An easy consequence of this integral inequality is 

IIYII~ + !!!1f!ll t :::; (C l IIYII~ + !!!1f!!!o)ect . (36) 

III. UNIQUENESS AND STABILITY THEOREMS 

We will deduce easily from the inequality (36) the 
following: 

Local uniqueness theorem (discrete masses): 

Hypothesis: 

(1) 19 and 2g are two metrics satisfying HI' On 
S(xo=O): 

19.p = 2g•p , a). 19./i = a). 2g•p , for XO = 0. (37) 

(2) lcp and 2cp satisfy H2 and 

lcp = 2cp, for X O = 0, 

which implies [under hypothesis (37)] 

Y = 2f for XO = 0. 

Conclusion: In a neighborhood X of S, 
Ig = 2g, 

and, on the corresponding bundle P(X), 

If = 2f. 
Proof: Equations (37) and (38) imply 

IIYII~ = 0, !!!1f!!lo = 0; 
thus, by (36), 

IIYII~ = ° and !!!1f!!!t = 0, t:::; T. 

(38) 

Under the hypotheses HI and H2, these equations 
imply 

yAIL = ° on X, i.e., 19AIL = 2gAIl, 

and V' = ° on the corresponding bundle P(X); thus 
If = 2f. From this local uniqueness, that we have 
obtained in harmonic coordinates, one deduces by 
standard arguments (cf. above) a geometric (i.e., up to 
Isometry) global uniqueness theorem for the solution of 
Cauchy problem in the class of smooth globally hyper­
bolic metrics. 

Stability: The inequality (36) proves that, if the 
norms at time XO = 0, {IIYII~}t and {1111flllo}t, are less 
than some small number E, the corresponding norms 
at time XO = 0 will be less than KE, where K is bounded 
for bounded t. This property proves what could be 
called a local or weak stability theoremll

: Such a 
theorem states that a small perturbation in the metric 
and the distribution function gives rise to a small 

perturbation, at least during some finite time. The 
strong stability,12 in a rigorous sense, would be 
obtained if K could be proved to be a bounded 
function of t: In general, K increases infinitely (and 
even exponentially) with t. It would be interesting to 
study its order of magnitude, in special cases, after a 
proper choice of coordinates geometrically (or 
physically) meaningful. 
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APPENDIX: CONTINUOUS MASS 
(STAR OR GALACTIE CLUSTERS) 

It is very easy to extend the local uniqueness and 
stability theorem to the case of proper masses ranging 
continuously from ml > ° to m2 > 0. The fiber TIx 
is then given by the manifold with boundary 

2< • p< 2 m1 _ g.pP P _ m 2• 

We can take on TIx the parameters Vi = llpo, t = 
g.Pp·pp. For a given metric g, the range of {Vi} is the 
bounded domain .ALx of R3 (cf. Sec. ID), independent 
of t, and, if we set 

we have 
f(x, p) = cp(x, v, t)(U.p·)-6, 

T·P = {t, { cpv.P I glt t-1 d3v dt, 
Jit J.AL x 

where v·p is the bounded function (15) (with N = 6). 
The function cp(x, v, t) satisfies the same Liouville 

equation (17) as in Sec. ID (the derivative acplat does 
not appear, due to the fact that the absolute deriva­
tive of g vanishes). It is then straightforward to apply 
arguments analogous to those of Sec. II. 

* This work was done while the author was at the University of 
North Carolina in Chapel Hill, supported by the National Science 
Foundation. 
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and Kinetic Theory," lecture notes, Varenna, 1969. 
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, For m = 0, a modified version of the following arguments may 

be used. 
8 Such a choice is always possible: Take, for instance, Uo = I, 

Ui=O. 
• It is easy to extend the following proofs to the case of a finite 

number of rest masses m,. 
10 Ilyll~ is the square of a norm (Sobolev space);see Y. Leray, 

Hyperbolic Differential Equations (Institute for Advanced Study, 
Princeton N.J., 1952). 

11 There are physical phenomena which are not weakly stable. 
12 A study of stability in the spherically symmetric case is done 

by Y. Ipser and K. Thorne, Astrophys. J. 154,251 (1968). 
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Realization of the Lie Group G(O, J) by the Function 
of Landau Levels 
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The irreducible basis of the Lie group G(O, 1) are obtained in connection with the quantum physical 
problem: a motion of a free electron in a magnetic field. The differential operators are shown to be the 
infinitesimal operators defined by Brown. 

Much progress on the relation between Lie group 
and special functions has recently been developed. 
The most familiar example is the connection between 
the rotation group and spherical harmonics, which 
gives fundamental knowledge in quantum mechanics. 
Now we will point out that the representation <;>f the 
4-dimensional Lie algebra G(O, b) is realized by the 
functions of Landau levels which express states for 
the motion of a free electron in a magnetic field H. 
The 4-dimensional Lie algebra G(O, b) with basis 
A+, A_, A3, and E is defined by the following com­
mutation relations: 

[A+, A_l = -bE, [A3' A+l = A+, 

[A3' A_l = -A_. (1) 

Now we associate following differential operators to 
each A (in a polar coordinate system): 

A = ± e' 2fJp ± - + - -± '8( 0 i 0) 
± op P of) , 

1 0 
A3 = --, E = 1. 

i of) 
(2) 

It is easily verified that they satisfy the commutation 
relations (1), b = 2fJ. The Casimir operator is given by 

C = A+A_ - bA3 

02 1 0 1 02 . 0 fJ 2 2 = - + - - + - - + 'fJ - - - p - fJ· (3) 
Op2 pop p20f)2 of) 4 

If we put fJ = mWeJIi and We = eHJmc, it is found 
that the Casimir operators are simply connected to 
the Schrodinger equation of a free electron in a 
magnetic field H directed to the Z direction, apart 

from the Z component; that is, 

[
1 0 ( 0) 1 0

2 
imwe 0 

; op p op + p2 of)2 + -li- of) 

+ 2117 (E - kmw~p2)J?f! = 0. (4) 

The eigenfunction ?f!~n of (4), for zero or any positive 
integer n, is 

(5) 

and has the eigenvalue (n + ) + t)liwc (upper sign) and 
(j + t)liwe (lower sign), respectively. The degenerate 
eigenfunctions of semi-infinite numbers (upper 
bounded) with a constant eigenvalue (l + t)liwc will 
be obtained by operating the A± operators on any 
function with the same eigenvalue; for?f!~, n = t,) = 0, 

A+?f!~ = 0, A_?f!~ = 2?f!~-l' ... , 

and, in general, we have the following recurrence 
relations: 

and 

A I fJ I 
-?f!-n = - ?f!-(n+l)' 

n + 1 + 1 
(6) 

Then these functions will form the irreducible basis 
of G(O, b), isomorph to G(O, 1). It is to be noted that 
the operators A± are to be called infinitesimal mag­
netic translational operators in a polar coordinate. 
These are simply related to the magnetic translation 
operators Til! ± iTy introduced by Brown l and are 
easily derived from them. 

1 E. Brown, Phys. Rev. 133, AI038 (1964). 
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The analytic properties of the S function in the complex angular momentum plane for regular potentials 
with inverse square tails are discussed. Special attention is given to the determination of the poles of S 
in the limits of low and high energies. Two soluble examples are considered in detail. 

1. INTRODUCTION 

The purpose of this paper is to study some features 
of the ,-2 potential. Our interest is mainly on the 
consequences of the long-range tail. 

As repulsive singular potentials do not present 
difficulties or features of special interest, we restrict 
our attention to attractive potentials. In order to study 
in a practical way the effect of the singularity, we 
perform a regularization of the form of the potential 
within a range b about the origin. In Sec. 2 we study 
some properties of the S function for a given range b 
and look for general results which remain meaningful 
as b becomes small. 

In Sec. 3 we discuss two particular examples. In 
one case, we put VCr) = V(b) = const for r ~ b; in 
the other, we introduce a repulsive hard core of 
radius b. These two special cases have in common the 
interesting property that the forms of their Regge 
trajectories are independent of the range b. 

2. REGULAR POTENTIAL WITH INVERSE 
SQUARE TAIL 

Let us consider the Schrodinger equation for a 
particle of mass m and energy E = /i2k2/2m in a 
potential of the form 

VCr) = vCr), r < b, 

= -(/i2/2m)f1r2, r > b, (2.1) 

where vCr) is a regular function in the interval [0, b] 
and is such that VCr) does not present an infinite 
discontinuity at r = b. We define the variables 

J. = 1+ t, 
y = (J.2 - ft)!, 

and 
z = kb, 

where I is the angular momentum. 
Let us call 

(2.2) 

(2.3) 

(2.4) 

where L(b, k, J.) is the logarithmic derivative at 
r = b of the I wave reduced radial wavefunction for 
the inner region. The solution in the outer region is 
a linear combination of Bessel functions H~O(kr) 
and H~2)(kr). Following the usual procedure of im­
posing continuity in the logarithmic derivative of the 
wavefunction, we obtain for the S function 

S(b, k, J.) = -exp [i7T(J. - v)] 

D(b, k, J.)H~2)(Z) - ZH~2)'(Z) 
X . (2.6) 

D(b, k, J.)H~l)(z) - zH~l)'(z) 

A. General Remarks 

The analytical properties of S(b, k, J.) have been 
discussed by Barut and Calogero.1 We wish to add a 
few remarks to their work. 

The first remark concerns the possibility of S 
presenting nonessential singularities of the second 
kind, namely, indeterminacy points of the form 0/0. 
The simultaneous vanishing of numerator and denom­
inator in Eq. (2.6) would imply in the vanishing of 
the Wronskian of H~1)(Z) and H~2)(Z). Since this 
Wronskian is given by 

W[H~l)(z), H~2)(Z)] = -4i(7TZ)-\ (2.7) 

it does not vanish for any given z. We conclude that 
such indeterminacy points are never present in the S 
function for a potential with an inverse square tail. 

The second remark concerns the analytic continua­
tion of S to the half-plane Re J. < O. This continua­
tion depends on the form of the function D(b, k, J.) 
and, consequently, on the form of the potential v(r).2 
By inspection of Eq. (2.6) and by making use of 
properties of the Hankel functions, we obtain that the 
Mandelstam reflection property3 

S(b, k, -J.) = S(b, k, J.), J. = integer, (2.8) 

j s satisfied jf 

D(b, k, J.) = bLeb, k, J.) - t, (2.5) 

3245 
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We thus see that this .result, obtained previouslyl 
for potentials of finite range, is also valid in the 
presence of an l/r2 tail. In what follows we consider 
only the half-plane Re A > 0. 

We now proceed to study the location of the poles 
of S in the complex angular momentum plane. We 
first study the general problem of a regular potential 
of the form given in Eq. (2.1) and discuss the pole 
distribution in the limits of low and high energies. 
The pole locations are determined by the solutions of 

D(b, k, J..)H~l)(Z) - ZH~l)'(Z) = 0. (2.9) 

B. Low Energies 

It is known4 that H~l)(Z) and H~l)'(Z), considered 
as functions of v and z, both vanish at v = 0, Z = 0. 
Thus, for zero energy the zeros of the denominator 
in Eq. (2.6) are located at 

(2.10) 

a result which does not depend on the form of the 
potential vCr) in the inner region. At the threshold, 
the positions of the poles are entirely determined by 
the inverse square tail, and all poles are at the same 
point of the complex angular momentum plane. 

Besides the poles located at A = Ao, it is possible 
to have poles at different values of A. These values are 
the possible solutions of the equation for A, 

D(b, 0, A) + v = 0, (2.10') 

which is obtained from Eq. (2.9) dividing by H~l)(Z) 
and taking the limit k -4- 0. Of course, the existence of 
solutions of Eq. (2.10') depends both on the form of 
the potential in the inner region vCr), through the 
value of D(b, 0, J..), and on the intensity of the in­
verse tail, through the value of v. Special attention 
should be paid to Eq. (2.10') for a given vCr). However, 
since our interest is on the effects of a r-2 tail and not 
on the details of a specific potential in the inner region 
vCr), we shall consider that vCr) has been chosen in 
such a manner that Eq. (2.10') has no solutions. Of 
course, this restricts in some way the potential vCr), 
but it is not a very severe restriction. It is not difficult 
to find forms of vCr) regular at the origin and for 
which Eq. (2.10') has no solutions. Although not 
explicitly specified, we shall assume through all this 
section that v(r) satisfies those conditions. This 
assumption must be kept in mind below, particularly 
when we draw conclusions about bound states and 
resonances. 

To see what happens for small values of \z\, we first 
expand the Hankel functions in Eq. (2.9) in power 

series, retaining only the first few terms. We obtain 

(iZ)2V{1 - v[D(b, k, ,t)]-l + 0(Z2)} 

= eilTV{1 + v[D(b, k, A)tl + 0(Z2)} 

X r(1 + v)/r(1 - v). (2.11) 

We follow the procedure of Keller et al. 4 and take 
the logarithm of the two members of the above 
equation. Noting that 

[
r(1 + V)] 00 ,(2m + l)v2m

+I 
log = - 2?,v - 2 I ' 

r(1 - v) m=l 2m + 1 
(2.12) 

where ?' is the Euler constant and , indicates the 
Riemann zeta function, we obtain, for the equation 
determining the poles, 

log (iz) = -inTr/v + tiTr - ?' + [D(b, k, A)]-l 

+ 0(v2) + O(Z2), (2.13) 

where n=I,2,3,···. The above Eqs. (2.11) 
and (2.13) are meaningless when vCr) is such that 
D(b, k, A) = ° for z = 0. If this be the case, we have 
to discuss the solutions of Eq. (2.9), taking into 
account the behavior of D(b, k, A) for small Iz\. If 
D(b, k, A) -4- ° as any power of z when z -4- 0, we can 
easily verify that the location of the poles is deter­
mined by an equation similar to Eq. (2.13), with the 
only change that the term [D(b, k, A)]-l does not 
appear and n is replaced by n - t. 

Let us call 
(2.14) 

the value of D(b, k, A) at z = 0, v = 0, which we 
assume to be different from zero. We expand: 

D(b, k, A) = Do + (A - Ao{~~l + z[O:l + .... 
o (2.15) 

The derivatives of D are well behaved for small v and 
z, so that Eq. (2.13) gives 

logctz) = -inTrjv + tiTr -?' + DOl + 0(v2
) + O(z). 

(2.16) 
Writing 

and 

we obtain 

v = inm){1 - [i(tTr - rp) - ?' + DOl]O 

(2.17) 

(2.18) 

+ [i(tTr - rp) - y + D01]2Q2 + 0(03)}. (2.19) 

The above equation gives explicitly the position of 
the poles of S(b, k, Je) in the complex angular mo­
mentum plane, for a given b and small complex 
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values of k. The dependence on the shape of the 
potential vCr) in the inner region appears only through 
the value of Do. 

Now we draw some conclusions from the previous 
results. Equation (2.10) says that at zero energy all 
poles are on the positive real axis for fl > 0 and on 
the imaginary axis for fl < 0. It is well known2 and 
can be seen directly from Eq. (2.19) that, for negative 
energies, poles in the half-plane Re A > 0 can be 
only on the real axis. For fl > ° (attractive tail), as 
the energy approaches zero from negative values, 
the poles move along the segment of the real axis 
between the origin and the point A = flt. For fl > t 
there is an infinite number of bound states for every 
angular momentum satisfying I = 0, 1,2, ... , :::;; 
(flt - t). There are no bound states for values of 
angular momentum larger than fl! - t. These results 
do not depend on the form vCr) of the potential in the 
inner region. 

As Do is real, Eq. (2.19) tells us that, for 

(2.20) 

the Regge trajectories are independent of the form 
of v(r). The above condition is satisfied for small 
absolute values of the energy or for small values of 
the range b of the regularizing potential vCr). 

For fl > 0, Eq. (2.19) says that, for pure imaginary 
values of z (negative energies), v is pure imaginary. 

1m >. 

1.5 
FIG. 1. Regge trajectories at 

small energies for a regular 
potential with an attractive in­
verse square tail -(flh2/2m}/r 2, 

for fl = 4. As the energy in­
creases from negative values 
towards zero, the poles move 
along the segment of the real 
axis between the origin and the I . 
point 1.0 = Il!. At zero energy 
an infinite number of poles are 
located at 1.0' As the energy 
increases from zero, the poles 
move along separate curves, all 
of which are tangent to the real 
axis at 1. 0, The few highest 
curves are shown in the figure. 5 
An infinite set of curves are . 
located between these and the 
segment of the real axis between 
1.0 and the origin. 

.5 

As z increases from zero toward real values, the 
poles leave the real axis in the A plane along different 
trajectories. To obtain the trajectories of the poles 
for small real z, We first write Eq. (2.19) in the form 

!{ n
2

7T

2 

[ A=fl 1 - 2fl 02 1 - 2(i(t7T - q;) - y + DOl]O 

+ (3[i(t7T - q;) - y + DOl]2 + :;2) 02 + O(03)]}, 

(2.21) 

which is obtained by substituting v given by Eq. 
(2.19) into 

A R;; flt(1 + v2(2{J - v4(8{J2), Ivl« {J. (2.22) 

We then obtain 

1m A = (2!fll(n)(Ao - Re J.)i. (2.23) 

Equation (2.23) shows that, as the energy increases 
from the value zero, the poles leave the point Ao mov­
ing to the left along curves tangent to the real axis 
(see Fig. 1). This form of Regge trajectories, which 
occurs whenever an attractive inverse square tail is 
present, is peculiar and essentially different from 
what is observed for short-range potentials. 5 

The curve corresponding to n = 1 has the highest 
value of 1m A for a given Re A. The poles labeled with 

0=1 

I. 1.5 2. Re A 
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higher values of n move along trajectories located 
between this first curve and the real axis. The segment 
of the real axis between ).0 and the origin is an accumu­
lation segment for the set of trajectories. 

Resonances at low energies do not occur for 
potentials with inverse square tail. Regge trajectories 
for positive energies can pass near points correspond­
ing to half-integer values of )., but this does not apply 
in the occurrence of resonances because the poles move 
toward the left as the energy increases. 

It should be mentioned that the observed fact of 
infinitely many trajectories approaching the point 
). = ).0 for a r-2 tail is the exact analog of the well­
known fact that, without such a tail, infinitely many 
trajectories approach), = 0 as k -> O. 

C. High Energies 

At large positive energies the poles tend to infinity 
in the). plane. We introduce the Taylor expansion 

H~U(z) = H~ll(z) + (v - ).) :). H~l)(Z) 

cj2 + ie'll - ).)2 0).2 Hi1)(z) + . .. (2.24) 

and use the relation 

a a 
- H (z) = - - H (z) a). ..l oz..l' 

which is valid for large). and z, to obtain 

Taking this expansion into the equation determining 
the poles, we find 

D(b, k, A)H~l)(Z) - ZH~l)'(Z) + (). - v) 

Since 

x [D(b, k, )')Hiu'(z) + zHill"(z)] + ... = O. 

(2.26) 

A - v = O().-l), 

the leading terms in the above equation give 

which is the equation for the poles in a finite range 
potential of the form vCr), without tail. 

3. TWO EXAMPLES 

We now choose particular convenient forms for 
vCr). We treat two cases which present the interesting 

property that the form of their Regge trajectories 
does not depend on the range b. 

A. Constant Potential Near the Origin 

We first discuss the continuous potential 

VCr) = -(h2J2m)ftJb2, r < b, 

= -(h2J2m)ftJr2
, r > b. (3.1) 

In this case 

where 
D(b, k, A) = ~J~(~)IJi~), 

~ = (Z2 + ft)!. 
The S function 

S(b, k, ).) = S(z, ).) = -exp [i7T(A - v)] 

x U~(~)H~2)(Z) - zJi~)H~2)'(Z) 

~J~(~)H~l)(Z) - zJ;.(~)ml)'(z) 

(3.2) 

(3.3) 

depends on k and b through the product kb = z. 
Owing to this fact, the trajectories, described by the 
poles as the energy varies, are the same for all values 
of b. 

Using the well-known formula for the Wronskian 
of Bessel functions 

W(J"<~), J_).(m = -2 sin ().7T)/7T~, 

we derive from Eq. (3.2) 

D(b, k, -).) = D(b, k, ).), ). = integer, 

and so the Mandelstam reflection property (2.8) is 
satisfied. 

In Sec. 2 we mentioned the possibility of D(b, k, ).) 
becoming zero for z = 0, A = ).0' In the present 
example this possibility is excluded, as follows from 
the fact that ).J~().)IJ),()') is a monotonously increasing 
function of A for real positive A. 6 

B. Hard Core 

The general treatment given in Sec. 2 to potentials 
with an inverse square tail was limited to cases in 
which VCr) is regular everywhere. We now consider 
an example which is not included in these cases: 
Namely, vCr) is taken as a hard core of radius b. 

The S function 

S(b, k, J.) = S(z, J.) 

= -exp [i7T(). - V)]H~2)(z)IH~1'(Z) (3.4) 

admits continuation into the half-plane Re A < 0, 
through the equation 

S(b, k, -A) = exp (-i27TA)S(b, k, J.). (3.5) 

This last relation shows that Eq. (2.8) is valid. 
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-.5 2. 4. 

FIG. 2. Regge trajectories for a potential formed by a repulsive core with radius b and an attractive inverse square tail -(1z2/2m)f-l/r2. 
The solid lines represent the first trajectories for f-l = 4. For reference we show in dashed lines the corresponding trajectories for a pure hard 
core potential. ft = O. The form of the curves does not depend on the core radius b. For infinite negative energy there is an infinite number 
of poles at (-t. ct). As the energy increases the poles move down the line Re I = -t. pass the origin for a nonpositive value of the energy 
and move along the positive real axis. all poles reaching the point (f-l! - t.O) when the energy becomes zero. As the energy takes positive 
values. the poles pass to the complex plane. moving along different trajectories. all of which are tangent to the real axis at the point 
(f-l! - !. 0). For large energies the curves tend asymptotically to the trajectories corresponding to the pure hard core case. The numbers 
on the curves indicate the values of the parameter z. 

As happened in the previous example, the S func­
tion depends on k and b only through the product 
z = kb. This implies that the trajectory followed in 
the angular momentum plane by a Regge pole when 
the energy varies from - 00 to + 00 is the same 
whatever the value of b. There is only a change of 
scale in the values of the parameter k when we pass 
from a given value of the core radius to another value. 

The location of the poles of S is determined by the 
roots of H~ll(z), considered as a function of 'V. for 
different values of the parameter z. These roots have 
been discussed by Keller et al.4 for real z and by 
Ferreira et al. 7 for imaginary z. All results concerning 
the occurrence of bound states, and the behavior of 
poles, which were obtained in Sec. 2, remain valid 
in the present example. F·or illustration, we have 
represented in Figs. 2 and 3 the Regge trajectories for 
a potential VCr) formed by an attractive inverse 
square tail r > b and a repulsive hard core r < b. 

For infinite negative energies all poles are on the 
positive imaginary axis of the It plane. As the energy 

increases, the poles move down the Re I = - i line 
and reach the real axis at an energy which is different 
for each pole. As the energy is further increased, the 
poles move along the real axis. All poles reach the 
point Re 1= pJ - i when the energy becomes zero. 
If p,t > i, the poles pass through the points 1= 0, 
J , .•• , < (p,t - i) which correspond to physical 
bound states. The values of 1m I at the poles are 
shown as a function of the energy in Fig. 3, for a few 
Regge trajectories. For comparison, we show in the 
same figure the corresponding five trajectories for 
the hard core potential without the inverse square 
tail. We see that at low energies the trajectories 
depend essentially on the presence of the tail. As 
E --+ - 00 (and so 1m z --+ + 00), the poles tend to 
ignore the tail and depend only on the core. This is 
in agreement with what we have seen in Sec. 2. 

For positive energies the poles pass to the complex I 
plane, leaving the real axis at the point p,! - i. An 
approximate expression for the location of the poles 
at small Izl can be obtained with a procedure similar 
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FIG. 3. Displacement of the Regge poles for negative energies 
for a potential formed by a repulsive core with b and an attractive 
inverse square tail -(ft2/2m)f1/r2. The solid lines represent the first 
few trajectories for f1 = 4. For reference we show in dashed lines 
the trajectories for the pure hard core case, f1 = O. The upper part 
of the vertical axis represents 1m I, while the lower part indicates the 
values of Re I. In the example of the figure above, there is an infinite 
number of physical bound states for 1 = 0 and 1= 1. At Re 1 = 
It ~ - ! the poles pass to the complex plane. In the case of pure 
hard core, the poles do not move along the real axis and pass to the 
complex plane at Re I = -!. 

to that used to derive Eq. (2.21). It is 

~{ n
2

1T2 [ A = ~ 1 - 2~ 02 1 - 2[i(t?T - cp) - y]o 

+ (3[i(~1T - cp) - y]2 + 11;;)02 + O(03)]}, 
Izl «1. (3.6) 

In first order we again obtain Eq. (2.23). 
For large values of Izl we can use, for the zeros of 

H~l)(z), the approximate expression given by Keller 
etal. 4

: 

v" = Z + 6-ii1Tf3qnzi + (180)-16ie217f3q~z-i + O(Z-I) , 

Izi »n, (3.7) 

where qn is the 11th zero of the Airy function, 

Ai (q,,) = LXlCOS (t 3 
- qnt) dt = O. 

Using the equation 

A = v + O(v-I ), 

we obtain 

An = Z + 6-iei1Tf3qnzi + (180)-I6iei21713q!z-! + O(Z-I), 

Izi »n, (3.8) 

where the strength ~ of the tail does not appear. 
The coincidence between the expressions in the 

right-hand side of Eqs. (3.7) and (3.8) was to be ex­
pected in view of the fact that the addition of a ,-2 
term in the hard core region is of no consequence. So, 
the Regge trajectories for a hard core potential with 
a ,-2 tail are obtainable by the simple transformation 
Eq. (2.3) from those of a pure hard core potential. 
This makes our previous result quite self-evident. 

In Fig. 2 we show the trajectories of the poles for 
positive energies in the angular momentum plane. 
All trajectories leave the real axis at Re I = ~! - t 
moving towards the left along curves tangent to the 
real axis. 

The trajectories corresponding to a pure hard core 
are also shown in Fig. 2 for comparison. We see that 
for large energies the poles tend to ignore the presence 
of the tail. 
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A retarded potential tensor (4-vector) is derived in an arbitrary system of inertia for an arbitrary 
electromagnetic source in a moving homogeneous, isotropic, nondispersive, lossless dielectric. The 
velocity is uniform, and the result is relativistic correct. 

I. INTRODUCTION 

The differential equation for the potential tensor is 
simplest in the system of inertia Km where the medium 
is at rest. A 4-dimensional integral representation for 
the potential tensor can readily be obtained by using 
the 4-dimensional Green's theorem. One may carry 
out the integration with respect to the time coordinate 
to get the space integral representation for the (re­
tarded) potential tensor. 

As pointed out in Ref. 1, the space integral repre­
sentation in Km is not very utilizable in another system 
of inertia K which is in uniform motion relative to Km' 
This is due to the fact that space-time coordinates 
mix under the Lorentz transformation from K to Km. 

It is shown that the 4-dimensional integral repre­
sentation for the potential tensor in Km can be 
transformed to an arbitrary system of inertia K. 
Integrating with respect to the time coordinate then 
leads to the space integral representation for the 
(retarded) potential tensor in K. The results found 
here are in agreement with those in Refs. 2 and 3, 
where the pertinent differential equation is integrated 
by using Fourier transformation and an operational 
method, respectively. 

II. INTEGRAL REPRESENTATIONS OF THE 
POTENTIAL TENSOR 

We use Cartesian tensor notation. By a tensor we 
understand a tensor defined on the Lorentz trans­
formation group. Latin subscripts run from 1 to 4; 
Greek subscripts run from 1 to 3. The coordinate X 4 

is equal to ict, where t is the time and c the speed of 
light in vacuum; therefore, the metric tensor in 4-
space is equal to the Kronecker symbol 0;; (when 
Cartesian spatial coordinates are used), and we do 
not distinguish between contravariant and covariant 
tensors. Repeated subscripts obey the summation 
convention, and commas in subscripts denote partial 
differentiation with respect to coordinates (or covari­
ant differentiation, since the metric tensor is inde­
pendent of the coordinates). 

The potential tensor Ai satisfies a differential 
equation,1.4 which in an arbitrary system of inertia K 

can be written as a tensor equation: 

Ai.nn - KAi.stUsUt = -Si, 
n 2 

- 1 c, 1 
K:=---, n:=-, c :=--" 

c2 c' (,uE)~ (1) 

Si := ,u(Ji + :2 JrUrU} 

,u and E are the permeability and the dielectric 
constant of the medium. Vi is the velocity tensor of 
Km , and J i is the current density tensor.1.5 

Let primed quantities refer to Km. Since V; = 
(0,0,0, ic), we get from (1) 

A:.nn + C2
KA:.44 = A;.vv + n2

A;.44 = -S;. (2) 

Introducing new variables by y; := x; and y~ := 
n-lx~, we get from (2) 

(3) 

where (y~) == (y~, y~, y~, y~). 
For the solution of (3) see Ref. 5, p. 146. The result 

is 
00 

A;(y;) = (47T
2)-lIIII (S;(Z;) IJl(Z; - y;)2) dV(z;). 

-00 (4) 
Substituting back to variables x;, we obtain 

00 

A;(x;) = 1111 S;(z;)G'(z; - x;) dV(z;), 
-00 

where 

G'(z; - x;) == (47T2n)-1[u;u; + (K/n2)(u;V;)2]-1 
and 

u; == z; - x;. 

(5) 

The poles of the function G' are given by u~ = 
T~ == ±in(u;u;)!. As in Ref. 5 we can deform the 
contour for the z~ integration to circumvent one of 
the poles. Since advanced potentials are not of 
interest, we consider the pole T~. 

From (5) we get 
00 

-00 

where L' is a closed path surrounding T~. 

3251 
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Equation (6) is valid in Km; we now transform (6) 
to an arbitrary system of inertia K. Let Xr = arsx~ be 
the proper Lorentz transformation connecting co­
ordinates in K with coordinates in Km. Multiplying 
(6) by aji and substituting < by X r , we see that the 
left side in (6) (which is a tensor) becomes A;(xr). aji 
is independent of the coordinates, and, since S; is a 
tensor, we have ajiS;«) = Sj(zr) if Zr and z~ are 
connected by the proper Lorentz transformation, i.e., 
ZT = ar.z;. Furthermore, G' transforms like an 
invariant, i.e., 

G(ur) = (47T2n)-I[urur + (Kln2)(urUr )2]-I. (7) 

Without loss of generality, we choose ars so that 

Xl = x~, X 2 = x~, 

Xa = y(x~ + if3x~), X4 = y(x~ - if3x;), 

where y == (1 - f32)-i, f3 == vic, and v is the velocity 
of K relative to Km (Fig. I). 

To see how the poles to be circumvented are trans­
formed under the Lorentz transformation, we con­
sider the tensor equation 

UrUr + (Kln2)(ur Ur )2 = 0, (8) 

which is a 3-dimensional hypersurface in Minkowski 
4-space. In Km(8) reduces to (U~/i)2 - (nu~)2 = (np')2 
and p' == (U~2 + u~2)i which in Euclidean 2-space 
is the equation of a hyperbola (Cartesian coordinates 
u~/i, u~). In Fig. 2 the situation is illustrated in a way 
due to Minkowski.6 

When nf3 < 1 and U3 is given, there is one pole to 
be circumvented. When nf3 > 1 (this situation is 
shown in Fig. 2), there are two poles to be circum­
vented if U3 > lal i p, a == [1 - (nf3)2]/(1 - f32), and 
no poles are to be circumvented if U3 < lal i p (i.e., 
Ai is equal to zero). 

The roots in (8) are given by 

U4 nf3 
-=T = 
i ± - 1 - (n~)2 

X [en - n-1)ua ± (f3-1 
- ~)(ui + al)!]. (9) 

Since nf3 < 1 implies that a > ° and (f3-1- f3) > 
n - n-1 > 0, we actually see that T+ > ° and L < 0. 
In this case, from (6), we can deduce 

OC) 

Ai(xr ) = III tLSi(Zr)G(Ur) dU 4 dU 3 dU1 du2, (10) 

-00 

I< 

v 
}-_+_-_ x, .x; FIG. I. The motion of K relative 

to Km. 

\ 
u~/; uy{ / 

",//~ / 

~'\ g/! 
' <~~ .... 1.\\ fl,f. 

~\\ ~/O' 
co,,- ~\ I' 

" \ ill 
',\ 

\ 
/,'1 u3 PI 

"- \\ ~J .' , , 

~;\~p 
,// / 
-~ .. 
~'~ 

ltn/ 

u; 

/ 

/ 

u,. u,.. ()( In2)(u, U,)2= 0 '" FIG. 2. Location of poles of the function Gin Minkowski space. 

where L circumvents T_. By the method of residues, 
we get 

nf3 < 1. (11) 

In the case of nf3 > 1, we actually see from (9) that 
T± > ° when U3 < - lal i p, that T± are imaginary 
when -Ial i p < Ua < lal i p, and finally that T± < ° 
when U3 > lal! p. From (6) we get 

-00 

where the Ua integration is to be taken from 00 to 
lali p (L surrounding T_) and back to 00 (L sur­
rounding T +). It turns out that7 

00 

Ai(x
r
) = _.!.. Iff S;(zP' X4 + T+) + S;(zp, ~4 + T_) 

47T [(Z3 - Xa)2 + ap2] 
-00 

X O[Za - (Xa + jaji p)] dV(zp), 

nf3 > 1, (13) 

_ velocity of 
_v 
_ themedium 

L----------------~X3 

FIG. 3. Conical region in K, where a source point 
contributes to the field, nf1 > 1. 



                                                                                                                                    

ELECTROMAGNETIC SOURCES IN MOVING SIMPLE MEDIUM 3253 

where 0 is the unit step function, i.e., 

OCt) = 0 when t < 0, 

= 1 when t ~ O. 

Equations (11) and (l3) hold in an arbitrary system 
of inertia. The step function in (13) implies that a 
source point (zp) contributes to the field only at points 
inside a conical region given by (xs - Z3) ~ -Ial! p. 

III. TIME HARMONIC SOURCES, 3-
DIMENSIONAL REPRESENTATION 

Let the source be time harmonic in K: Si(Xr) = 
Si(Xp)e-kX4

, where k == wlc and w is the frequency. 
Omitting the time factor e-kX4

, we derive from (9) 

Si(Zp, X4 + T_) 

= Si(Zp) exp [-ikb(zs - xs)] 

x exp {ik(nla) [(Z3 - XS)2 + ap2]!}, (14) 
where 

nfJ ( 1) fJKC
2 

b == 1 _ (nfJ)2 n - ~ - 1 _ (nfJ)2 . 

Furthermore, we derive 

Si(Zp, X4 + T_) + Si(Zp, X4 + T+) 

= 2S;(zp)e-ikb
(Z3-

X
3) cos {(knja)[(zs - XS)2 + a!]!}. 

(15) 

From the definition of Si' and making use of the 
continuity equation Jp.P = -J4,4 = iwp = kJ4, we 
get, for the spatial components of Si' 

Sizp) = ,u(O;,. + ~ U;,U.)J.(Zp) 

Similarly, 

. ,uKC2 
+ 1-2-yU;,J •.• <zp)' (16) 

n 

c ,uc
2 
( KC

2 2) ,uKC
2 

-: S.(zp) = -.- 1 - -2 Y J •.• + -2 yU.J •. (17) 
I IW n n 

Substituting (14)-(17) into (11) and (l3) leads to 
expressions which are in agreement with Ref. 1. 

The field vector £ may be obtained by using the 
equation £ = - V<I> + iwA (Ref. 1; it can be shown 
that £ = - V<I> - aAjat holds in any system of 
inertia). By some calculation the results may be 
transformed to an expression as given in Ref. 8. 
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We write the n-point function of currents as a sum over nested commutators, a form more suitable 
for certain current algebra calculations. 

I. INTRODUCTION AND RESULT 

In this paper we consider the n-point function, 
defined as 

T(ql,' .. ,qn-l)/ll'''l'n 

= II· . ·I d4xl ... d4Xn_le-iQl"'1-"'-iQn-1Xn-l 

X (01 T(jl'l(Xl) ... jl'n-l(xn_l)jl'n(O» 10), (1) 

where TVl'" jn) is the product of the n current 
operators jl' ... ,jn' in the order of the time com­
ponents of their points of evaluation: 

T(Uxl ) ••• jn(xn» 

= I O(X~(I) - X~(2) ••• O(X~(n_l) - X~(n) 
1TcSn 

where the sum is over all permutations 7T in Sn, the 
symmetric group of order n. The function OCt) is the 
usual step function. In Eq. (1) we only integrate over 
n - 1 space variables because we are using the transla­
tion invariance of the theory to work in a coordinate 
system where Xn = 0 and ql + ... + qn = O. 

It is a straightforward calculation, which is given 
below, to rewrite Eq. (l) as a linear combination of 
products of n current operators (or, rather, of their 
Fourier transforms in momentum space) not involving 
the step functions O. However, current algebra treats 
only commutators of operators rather than arbitrary 
products, so that it is desirable to express the n-point 
function as a linear combination of commutators of 
operators. 
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where 0 is the unit step function, i.e., 

OCt) = 0 when t < 0, 

= 1 when t ~ O. 

Equations (11) and (l3) hold in an arbitrary system 
of inertia. The step function in (13) implies that a 
source point (zp) contributes to the field only at points 
inside a conical region given by (xs - Z3) ~ -Ial! p. 

III. TIME HARMONIC SOURCES, 3-
DIMENSIONAL REPRESENTATION 

Let the source be time harmonic in K: Si(Xr) = 
Si(Xp)e-kX4

, where k == wlc and w is the frequency. 
Omitting the time factor e-kX4

, we derive from (9) 

Si(Zp, X4 + T_) 

= Si(Zp) exp [-ikb(zs - xs)] 

x exp {ik(nla) [(Z3 - XS)2 + ap2]!}, (14) 
where 

nfJ ( 1) fJKC
2 

b == 1 _ (nfJ)2 n - ~ - 1 _ (nfJ)2 . 

Furthermore, we derive 

Si(Zp, X4 + T_) + Si(Zp, X4 + T+) 

= 2S;(zp)e-ikb
(Z3-

X
3) cos {(knja)[(zs - XS)2 + a!]!}. 

(15) 

From the definition of Si' and making use of the 
continuity equation Jp.P = -J4,4 = iwp = kJ4, we 
get, for the spatial components of Si' 

Sizp) = ,u(O;,. + ~ U;,U.)J.(Zp) 

Similarly, 

. ,uKC2 
+ 1-2-yU;,J •.• <zp)' (16) 

n 

c ,uc
2 
( KC

2 2) ,uKC
2 

-: S.(zp) = -.- 1 - -2 Y J •.• + -2 yU.J •. (17) 
I IW n n 

Substituting (14)-(17) into (11) and (l3) leads to 
expressions which are in agreement with Ref. 1. 

The field vector £ may be obtained by using the 
equation £ = - V<I> + iwA (Ref. 1; it can be shown 
that £ = - V<I> - aAjat holds in any system of 
inertia). By some calculation the results may be 
transformed to an expression as given in Ref. 8. 
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4 J. M. Jauch and K. M. Watson, Phys. Rev. 74, 951 (1948). 
5 C. Maller, The Theory of Relativity (Oxford U.P., London, 

1952). 
6 J. L. Synge, Relativity: The Special Theory (North-Holland, 

Amsterdam, 1965). 
7 Equation (10) in Ref. 3 should contain a sum of two 6 functions. 
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We write the n-point function of currents as a sum over nested commutators, a form more suitable 
for certain current algebra calculations. 

I. INTRODUCTION AND RESULT 

In this paper we consider the n-point function, 
defined as 

T(ql,' .. ,qn-l)/ll'''l'n 

= II· . ·I d4xl ... d4Xn_le-iQl"'1-"'-iQn-1Xn-l 

X (01 T(jl'l(Xl) ... jl'n-l(xn_l)jl'n(O» 10), (1) 

where TVl'" jn) is the product of the n current 
operators jl' ... ,jn' in the order of the time com­
ponents of their points of evaluation: 

T(Uxl ) ••• jn(xn» 

= I O(X~(I) - X~(2) ••• O(X~(n_l) - X~(n) 
1TcSn 

where the sum is over all permutations 7T in Sn, the 
symmetric group of order n. The function OCt) is the 
usual step function. In Eq. (1) we only integrate over 
n - 1 space variables because we are using the transla­
tion invariance of the theory to work in a coordinate 
system where Xn = 0 and ql + ... + qn = O. 

It is a straightforward calculation, which is given 
below, to rewrite Eq. (l) as a linear combination of 
products of n current operators (or, rather, of their 
Fourier transforms in momentum space) not involving 
the step functions O. However, current algebra treats 
only commutators of operators rather than arbitrary 
products, so that it is desirable to express the n-point 
function as a linear combination of commutators of 
operators. 
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Bjorkenl and Johnson and Low2 pointed out that 
in the case n = 2 the 2-point function is asymptotically 
equal to a commutator term. They showed, specifi­
cally, that the leading term in the asymptotic expan­
sion of 

MJl.(q,· .. ) = - f d4xe-
iq

'''' (AI T(jJl(x)j.(O» IB), (3) 

as qo ---')0 00 with q fixed, is 

1.. fd3xe-iQ.X(AI [jiO, x),jiO, 0)] IB) (4) 
qo 

and that the higher terms involve time derivatives 
of the currents; thus the next term is 

:~ if d3
xe-

iN< AI [~; (0, x), j.(O, 0) J IB). (5) 

Not only the leading term, but all subsequent 
terms in the expansion of the n-point function, as the 
energies q? become infinite, can, in fact, be written as 
sums of equal-time commutators. 3 The expression 
we obtain is 

T(ql, ... , qn-l)JllOO'Jln 

in-Iff fd3 d3x e-iQ"X'-"'-iQ"-"Xn - 1 = - ... Xl'" n-1 
n 

X I [IT (E"(1) + ... + E,,(s) 
1T'ESn 8=1 

° ° )-lJ +i--+"'+i--
otll (1) ot1[(S) 

X (01 [[ ... [j Jl1[ll) , j Jl"I.,]' ... ], j Jl1[ln)] 10)j tl=·oo=tn=o, 

(6) 

where the meaning of the right-hand side is that for 
each permutation 1T we expand each factor 

° ° )-1 
(

E1[(l) + ... + E1[(S) + i-- +". + i--
otll (1) ot1[(8) 

as a series 

I (-i-O- -'" - i f-'\/(E,,(1)'+'" + E,,(s)y+1, 
r=O otll (1) utll(s) 
formally multiply these differential operators, apply 
the product operator to the commutator 

[[ ... [jJl1Tll)(t"(l) ' x,,(1),jJlllI2)(t,,(2) ' Xll(2»], .•. ], 

i Jll1ln )(t,,(n) ' xll (n»], 

evaluate at 11 = ... = In = 0, and finally Fourier­
transform the space part of the result and divide by n. 
We have made the convention that 

1..+".+'£"'=0 
Otl Oln 

(since Xn and hence In are identically zero, ololn is 
undefined), and Ii and Ei are the time components of 

Xf and qf ' respectively. Written out in full, our result is 

T(El' ... , En-l)loo'n 

= in-Iff· . ·fdt ... dt 1 n-l 

X e-iEllt-,oo-iE,,-ltn-l(OI T(j Jll(Xl) ... j Jl,,(O» 10) 
1 00 00 

= - I I," I 
n 1[eSn rl=O r,,-l=O 

X (11 -n-l 
(- iolOlll (1) - ... - i01otl1(8)Y') 

s=l (E,,(1) + ... + E,,(s)r,+1 

X ( IT 0010111 (8+1) + ... + iOIOt1[(n)r') 
s=1l-1 (n) (E,,(1) + ... + E"(8»),,+1 

X (01 [[ ... [j Jl1l11l(t1l(1) , X,,(1), i ""12)(t"(2) , X,,(2»], ••• ], 

j Jl"ln)(t,,(n) , Xll (n»] 10). 

Here we have omitted the integration over the space 
variables. 

Before deriving this result, we will state it in a 
different form. Since the space variables and integra­
tions do not affect the problem, we will cease to write 
them; similarly, we omit the brackets (01," 10) 
denoting the vacuum state. Although the jJli are, in 
fact, components of a single current, we do not use 
this, but treat them as separate functions; since the 
subscripts fli do not change, we omit them. Thus 
j,,/ti' Xi) will be denoted j;(ti ) for 1 :s:;; i :s:;; n - 1. 
For convenience, we define jn by jn(t) = j11n(0)Mt). 
We use the following Fourier transform: 

leE) = 2~ I e-iE'i(t) dt, J(t) = f e+iEtj(E) dE. (7) 

With this definition of the Fourier transform, we have 

(-iY £ J(t)jt=o =I(-i)' E:. eiEtj(E) dEjt=o 
df of 

= f E'/'(E) dE. (8) 

Making all of these changes and substituting the 
definition (2) for the time-ordered product, we obtain 
as the theorem to be demonstrated,4 

jn-l f r .. I dt, ... dtne-iEllt-·oo-iEntn 

X I (J(t1l(1) - tll (2» ... (J(t1l(n-1) - t,,(n» 
'Il'ESn 

X jll(1)(t"U» ... jll(n)(tll(n» 

= 2: If· -J dE~ ... dE~~(E~ + ... + E~) 
X "" [[ ... U,,(1)(ED, jl1(2)(E~)], ... ], j".(n)(E~)] 

..t:., n-1 
llESn II (E".(1) + ... + E"(8) - E~ - ... - E;) 

,,=1 
(9) 
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This is the real result, and the previous form, in 
which integrations had been done by using Eq. (8), 
is simply its expansion for large energies [which may 
not be valid; it is only the identity (9) that will be 
proved rigorously]. 

The proof of the theorem, Eq. (9), is purely 
algebraic in nature and so makes no reference to the 
actual existence of the commutators and T products 
which we consider. It has been shown5 that, in fact, 
they do not exist in certain perturbation-theoretical 
models. We regard the question of their existence in 
general as being open at the present time. In the 
following, we assume that there is a theory for which 
the problems found in Ref. 5 do not exist. 

II. PROOF 

The proof of Eq. (9) will proceed in two stages: 
first, transforming the left-hand side to an expression 
involving a linear combination of products of n 
current operators, and then rewriting this as a sum of 
commutators. With the normalization of Eqs. (7), the 
Fourier transform of O(t - (0) is e-iEto/27TiE, and the 
rule for transforming a product is 

ME) = 2~ ff(t)g(t)e-iEt dt = f1(E')g(E - E') dE', 

(10) 
so that 

f
O(t - t )!(t)e-iEt dt =ff(E')e-i(E-E')/O dE'. (11) 

o iCE - E') 

Applying this repeatedly, we obtain [abbreviating 
O(/i - I j) to 0iJ 

x 0 ... 0 j,,(1)(ED 
34 n-I.n 'CE E') 

I ,,(1) - 1 

- (E') 
J,,(2) 2 • (t ) . () 

x '(E + E E' E,)},,(3) 3 ••• },,(n) tn 
I .. (1) ,,(2) - 1 - 2 

= ... 

= _1 If .. ·fdE' ... dE' dt jn-I 1 n-I" 

X e-i(E"(l)+'''+E"(n)-El'-'''-En-l')/,, 

x j,,(1)(ED j"(2)(E~) 

E,,(I) - E~ E,,(1) + E,,(2) - E~ - E~ 

X j"(n-1)(E~-I) . 
E + ... + E - E' _ ... _ E' },,(n)(t,,). 

,,(1) ,,(n-1) 1 11-1 

The final expression contains no 0 functions and, 
therefore, can be evaluated by the direct substitution 
of the first of Eqs. (7). We notice that 

E,,(1) + ... + E,,(n) = EI + ... + En = 0 
(since ql + ... + qn was zero), so that the result is 

27T If .. ·fdE' ... dE' 
jn-I 1 n-l 

X j,,(1)(E~) ... j"(n_1)(E~_l)],,(,,)(-E~ - ... - E~ I) 
n-I 

II (E,,(1) + ... + E,,«) - E~ - ... - E;) 
<~I 

which may be written more symmetrically as 

27T If .. ·fdE' ... dE'!5(E' + ... + E') 
in-lin 1 n 

X n-I 

II (E,,(I) + ... + E,,(s) - E~ - ... - E;) 
s~1 

This completes the first stage. Multiplying our last 
equation by in

- 1 and summing over all permutations 
7T of 1, 2, ... , n, for the left-hand side of Eq. (9),we 
obtain the expression 

27T f r . -J dE~ ... dE~!5CE~ + ... + E~) 
x '" j,,(1)(E~) ... j"(n)(E~) 
~ n-l 

1rESn II (E,,(1) + ... + E,,(s) - E~ - ... - E;) 
~=1 

the desired expression as a sum of products of the 
ji' Both in this expression and in Eq. (9) we could 
just as well have written E;(i) for E; in the denomina­
tors, since for each permutation 7T one could relabel 
the symmetric expression 

f f .. J dE~ ... dE~!5(E~ + ... + E~). 
Therefore, it suffices to prove the purely algebraic 
identity 

n '" j,,(1)(E~(1)' .. j"(n)(E~(n» 
~ n-l 

"EB" II ( " E .. (I) + ... + E,,(s) - E,,(1) -'" - E,,(s» 
s~I 

= '" [[ ... [J,,(1)(E;(1», j .. (2)(E~(2»]'· .. ], j .. (n)(E~(n»] 
~ n-I 

"EB" TIC ' E,,(I) + ... + E,,(s) - E .. (1) - ••• - E~(8» 
s~1 (12) 
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Having simplified the problem, we will again 
simplify our notation. Since the character of j as a 
function of energy no longer interests us, we will 
omit the argument and tilde and write simply ji for 
ji(E;). Next, we have E~ + ... + E~ = O. [Because 
of the presence of the Dirac D, it does not matter 
whether or not the sum in Eq. (9) can be written as a 
sum of commutators off the subspace E~ + ... + 
E~ = 0; indeed, simple examples show that it cannot.] 
Of course, El + ... + En is always zero. Further­
more, because we were able to group together E's and 
E"s with the same subscript in Eq. (12), we can now 
define a new set of numbers Fi = Ei - E;, and the 
identity to be demonstrated becomes 

n I , j,,(l) ... j,,(n) 

"ES n F,,(1)(},,(O + F,,(2»'" (F,,(l) + ... + F,,(n-O) 

= I [[ ... [j,,(l),j"(2)]'" '],j,,(nll 

"eSnF,,(o(F,,(O + F,,(2»' .. (F,,(O + ... + F,,(n-o) ' 

(13) 

where the Fi are n numbers such that their sum is 
zero, but no subsum is zero [the identity is meaning­
less if any subsum vanishes, but it suffices to prove it 
in the converse case since the region where some­
subsum vanishes has zero measure in the (n - 1)­
dimensional space E~ + ... + E~ = 0], the ji are 
noncommuting quantities, and the sums extend over 
all permutations of 1, 2, ... , n. 

To prove Eq. (13), we evidently have to expand the 
commutators on the right and then rearrange the 
sum so that we can pick out the coefficient of a given 
product j,,(l) ..• j,,(n) and check that it is indeed 

A commutator of n operators has 2n
- l terms, half of 

them positive and half negative, and we must start 
by finding the rule which determines which of the 
n! possible permutations appear and with what sign. 
If we expand a commutator such as [[[[hI' h2], 

ha], h4], h5], then typical terms are h5h4hlh2ha and 
-hahlh2h4h5' Inspecting the terms, we see that each 
one has descending subscripts up to hI and then 
ascending, so that it is in the form h,,(1)h"(2) ... h,,(n) , 
where 0'(1) > ... > a(k) = 1 < a(k + 1) < ... < 
a(n) for some k, and that the sign of such a term is 
(_l)k-l. Now, for a given value of k, we can choose 
anyk - 1 of then - 1 numbers 2, 3, ... ,ntoprecede 

a(k) = 1, but then their order is determined; thus the 
set Sn,k of permutations 0' with 0'(1) > ... > a(k) = 
1 < a(k + 1) < ... < a(n) has (~=D members and, 
since 

JIG =~) = 2
n
-t, 

if all the terms of the commutator are of the special 
form considered, then all terms of this form appear 
in the commutator. That this is, in fact, the case can 
be seen easily by induction: We have to prove 

[f· .. [hI' h2], ••• ], hn ] 

n 

= I(_1)k-l I h,,(1)'" ha(n), (14) 
k=l "ESn,k 

an identity plainly valid for n equal to one or two. 
lfit is valid for n, then [[[ ... [hI' h2], ••• ], hn], hn+l] 
is given by 

n 
~(_I)k-l ~ (h h h h .4 .4 oil) ,,(2)'" ,,(n) n+l 

k=l t1ES n ,k 

n 
= ~(_I)k-l ~ h,,(l) ... h,,(n+l) 

k=l 1TESn+l 
,,(l»"·>,,(k) 

=l<"'<,,(n+1)=n+l 
n+l 

+ I( _1)k-1 
k=2 

n+1 

11'ESn+l 
n+1=,,(1»"·>,,(k) 

=1<"'<,,(n+1) 

= ~(_I)k-l ~ h h .4 .4 ,,(1) . .. ,,(n+O, 
k=l 7TES n+l.k 

there being the last equality because any permutation 
7T of Sn+l,k must have either 7T(I) or 7T(n + 1) equal to 
n + 1 [since any other 7T(i) is smaller than one of 
these]. This completes the proof of Eq. (14). 

Now we can expand the right-hand side of Eq. (13) 
to obtain 

~ [[ ... [j,,(1),j,,(211," '],j,r(nll 

"eSn F,,(1)(F,,(O + F,,(2» ... (F,,(1) + ... + F,,(n-1» 
n 

= ~ ~ ~ (_I)k-1 
usBn. k=l t1eS n .k 

j",,(l) ••• j",,(n) 
X ------------~=---~~------------

F,,(1)(F,,(1) + F,,(2»' .. (F .. (1) + ... + F,,(n-1» 

The coefficient of jr(1)jr(2) ••• jr(n) in this is obtained 
by noting that for each 0' in Sn.k there is a unique 7T 
in Sn (namely, 7T = 1'0'-1) such that 7Ta = 1'; thus, the 
coefficient is 
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To prove Eq. (13), we must show that this sum equals n I1~':-ll (Fr(1) + ... + Fr(S))-I. By expanding the commu­
tator, we have gotten rid of the operators and have reduced the problem to an algebraic identity among ordinary 
numbers. Having fastened our attention on a single permutation T, we need no longer carry it as a subscript, 
but set Gi = Frw . If we can prove 

2 1 = ( _l)k-1 (15) 
"ESn.k G,,-I(1)(G,,-I(J) + G,,-1(2)' .. (G,,-I(1) + ... + G,,-I(n_J) GI(GI + G2)' •• (GI + ... + Gn- l ) 

for 1 ~ k ~ n, then the desired equality will follow on summation from 1 to n. 
We will prove Eq. (15) by another simple induction. For n = 2, it reduces to + IJGI = + I/GI or + I/G2 = 

-I/GI , depending on whether k is one or two, and both are true since GI + G2 is zero. Our previous 
induction hinged on the fact that, for a in Sn k' either a(I) or a(n) must be n, since each a(i) is smaller than 
one of them; this one depends on the fact that'a(k - 1) or a(k + 1) must be 2 since every a(i), except a(k) = 
1, is greater than one of them. Hence the left-hand side of Eq. (15) is 

1 1 

Gk "Et.'k (G k + Gk_I)(Gk + Gk- l + G,,-1(3)' .. (G k + Gk- l + ... + G,,-l(n_l) 
,,(k-J)=2 

+ -.L 2 1 . (16) 
Gk "ESn.k (Gk + Gk+I)(Gk + Gk+l + G,,-1(3)' .. (G k + Gk+l + ... + G,,-I(n-J) 

,,(k+1)=2 

If k is 1, the first sum is empty and, if k is n, the second is also empty; but if this is kept in mind, the following 
proof still is applicable. In any case Eq. (15) is almost trivial for k = 1 or k = n. To evaluate the two sums 
in Eq. (16), we use the fact that both can be transformed to special cases of Eq. (15) for n - 1. Thus, if we 
define numbers Hi for I ~ i ~ n - 1 and [for each a in the first sum in Eq. (16)] a permutation 7T of Sn-l by 

Hi = Gi , I ~ i ~ k - 2, 7T(i) = a(i) - I, 1 ~ i ~ k - 2, 

= Gk - l + Gk , i = k - 1, = I, i = k - 1, 

= Gi+l, k ~ i ~ n - I, = a(i + 1) - I, k ~ i::;; n - 1, 
and notice that 

HI + ... + Hn- l = GI + ... + (Gk- l + Gk ) + ... + Gn = 0, 

we can rewrite the first sum in Eq. (16) as 

the equality following from the induction hypothesis. 
Hence the first term in Eq. (16) is 

(-I)k-2/GkGt (GI + G2)··· (G1 + ... + Gk - 2) 

X (G I + ... + Gk - 1 + Gk ) ••• (G I + ... + Gn- l ). 

Exactly similarly, the second term in Eq. (16) is 

(-I)k-I/GkGI(Gl + G2)'" (G1 + ... + Gk- l) 
X (GI + ... + Gk + Gk+l) ... (Gl + ... + Gn - 1). 

Adding these, we see that the expression (16), which 
represents the left-hand side of Eq. (15), equals 

(-It-\Gl + ... + Gk ) + (_1)k-2(GI + ... + Gk_ l) 

G/,G1(GI + G2) ••• (GI + ... + Gn- l ) 

( _l)k-l 

GI(GI + G2) ••• (GI + ... + Gn- l) , 
which is the desired right-hand side of Eq. (15). It is 
interesting that the crucial hypothesis GI + ... + 
G n = ° did not enter the proof except to establish the 
case n = 2, and for larger n it was only needed to be 
able to apply the induction hypothesis. 
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For a tentative choice of configuration space n, it is proved that the Yang-Mills field, self-interacting 
but not coupled to other fields, has states with a nonvanishing isospin component if gauge-invariant 
quantization is used. This is shown by proving existence of a solution for the elliptic boundary-value 
problem Vp'VP~i(X) = 0 on all of 3-dimensional Euclidean space, subject to the asymptotic condition 
~i = ci + 0(r-1

), OpOP~i = 0(r4) as r --+ 00, where ci are constants; 'Vp is the covariant derivative 
belonging to the spatial Yang-Mills potentials bpi(x). The existence proof is a modification of Schauder's 
proof to an unbounded domain. n consists of all numerical real multiplet functions bpi (x) which are of 
order 0(r2) as r --+ 00, have 0pbPi = 0(r-4), and satisfy certain smoothness conditions. Also, for this 
configuration space, the problem of existence of equivalent transverse potentials is reduced to a simpler 
uniqueness problem. In the classical theory, the existence of solutions ~i implies that the constraint 
equation can be satisfied for any choice of the "covariant-transverse" part of BOPi within a very large 
class, by a unique "covariant-longitudinal" part of BOPi, if the potentials bai(x) have the full SU(2) as 
holonomy group. 

1. INTRODUCTION 

The present paper is concerned with certain clari­
fications needed for a further development of the 
gauge-invariant quantization1 of the Yang-Mills 
field. In that quantization method, use is made of the 
Schrodinger representation, in which the spatial Yang­
Mills potentials b/(x), (3 = I, 2, 3 and i = I, 2, 3, 
are diagonal, and states are represented by complex­
valued functionals 'Y[b] of the real numerical potential 
functions bpi(x). By an obvious generalization of 
concepts for quantum mechanical systems with a 
finite number of degrees of freedom, the b/(x) are 
seen as generalized coordinates which specify the 
configuration of the Yang-Mills field. The configura­
tion space .0 for the Yang-Mills field consists of all 
"kinematically" possible configurations. So far, it 
has not been possible to give a complete and final 
specification of the configuration space n. There are 
restrictive demands on .0 which come from mathe­
matical aspects of the theory, while .0 should be gen­
eral enough to include all "physically" significant 
configurations. Among the mathematical aspects of 
the theory which force restrictions on .0 are the 
existence of certain derivatives and integrals, which 
set conditions of smoothness and asymptotic behavior 
on the functions b/(x). If transverse potentials are 
to be used in the theory, .0 must be restricted such 
that all potentials bEn can be transformed into 
transverse potentials by gauge transformations, and 
this amounts to an existence problem for an elliptic 
boundary value problem on all of 3-dimensional 
Euclidean space. The physical demands on the con­
figuration space .0 depend on our expectations for 
the physical capabilities of the Yang-Mills field, and 
one can easily go wrong here. 

One of our physical requirements is that the Yang­
Mills field is capable of states with a nonvanishing 
component of isospin. The main purpose of the 
present paper is to prove existence of such charged 
states for the Yang-Mills field, for a tentative choice 
of the configuration space n. This choice of .0 seems 
physically attractive, and as far as we know meets the 
essential mathematical requirements of the theory, as 
it stands at the present time. The second purpose of 
the paper is to show that, for this configuration 
space .0, the existence problem for gauge transforma­
tions which change potentials bEn into transverse 
potentials can be reduced to a simpler uniqueness 
problem. 

In Sec. II it is shown that existence of charged 
states of the Yang-Mills field, for the tentative 
choice of the configuration space .0, is implied by 
the existence of solutions of an elliptic boundary­
value problem on all of 3-dimensional Euclidean 
space. The unboundedness of the domain causes a 
difficulty in solving this existence problem. If the 
domain were bounded, existence would be assured 
by a theorem of Schauder2 ; little work appears to 
have been done on existence theorems. for elliptic 
boundary-value problems on unbounded domains, 
and the few theorems of this type which we found in 
the literature do not apply to our system of differential 
equations. We present here an existence proof which 
is essentially a modification of Schauder's proof to 
an unbounded domain, and which goes through on 
account of the asymptotic properties of the potentials 
belonging to n. 

In Sec. 3 the boundary-value problem is rewritten 
as a functional equation, so that Riesz's determinant­
free form of the Fredholm alternatives3•4 can be 

3258 
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applied. The relevant part of that theorem states that 
the linear functional equation / - L[f] = g has a 
solution / in a Banach space !B for every g E!B if 
L[f] is a completely continuous operatorS on !B and 
if the homogeneous equation / - L [f] = 0 has only 
the null solution. In Sec. 4 it is shown that, indeed, 
our homogeneous problem has only the null solution, 
if the spatial holonomy group6 is simple and compact, 
as is required for physical reasons,7 and if the poten­
tials are nondegenerate, i.e., if their holonomy group 
is the full SU(2). The remaining task is then to show 
complete continuity of the functional operator 
L[f] on a judiciously chosen Banach space !B of 
functions f This is carried out in Sec. 5; !B is chosen 
to consist of functions/which, besides being bounded 
and Holder continuous, also have an asymptotic 
bound and satisfy asymptotically a certain modified 
Holder condition. The norm for!B is chosen such that it 
depends adequately on the asymptotic behavior off 
The unboundedness of the domain also requires a 
modification of the argument showing that the 
integral expression ~[f] for the solution of Poisson's 
equation with Holder-continuous source / may be 
differentiated twice under the integral (after a partial 
integration); this is done by replacing the Weierstrass 
polynomials used in the approximation procedureS by 
integral transforms employing a Gaussian kernel. 
General as weII as asymptotic estimates are needed 
for ~, its first, and its second derivatives utilizing the 
asymptotic behavior of the potentials; these estimates 
are found by replacing integrals by larger integrals 
which can be evaluated. 

The existence proof also makes it possible to reduce 
the problem of existence of equivalent transverse 
potentials to a simpler uniqueness question, for the 
tentative choice of Q. This is carried out in Sec. 6. 
Boulware9 has presented an argument purporting to 
show that any potentials can be gauge transformed 
to transverse potentials, but he assumes existence of 
a certain Green's function; of course, this existence 
remains to be shown. However, Boulware's method 
which reduces the nonlinear problem to a linear one 
is valuable and is used here; the resulting linear 
equations, when thrown in the form of a functional 
equation, involve a functional operator which is 
similar to the operator encountered in the existence 
problem for charged states, and complete continuity 
of this operator in the same Banach space readily 
follows. Existence of a solution would follow from 
nonexistence of a nonnull solution for the associated 
homogeneous problem. 

The tentative choice of the configuration space Q 

is reviewed in Sec. 7, using the results found here for 

the existence problems, and physical considerations. 
In Sec. 8, the results obtained are applied to the clas­
sical constraint equation. 

{3, y, and 15 range from I to 3, and the xP are Cartesian 
inertial coordinates in 3-dimensional Euclidean space. 
IX denotes the Holder exponent. As an argument of a 
function, x stands for x p• The norm Ixl is written as 
x. op denotes %xfJ , and the summation convention 
is used. The real numerical functions bfJi(X), i = 1, 2, 
3, are the spatial Yang-Mills potentials, which 
express the configuration of the quantized Yang­
Mills field in the Schrodinger representation.1 The 
group indices i, j, k, I, and m range from I to 3, and 
the structure constants for SU(2) are denoted by 
c;/. If desired, throughout this paper the isospin 
group SU(2) may be replaced by any compact semi­
simple group, by appropriate change of group index 
range and structure constants. We make use of the 
covariant derivative 

VpVi = OpVi - Cjkibr/v\ (1.l) 

where Vi is any vector in the Lie algebra space of 
SU(2). Group indices are lowered and raised by 
means of the group metric 

(1.2) 

and its inverse. For compact semisimple groups, g;i 
is negative definite. The metric tensor in the Minkow­
skian event space of special relativity is taken with 
signature + - - - ; this results in a negative-definite 
spatial part gpy . 

2. CHARGED STATES 

In the gauge-invariant quantizationi of the Yang­
Mills field (self-interacting but not coupled to other 
fields), using the SchrOdinger picture and the Schro­
dinger representation, states are represented by com­
plex-valued functionals q;'[b/(x)] of the numerical 
spatial Yang-Mills potentials b/(x). The configura­
tion space Q over which the q;'[b/(x)] are defined is 
tentatively taken as the space of all real-valued 
functions b/(x) subject to the condition that, for 
every function bpi(x), a constant B exists, such that 

Ibl ::;; B, IDIbl::;; B, 

IDIb(x) - DIb(y)1 ::;; B Ix - YI~, 0 < IX < 1, 

x > R, x2 1bl ~ B, x3 1D1bl ~ B, 

x410pbPii ::;; B, (2.1) 

R < x ~ y, 

x4IopbPi(X) - opbPiCy)I ~ B Ix - YI~; 

in (2.1), {3 and i have been suppressed, and the partial 
derivative oybpi(x) for any y, {3, and i has been 
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written as Dlb. Conditions (2.1) are reviewed in 
Sec. 7. 'f" needs to be -independent of the time com­
ponent of the Yang-Mills potentials in order to satisfy 
the primary constraint.l States 'f"[bp] are called good 
or bad as they do or do not satisfy the secondary 
constraint. l Bad states 'f"[bp] are included in the state 
space for the sake of simplicity of equal-time com­
mutators. Among the good states are the physical 
states, for which we at least require that 'f" falls off 
appropriately for large b/(x) and that at large 
spatial distances x the Bo/(x)'f" fall off (component­
wise) as x-2 or faster. 

Physical state functionals 'f"[bp] are invariant under 
local gauge transformations, the infinitesimal members 
of which are changes of the potentials bpi (x) by the 
amounts 

(2.2) 

where the 1ji(X) are smooth real infinitesimal functions, 
here subject to the conditions at infinity, 

(2.3) 
and 

To show that this invariance statement is true,l we 
calculate the change in 'f"[bp] caused by the infinitesi­
mal transformation (2.2); the result is 

15\Y = -Jd3X b'f". 'i1p1ji 
15bp' 

= -iJ(d2x)pBOP
i'f"1ji + iJ d3x('i1pBOPi)'f"rl (2.5) 

Since'f" is good, it satisfies the secondary constraintl 

(2.6) 

so that the last term in (2.5) vanishes. Since for 
physical states BOPi(X)'f" is at most of order X-2 and 
1ji(X) is restricted by (2.3), the surface term in (2.5) 
also vanishes. Hence, 15'f" = O. Inversely, any state 
'f"[bp] for which BOP;(x)'f" is at most of order X-2 and 
which is invariant under loca] gauge transformations 
satisfies the secondary constraint, as follows from 
(2.5) in view of the arbitrariness of 1ji(X) up to (2.3) 
and (2.4). The argument given above would go through 
if, instead of (2.3) and (2.4), one would just have 
r/(x) -- 0 as x -- 00, but 1ji(X) = O(x-1) is required 
in order that 15b, given by (2.2), is of order O(x-2), 

which, in turn, is required to keep the local gauge 
transformations from leading out of n. Similarly, 
the last of conditions (2.4) is required in order that 
the transformed potentials satisfy the condition 
opbfJ i = O(x-4), which is part of (2.1). A local gauge 

transformation takes a point b of n into the point 
b'. Applying all possible local gauge transformations 
to the point b, the transformed points b' form a gauge­
invariant manifold X. Through every point b passes 
one X; all the X's together form a set of equivalence 
classes in n. A physical state functional 'f"[b] has a 
constant value on any X, but the value 'f" usually 
differs from one X to another. 

An infinitesimal isospin transformation is a trans­
formation of the type (2.2): 

(2.7) 

where the ,i(X) are smooth real infinitesimal functions 
subject to the conditions 

(2.8) 

x ~ 00, ~i = O(x-l
), ap~i = O(x-2

), 

apap~i = O(x-4
), (2.9) 

but are otherwise arbitrary. The ci are infinitesimal 
constants which do not all vanish. Condition (2.8) 
and the first condition (2.9) assure that at spatial 
infinity an isospin rotation occurs; the second and 
third conditions (2.9) are necessary in order that 15b 
of (2.7) does not lead out of n. 

If there existed functions 'i(X), subject to (2.8) and 
(2.9), which produce, on a set of b's with non­
vanishing measure, a displacement 15b given by (2.7), 
which leads from one manifold X to another, then 
such an isospin transformation would cause a notice­
ablelo change in some physical state functional; this 
would assure existence of physical states with a non­
vanishing isospin component. Since there are no 
1ji(X) for which the displacement (2.2) coincides with 
the displacement (2.7), the latter displacement does 
not lie in X. However, this is not enough; since n is 
infinite dimensional, it must be shown that the angle 
between the isospin displacement (2.7) and X is non­
zero on a set of b's of nonzero measure. 

Suppose that, on a set 91 c: n of nonzero measure, 
there exist infinitesimal functionsll 'i(b, x), subject to 
(2.8) and (2.9), which produce a displacement (2.7) 
orthogonal to X(b) in the sense of Ref. 1, i.e., at b, 

J d3x(V'p,i)bbpi = 0 (2.10) 

for all 15bpi (x) tangent to X(b). If bo and b both belong 
to 91, then one has 

(2.11) 

where 'r/(bo, b, x) are functions satisfying (2.3) and 
(2.4), because the ci of (2.8) are the same for b as for 
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boo (2.11) implies that, at b, 

bb/(x) = -Vp~i(bo, x) 

= - V p~i(b, x) + V pr/(bo, b, x), (2.12) 

showing that the displacement bb at b is the sum of a 
displacement orthogonal to X(b) and a displacement 
along X(b). In (2.12), ob/, ~i, and 'Y)i are infinitesimal. 
The displacement vector ob/(x) at b makes a nonzero 
angle with X(b) at all bE 91 except for points b at which 

Vp'i(b, x) = O. (2.13) 

(2.13) implies that the vector 'i is invariant under all 
equivalence displacements6 along closed loops in 3-
dimensional space. Hence, ~i is invariant under the 
spatial holonomy group.6.7 This implies that, in the 
Lie algebra space of SU(2), ~iLi commutes with 
the Lie algebra Ls of the spatial holonomy group. 
Since, on account of (2.8) and (2.9), 'i cannot vanish 
for all x, it follows that Ls cannot be the whole Lie 
algebra of SU(2). Hence, if a solution 'i(b, x) exists 
for (2.13), then the potentials b/(x) must be degener­
ate, i.e., their spatial holonomy group is not the full 
SU(2). The set :D of degenerate potentials in n forms 
a manifold of potentials which are equivalent to 
potentials b/ which vanish for i = 2 and 3, so that 
the spatial holonomy group is either SUe!) or the 
identity; hence, the dimension of:D is ! of the dimen­
sion of n, and the set :D has zero measure in n. The 
intersection of :D and 91 then also has zero measure, 
and it follows that the vector ob/(x) of (2.12) makes 
a nonzero angle with X(b) at all b E 91 except possibly 
for a set of measure zero. Therefore, if the set 91 has 
a nonzero measure in n, the Yang-Mills field has 
physical states with a nonvanishing isospin component. 
The ObPi in (2.10) are tangent to X(b), i.e., they must 
be infinitesimal local gauge transformations (2.2). 
Inserting (2.2) in (2.10) gives, at b, 

I d3x(VP~i)Vp'Y)i = 0 (2.14) 

for all 'Y)i(X) subject to (2.3) and (2.4). Partial integra­
tion of (2.14) and use of Gauss' theorem gives 

I(d2X)P(VP~i)'Y)i - I d3x(VpVp,i)'Y)i = O. (2.15) 

For a spherical surface with infinite radius, the 
surface integral vanishes on account of (2.3), (2.8), 
(2.9), and (2.1). The volume integral in (2.15) vanishes 
for all 'Y)i(X) subject to (2.3) and (2.4) if for all x, at b, 

VpVp,i = 0, (2.16) 

with 'i subject to (2.8) and (2.9). 91 is the set of b's 

in n for which there exists a solution 'i(X) of this 
elliptic boundary-value problem. In Secs. 3, 4, and 5 
we will prove the following: 

Orthogonal Isospin Transformation Theorem: The 
set 91 of b's for which there exists a unique infinitesimal 
isospin transformation bb.l X includes all non­
degenerate potentials bEn. 

Since the set :D of degenerate potentials has zero 
measure in n, the set 91 has nonvanishing measure 
in n if the orthogonal isospin transformation 
theorem holds; therefore, if the orthogonal isospin 
transformation theorem holds, the Yang-Mills field 
with configuration space n has physical states with a 
nonvanishing isospin component. 

3. EQUIVALENT FUNCTIONAL EQUATION 

Writing out the covariant derivatives, we may write 
the boundary-value problem (2.16), (2.8), and (2.9) as 

ai)p~i - 2C;kibPiap~k - Ciki(apbPi)e 

+ c. iC "b ibP1l:m 
Ik 1m p " 

= c. i(a bPi)Ck - C. iC kb ibP1cm 
Ik p Ik 1m p , (3.1) 

X -+ 00, ~i = O(x-1), 

X -+ 00, Dl~i = O(x-2), apaP~i = O(x-4
). (3.2) 

We will first ignore conditions (3.2) and prove 
existence of a solution for the problem (3.1); after­
wards, we show that this solution satisfies conditions 
(3.2). We introduce2 the functions P(x) defined by 

apaP~i = fi. (3.3) 

Using the condition at infinity for ~i, we may write 
the solution of (3.3) in terms of p as 

~i[fi] = - 4~ I d3Yt(Y);, P = Ix - YI. (3.4) 

With (3.4), the boundary-value problem (3.1) may 
be expressed as the functional equation2 

where 
(3.5) 

(3.6) 

(3.7) 

We should like to apply to the functional equation 
(3.5) part of the determinant-free form of the Fredholm 
aIternatives3

•4 which states that, if Li[P] is a com­
pletely continuous linear operator5 on a Banach space 
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~ of functions p and if the homogeneous problem 

(3.8) 

has only the null solution, then Eq. (3.5) has a unique 
solution for every gi E~. In preparation, we discuss 
first our choice of Banach space ~ of functions p. 
Since the space ~ must contain the gi, we choose ~ 
as the space of the real multiplet functions P(x), 
subject to the same conditions as t(x), i.e., thep(x) 
are bounded, and for every P(x) there exist constants 
Ha , K, and Ga such that 

It(x) - fi(Y)1 :::;; Ha Ix - yla, ° < \t. < 1, 

x4 If i (x)1 :::;; K, x > R, (3.9) 

X4 Ifi(x) - fi(y) I :::;; Ga Ix - yla, R < x :::;; y. 

Ha , K, and Ga are taken as the smallest values for 
which (3.9) holds. In fact, one may take 

It(x) - tCy)1 
Ha = sup , 

Ix _ yla 

x4 It(x) - t(y) I 
Ga = sup , 

R<.,~y Ix - yla 
(3.10) 

K = sup X4 It(x)l. 
.,>R 

As the norm in ~ we take 

The norm (3.11) differs from Schauder's norm2 by the 
last two terms, which involve the asymptotic behavior 
ofp. 

That ~ is indeed a Banach space may be seen as 
follows. First, it is clear that the norm (3.11) satisfies 
the three conditions 

(a) IIPII ~ 0, Ilfill = ° only ifP = 0, 
(b) IIcPII = c Ilfill for c constant, 
(c) liP + gill:::;; Ilfill + Ilgili. 

To show completeness of ~, we consider a Cauchy 
sequence fni(x), n = 1,2, ... , i.e., 

for all n, m > N(e), for any positive e. This implies 
with (3.11) 

Ifni(x) - fmi(X) I < e, (3.12) 

Ha[fni - f mil < e, (3.13) 

K[fni - f mil < e, (3.14) 

Ga[fni - fmi] < e. (3.15) 

Condition (3.12) for fixed i and x implies the existence 
of a limit. Taking this limit for every i and x defines a 
function P(x). Then,12 for every x and i there exists 
an integer p(x, i) > N(e) such that 

Ifi(x) - fpi(X) I < e; 
hence 

It(x) - fni(X) I 

Defining 
:::;; It(x) - fpi(X) I + Ifpi(x) - fni(X) I <2e. 

H i(X ) = fni(x) - fni(y) 
n ,y I la' x-y 

we see that (3.13) implies that 

IHni(x, y) - Hmi(X, y)1 < e. 

Using the same argument as before, but now for 
values of i, x, and y, one finds 

Hi(x, y) = lim HnCx, y), 
n--+oo 

which, on account of (3.10), implies 

Ha[fi(x) - fni(x)] < 2e. 

Similarly, we find 

Ga[fi(X) - fni(x)] < 2e 
and 

K[P(x) - fni(x)] < 2e. 

Therefore, (3.11) gives 

liP (x) - fni(x) II < 8e, all n > N(e), 

for any positive number e. fi(x) belongs to ~ because 
P(x) is bounded; 

Ha[fi] = sup IHi(x, y)1 < 00, 

and similar statements hold for K[P] and Ga[P]. 

4. THE HOMOGENEOUS PROBLEM 

In this section we show that the homogeneous 
problem (3.8) has only null solutions13 p in !S, for 
any nondegenerate bEn. This is done by going back 
to the partial differential equation form of (3.8): 

VP'VP~i = 0, (4.1) 

~i = O(x-1), x ---+ 00. (4.2) 

Transvecting (4.1) with ~i and integrating the result 
over all of the 3-dimensional space gives 

(4.3) 
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Partial integration of (4.3) and use of Gauss' theorem 
gives 

o = f(d2X)i;VP~i - f d3xC'ilP~i)\lP~i. (4.4) 

From the asymptotic condition (4.2) and (2.1) it 
follows that the surface integral in (4.4), taken over 
the infinite sphere, vanishes. For a compact semi­
simple group, the group metric is negative definite. 
Since the spatial metric tensor gpy is here also negative 
definite, it follows that the spatial integral in (4.4) is 
positive definite, unless 

(4.5) 

Hence, if a solution of (4.1) and (4.2) exists, then (4.5) 
must hold. But we have seen in Sec. 2 [discussion 
following Eq. (2.l3)] that existence of a non null 
solution ~i of (4.5) for potentials b/(x) implies that 
the b/(x) are degenerate. It follows that for nondegen­
erate potentials bE Q the problem (4.l), (4.2) has 
only the null solution. 

5. COMPLETE CONTINUITY OF THE 
FUNCTIONAL OPERATOR Li[Ji] 

In this section we prove that V[Ji] is a mapping 
in lB and that this mapping is completely continuous,4 
i.e., that Li[Ji) takes any bounded set of lB into a 
compact set. The proof is a modification of Schauder's 
proof2 to an unbounded domain. For a bounded 
domain, the main concern is the effect of the singu­
larity of the kernel 1/ p in (3.4); for an unbounded 
domain, we must in addition avoid divergences or 
inadequate asymptotic behavior of estimating inte­
grals due to the infinite integration domain, and this 
makes the procedure of deriving sufficiently sharp 
estimates more delicate. The unboundedness of the 
domain makes itself felt in two other places as well. 
First, on an unbounded domain, bounded ness of the 
first derivatives of a function does not imply Holder 
continuity of that function on the whole domain. 
Second, the calculation of estimates for the second 
derivatives D 2$ requires differentiating (3.4) once 
under the integral, integrating by parts, and differ­
entiating the resulting surface and volume integrals 
under the integrals. This last step requires that Dd 
is bounded, and this is not implied by the conditions 
(3.9) for f A well-known method of dealing with this 
difficulty is to find functionsfn(x), n = 1,2, ... , which 
belong to lB, uniformly approximate j(x), and have 
bounded first derivatives; the second differentiation 
under the integrals discussed above can be executed 
for fn(x), and it is then proved that the difference of 

D2$n and D2$, where the latter is expressed as the 
result of formal differentiation under the integral, can 
be made arbitrarily small by choosing n large enough. 
For a bounded domain, Weierstrass polynomials may 
be takenB for the fn(x). For an unbounded domain, 
this does not work; instead, we use as approximating 
functions 

. (n 3)!f 2 in(x) = 7T
3 

d3u!(u)e-n\x-u\, n = 1,2,' ". (5.1) 

We start out with a calculation of estimates for 
$(x) and D1$(x), separating the cases x::; 2R and 
x> 2R. 

Theorem 1: For x::; 2R, 1$(x)1 and IDl~(x)1 are 
bounded by a number14 A(llfll, R). 

Proof' We write (3.4) as the sum of integrals over 
the regions y ::; 3R and y > 3R, take absolute values, 
replace in the first integral If(y)1 by IIfll, and in the 
second integral If(y)1 by Kjy4 and p by R. The result 
is 

IHx)1 ::; 25R
2 

IliII + K
2

, X < 2R. 
2 3R -

Since f is bounded, Dl~ may be calculated by differ­
entiating (3.4) under the integraJ.15 Using the pro­
cedure indicated above, one finds 

K 
IDl~(x)1 ::; 5R IliII + 3R3' x::; 2R. 

Theorem 2: For x> 2R, x 1~(x)1 and x 2 ID1$(x)1 
are bounded by a number14 A (1Ifll, R). 

Proof: The integral (3.4) is written as the sum of 
integrals over the regions x ~ R and x > R. After 
taking absolute values, one replaces in the first 
integral If(y)1 by Ilfll and p by x - R, and in the 
second integrallf(y)1 by Kjy4; the result is 

1$(x)1 ~ IIfll R3 + E r d
3y

, x > 2R. (5.2) 
3(x - R) 47T JY>R pi 

If {J is the angle between the vectors x and y, one has 

p2 = x2 + y2 - 2xy cos {J, (5.3) 

and, for fixed x and y, 

p dp = xy sin {J d{J. (5.4) 

Rotation of the volume element d 3y around x gives a 
volume 27Ty2 dy sin {J d{J; using (5.4), one finds from 
(5.2) 

IIfll R3 K(l 1 ) 
1~(x)1 ~ + - - - - , x > 2R. (5.5) 

3(x - R) x R 2x 
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Since f is bounded, Dl ~ may be calculated by differ­
entiating (3.4) under the integraJ.15 Using the same 
procedure as the one indicated above for I ~I, one 
finds 

R3 Ilfll K roo d~ I (1 + ~)2 
ID1Hx)1 ~ 3(x _ R)2 + 4x3 JRI", ~3 n 1 _ ~ , 

x> 2R. (5.6) 

Inspection of the integral in (5.6) shows that no 
divergences occur due to the infinite upper integration 
limit or due to the singularity ~ = 1 of the integrand. 
For large x/R the integral is bounded by a constant 
C' times x/R. This gives for (5.6) 

R3 11fll KC' 
IDl~(x)1 ~ 3(x _ R)2 + 4Rx2 ' X > 2R. I (5.7) 

Before calculating estimates for D2~' we need some 
properties of the functionsfn(x) defined by (5.1). 

Lemma 1: If I(x) satisfies rx-H and rx-G conditions, 
so does!n(x), for the same rx. 

Proof: Writing v = y - x, one has 

( n
3)1J · fnCx) - fn(Y) = 1T
3 

d3u[f(u) - feu + v)]e-nlu-vi . 

Using the rx-H condition on/(x), 

If(u) - feu + v)1 ~ Hava, 

one finds from (5.8) 

(5.8) 

The Holder coefficient of fn(x) is not larger than the 
Holder coefficient of f(x). To show that In(x) has 
the rx-G property, we take x and Y such that 
2R < x ~ y, and find from (5.8) 

Ifn(x) - fn(y)1 ~ (;:)1J d3uCa ;4 e-nlu-xl', (5.9) 

where 
Ca = sup (R4Hrx , Grx) 

and 
M = sup [R, inf (U, lu + vI)]. (5.10) 

For fixed x and y the space of integration in (5.9) 
falls into two half-spaces a and b in which, respec­
tively, u < lu + vi and u > lu + vi. We have 

in a, M = Ma = sup (R, u), 

in b, M = Mb = sup (R, lu + vD. (5.11) 

The integral (5.9) over a and over b may be replaced 
by a larger number, which results from taking the 
integral (5.9) over all of space, using M a , plus the 
integral (5.9) over all of space, using Mb: 

(5.12) 

I = (n3)tc aJ d3u -nlu-xl" 
2 3 rxV 4 e . 

1T Mb 

Calling lu - xl = p and using a relation like (5.4), 
one finds 

II = C
a 
~(!!.)l(~ (RU du(e-n(",+u)' _ e-n(",-u)') 
x 1T R4 Jo 

+ Inoo ~~ (e-n (",+u)2 _ e-n(",-,,)2»). (5.13) 

Upper bounds for the integrals in (5.13) are found 
by making various replacements in the integrands, 
such as replacing in the first integral (x + U)2 by x2 

and (x - U)2 by (x - R)2 and by replacing, in the 
first part of the last integral, 1/u3 by (u + X)/R4, 
executing a number of partial integrations, and 
making changes in the regions of integration. The 
result found is 

I < CIa a 
1 - 4 V, 

X 
(5.14) 

where the constant CIa depends only on IIIII and R. 
The difference between II and 12 is due to the function 
M, which is Ma and M b , respectively, for II and 12 , 

Using this fact, it is easy to show that 12 is obtained by 
changing, in II' the x into Y; hence, by (5.14), one 
must have 

since x ~ y. 

Lemma 2: If I/(x)1 S A for all x and if I/(x)1 ~ 
Kfx4 for x > R, then fnex) also satisfies these con­
ditions, for the same A and for a K' which depends 
only on A, K, and R. 

Proof: Taking the absolute value of (5.1) and re­
placing If(u)\ by A, one obtains I/(x)\ S A. To prove 
the second part of the theorem, If(x)1 for x > 2R is 
written as the sum of an integral over u S R and an 
integral over u > R. In the first integral, \/(x)1 is 
replaced by A and in the second integral I/(x)\ is 
replaced by Kfu4• 
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As a result one finds 

Ifn(x)I ~ t17R3 A (::)1 e-n(<I)-R)' 

+ K(n
3

)lf d
3

u e-nlu-xl', x> 2R. 
173 u>R u4 

(5.16) 

The first term on the right-hand side of (5.16) is at 
most C1/x4(n)1, where the constant C1 depends only 
on A and R. The second term on the right has already 
been estimated in the proof of Lemma 1, with the 
result 

where the constant C2 depends only on R. It follows 
that I/(x) I ~ K'(A, R, K)/X4 for x > 2R. Since lex) 
is bounded by A, this inequality holds also for x > R 
with a different constant K'. which depends only on 
A, R, and K. 

Lemma 3: For/ex) E~, I Ddnex) I ~ 2en/17)f II/II. 

Proo!' Differentiating (5.1) under the integral and 
replacing 1/(u)1 by II/II and IUa - xal by p = lu - xl, 
one finds 

I Ddnex) I ~ 417n(::t II !II 1''' dpp3e-np2 = 2(~)11Ifll. 

Lemma 4: If/(x) E~, one has, for all x, 

I/n(x) - /(x) I ~ Ca/n1a, 

where the constant Ca only depends on Ha , and, for 
x > R, I/n(x) - /(x) I ~ A/n1ax4, where the constant 
A depends only on II/II and R. 

Proof' For any x, 

(
n3)15 ' Ifnex) - f(x)1 ~ 17

3 
dau If(x) - f(u)1 e-np , 

(5.17) 

where p = lu - xl. Replacing I/(u) - /ex)1 by Hapa, 
one finds 

Ifn(x) - f(x) I ~ 2Ha(~)1 LX) p1+a de-np' 

= 2HaCl + ex) (-;f LOO dppae-np2. 

Replacing pfl by 1 for 0 ~ p ~ 1 and by p for p > 1, 
one finds 

Ifn(x) - f(x)1 ~ HaCl + ex)[1 + (2/e17)1]/(2n)la. 

(5.18) 

For x ~ 2R, one has from (5.17) and (3.9) 

Ifn(x) - f(x)1 ~ EaC:)* 5 d
3
u ;: e-

np
', (5.19) 

where 

and 
p = sup [R, inf (u, x)]. 

Splitting the integration region for u into the parts 
u ~ R, R < u ~ tx, and u > tx and using, in the 
first two integrals, polar coordinates as shown by 
(5.3) and (5.4), we may write (5.19) as 

Ifn(x) - f(x)1 ~ 11 + 12 + la, 

2E (n3)11 IR f<l)+u • 11 = _a - 4 duu dppHfle-np , 
x 17 R 0 <I)-U 

12 = 2Ea(n3)t rb d~ (<I)+u dppHfle-np', 
x 17 JR U J<I)-U 

11 is estimated by replacing pa by Rfl(p/RP, executing 
the integration over p, replacing exp [-n(x + uP] 
by exp (-nx2), and replacing exp [-n(x - U)2] by 
exp [-n(x - RP]; the result is 

11 ~ (n)1(e-n<l)2 + e-n(<I)-R)2)O(X) ~ C3/nix4, 

x> 2R, 

where Ca depends onl:y on II/II and R. Replacing, in 
12 , exp (-n p2) by exp ( - !nx2) gives 

12 ~ Ea(n3)le-!n<l)20(xa- 1) ~ Cill!ll,/) . 
x4(n) 

Replacing, in I3 , P by tx gives Ia ~ C6(1I/1I, R)/ 
x 4n1a. Hence, 

Ifn(x) - f(x) I ~ A(lIfl~ R), for x ~ 2R; (5.20) 
x4n a 

on account of (5.18), the inequality (5.20) also holds 
for x > R, with a different coefficient A(II/II, R). I 

Since f E ~ does not necessarily have a bounded 
derivative, the second derivatives D2~ cannot be 
obtained by differentiating D1 ~ under the integral 
without further argument. The standard method of 
coping with this situationS is to approximate I by 
differentiable functions In, for which the above­
mentioned procedure is allowed and leads to D2~[fn], 
and to show that the difference ID2~[fn] - D2~[f]1 
(where D2~[f] is the same expression injas D2~[fn] 
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is in In) can be made arbitrarily small by choosing n 
large enough. It turns out that the functions In(x) 
defined by (S.1) are adequate for this purpose, if the 
expression for D2~ is derived by a judicious split of 
the integration region in the expression for Dl~' and 
partial integrations. The next two theorems deal 
with this matter. 

Theorem 3: For x:::;; 2R, 

1 
oi)p~ = - -(II + 12 + 13 + 14)' 

47T 
where 

II =1 (d2y)P[f(Y) - f(x)]c\, 1 , 
y=3R P 

12 = - r (d2y)p/(y)Oy 1., 
JU=3R P 

(S.21) 

13 = r d3y[f(y) - f(x)]0p21y 1., 
JY~3R P 

14 = r d3yf(y)opOy 1. . 
)y>3B p 

Proof: By Lemma 3, Ddn(x) is bounded. Therefore, 
one may take 

-47TOyi7pHfn] = f d3Y(0~/lfn(Y»)Oy; 
= r d3y (':J0 

P (fn(Y) - fn(X»)) Oy 1. 
~~3R uy P 

+ 1 d
3
y (':J

0 
pfnCY) Oy 1. 

y>3R uy P 

=1 (d2y)P[fnCY) - fn(x)]oy 1 
y=3R P 

+ 1 d3y[fn(Y) - fn(x)]opOy 1. 
y:$3R P 

-1 (d
2
Y)P/n(Y)Oy 1. 

y=3R P 

+ r d3Yfn(y)ofJOy 1. . (S.22) 
Jv>3R p 

Denoting (S.22) by D2~[fn] and (S.21) by D2Hf], we 
will prove that D2~[fn] - D2~[J] can be made 
arbitrarily small by choosing n large enough. We have 

47T ID2~[fn] - D2~[f]1 

:::;; r (d2Y)fJ Ifn(Y) - fey) - fn(x) + f(x)1 ~ 
JY=3R P 

+ i=3R (d
2
y)p Ifn(Y) - f(y)1 ;2 

+ 2 r d3y IfnCy) - fey) - fn(x) + f(x)1 -\ 
Jv:S3R P 

+ 2i d3y Ifn(Y) - f(y)1 ~ . (S.23) 
y>3R p 

The surface integrals in (S.23) can be made arbitrarily 
small, by Lemma 4, the boundedness of 11 p, and the 
finiteness of the integration area. Replacing, in the 
last volume integral of (S.23), I1 p3 by IIR3 and using 
Lemma 4, we have 

2} d3y Ifn(Y) _ f(Y)ll :::;; 47T1 roo dy:::;; 47TA . 
y>3R p3 R3nl!' J3R l 3R4nh 

For the first volume integral in (S.23) the integration 
volume is split16 into the interior of a small sphere 
with radius R' centered at x and the remaining volume. 
Using the oc-H continuity of fey) and of In(Y) 
(Lemma 1) in the first integral, and using Lemma 4 
and 11 p3 :::;; I/(R'P in the second integral, one finds 

r d3y Ifn(Y) - fey) - fn(x) + f(x)1 ~ 
JY:S3R p 

:::; 87TH" rR
'dpp"-1 + 2C" i r d3y 

Jo (R')3n • JY~3R 
87TH" ,,, 727TC(ZR3 

= - (R) + . (S.24) 
rx (R')3nh 

The first term on the right-hand side of (S.24) may be 
made as small as desired, by choosing R' small enough; 
with that value of R', the second term on the right­
hand side of (S.24) can be made as small as desired 
by choosing n large enough. 

Theorem 4: For x > 2R and a = tR, 

-47TOyopHfl = J 1 + J 2 + J3 + J4 + J5 + J 6 + J7 , 

(S.2Sa) 
where 

J1 = f (d2
Y)fJf(y)oy ~ , (S.2Sb) 

y=(C-a 

J2 = - I (d2y)p[f(y) - f(X)]Oy;, (S.2Sc) 

y=(C-a 

J3 = f (d2y)P[f(y) - f(X)]Oy!, (5.25d) 

y=",+a 

J 4 = - I (d2y)pf(Y)Oy;, (S.2Se) 

Y=",+a 

J5 = I d3Yf(Y)OfJOY;' (S.2Sf) 

y::;w-a 

I 1 
J 6 = d3y[f(y) - f(x)]opOy - , (S.2Sg) 

p 
x-a~1J~x+a 

J 7 = J d3
yf(y)opoy ~ . 

y:O::",+a 

(S.2Sh) 
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Proof: Since Dr/nCx) is bounded, D2~[fn] may be 
obtained by differentiating Dl~[fn] under the integral: 

Expressions (5.25), written in terms of fn(x) instead 
of f(x), follow from (5.26) by splitting the integration 
region into the parts y S x - a, x - a < y s x + a, 
and y > x + a, by replacing, in the second region, 
(%yfJ)f(y) by (%y/J) [f(y) - f(x)] and by executing 
partial integrations. It will be shown that, for x > 2R, 
x3ID2~[fn(X)] - D2~[f(x)]1 can be made arbitrarily 
small by choosingn large enough. Using the expression 
(5.25) for D2~[f] and the statement (5.25) modified 
by replacing f by in, one finds17 

411" ID2~[fn] - D2~[fll 

:::;: II + 12 + 13 + 14 + 15 + 16 + 17 , (5.27a) 

where 

(5.27b) 

y=~-a 

12 = f d
2y If,lY) - fey) - fn(x) + f(x)1 ;2' 

lI=<e-a (S.27c) 

13 = f d2y Ifn(Y) - fey) - fn(x) + f(x)1 ;2 ' 
lI=<e+a (S.27d) 

14 = f d
2
y Ifll(Y) - f(Y)1 ;2' (5.27e) 

lI=<e+a 

Is = 2 f d
3
y Ifn(Y) - f(Y)1 :3' (5.27f) 

lI:S",-a 

16 = 2 f d3y Ifn(Y) - fey) - fn(x) + f(x)1 ;3' 
",-a:SlI:S"'+a (5.27g) 

17 = 2 J d3
y Ifn(Y) - f(y)1 :3. (5.27h) 

Y?:.re+a 

11 is estimated by using the second part of Lemma 4 
and (5.4); the result is 

Again by Lemma 4, one has for the remainder 152 

I. < 2A f 3 1 ,2 _ 1 d Y4:i; 
n~a y P 

RSyS.x-a 

using polar coordinates and (5.4), we find 

16 is written as an integral 161 over a sphere with 
radius R' < a centered at x and a remainder 162 • 

Using the a - G continuity of fey) and of fn(Y) 
(Lemma 1), one finds 

x3/61 S A3(llfII, R) (R't. (5.29) 
a 

An estimate for the remainder 162 is obtained by 
using the second part of Lemma 4 and polar coordi­
nates centered at x; the result is 

x3162 S A4(1I~11, R)(ln!!... + 1 _ _ a_). (5.30) 
n~ax R' 2x + a 

x3/ 61 of (5.29) can be made arbitrarily small by choos­
ing R' small enough. For that value of R', x31s2 of 
(5.30) can be made arbitrarily small by choosing n 
large enough. Hence, r/6 = x3/ s1 + x 3/ 62 can be 
made arbitrarily small by choosing n large enough. 
17 is estimated by using the second part of Lemma 4 
and polar coordinates centered at the origin; the 
result is 

17 S 8:A [dO d, . (5.31) 
n~ax4 Jl-alx ,3a - 1)a + 1) 

The integral in (5.31) is convergent and is smaller 
than a constant times In (a/x). Hence, we have 

I 

After this preparation, we can proceed to estimate 
D2~ for x S 2R and for x > 2R. 

Theorem 5: For x S 2R, ID2~1 s A(lIfll, R). 

II :::;: 27TA(lIfll, R) In (2X - a) S Alllfll, R). (5.28) Proof" Using (5.21), we have the following esti-
niax(x _ a)3 a niax 3 mates. Replacing, in [111, If(x)1 and IfCy)I by IIfil 

and p by R, one finds 
A similar procedure gives the result (5.28) for 12 , 13 , 

and 14 • Is is written as the sum of an integral 151 over 
the interior of the sphere with radius R and remainder 
152 . By Lemma 4, we have 151 :::;: 87TR3Ca/3n!a(x - R)3. 

1/11 S 3611" 11111 ; 
a similar result holds for 1/21. Using the Holder 
continuity of f(x) in /131 gives 1/3/ ~ 47THaC5R)aja. 
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Replacing, in 1/41, If(y)1 by K/y4 and p by R gives 

1/41 ~ 41TK/3R2 
• 

Theorem 6: For x > 2R, x3ID2~(x)1 ::; A(lIfll, R). 

Proof; In the proof of Theorem 4 we have shown 
that 

can be made arbitrarily small by choosing n large 
enough; since the expression for D2~[fnl is valid, the 
expression for D2Hfl given by Theorem 4 may be 
used for the purpose of proving the present theorem. 
In the surface integrals of (5.25), If(y)1 is replaced 
by K/(x - a)4, and polar coordinates are introduced. 
As a result one finds that IJl l, IJ21, IJ31, and IJ41 are 
smaller than Al (llfll, R)/x3

• The integral 15 is written 
as the sum of an integral JSl over the interior of the 
sphere with radius R, and a remainder J52 • By re­
placing, in IJ61 1, If(y)1 by II !II , and p by x - R, one 
finds 

x 

y 
FIG. 2. Choice of point z for 

the case x > R. 

Theorem 7: Hf(x)l is o:-HOlder continuous. 

Proof· We will show that 

I~(x) - ~(y)1 ~ A(lIfII, R) Ix _ yllX 

separately for the three cases: (1) x ~ R, Y ~ R, 
. (2) x ::; R, y > R, and (3) x > R, y > R. (1) Using 
Theorems 1 and 2, we have 

I~(x) - ~(y)1 ~ Ix - yl sup IDl ;1 

~ A Ix - yll-lX Ix _ ylll 

~ A(2RY Ix - yllX for x ~ R, Y ~ R. 

(2) For x ~ R, Y > R, let z be the intersection of the 
The remaining integral IJ521 is estimated by replacing straight line through y and the origin, with the sphere 
If(y)1 by K/y4 and using polar coordinates; the R (Fig. 1). Using Theorems land 2, one has 
result is 

IJ521 ~ A2(llfll, R)/x3
• 

J6 is estimated by using the 0: - G property of f(x) 
and replacing the integration domain by the region 
y ~ 2x + a; the result is 

1/61 ~ As(llfII, R)/o:xs. 

Replacing, in IJ71, If(y)1 by K/y4, and using polar 
coordinates, we find 

The integral in (5.23) is convergent and is smaller 
than a constant times In (a/x). Hence, we have 

I 
Equipped with the estimates for ~, Dl ~, and D2~' 
we can now proceed to show that the operator Li 
maps minto m. This is done in the following theorems. 

y 

FIG. I. Choice of point z for 
the case x ~ R. 

I;(x) - ;(y)1 ~ I~(x) - Hz)1 + I;(z) - ~(y)1 

~ A Ix - zl + AIY d; 
z r 

A Iy - zl 
= A Ix - zl + ---'--­

yR 

< A Ix _ zllX (2R)1-lX + A Iy - zllZ 
- R~lX ' 

(5.33) 

since Ix - zl ~ 2R and Iy - zl ~ y. Because Ix - zl ~ 
Ix - yl and Iy - zl ~ Ix - yl, (5.33) implies 

I;(x) - ;(y) I ~ Alllfll, R, 0:) Ix _ Yill. 

(3) For R < x ~ y, let z be the intersection of the 
straight line through y and the origin, with the 
sphere of radius x (Fig. 2). Writing ~(x) - Hy) as 
the line integral of Dl ; along the circular arc from x 
to z and along the straight line from z to y and using 
Theorem 2, one has 

1TA A Iy - zl 
I~(x) - ~(y)1 ~ -2 Ix - zl + ~---' 

2x xy 

= 1TA Ix _ zllX(2x)l-lX + ~ Iy _ zllX, 
2X2 Xl +ll 

(5.34) 
since Ix - zl ~ 2x and Iy - zl ~ y. Because 

Ix - zl ~ Ix - yl and Iy - zl ~ Ix - yl, 
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(5.34) implies 

I;(x) - ;(y) I ~ A2(IIfll, R, a) Ix _ yla. 

Theorem 8: D1Hf(x)] is a-Holder continuous, and 

x3IDl¢(X) - Dl~(y)1 s A(llfll, R, a) Ix _ Yla, 

R < x ~ y. 

Proof: (1) x ~ R, Y S R; using Theorem 5, we 
have 

IDl~(X) - Dl;(Y)I s Ix - yl sup ID2~1 

s A Ix - yl ~ (2R)1-a A Ix _ yla. 

(2) x ~ R, Y > R; let z be the point shown in Fig. 1. 
Using Theorem 5 and 6, we have 

IDl~(X) - Dl~(Y)1 s A Ix - zl + A t' d; JR r 

A 
S A Ix - zl + yR2 Iz - yl 

~ AI(lIfll, R, (1;) Ix - zla. 

(3) R < x ~ y; let z be the point shown in Fig. 2. 
Using Theorem 6, we have 

7TA f.Y dr 
IDl~(X) - Dl~(y)1 ~ -3 Ix - zl + A 3 

2x z r 

./ 7TA(2x)a I la + A I la .:::. x-z -y-z 
2x3 y<>x2 

< A2(IIfII, R, (1;) I _ la 
_ 2 X z. 

x 

Lemma 5: The b/(x) are a-HOlder continuous and 
have an IX-G property: R < x ~ y, 

x 2 Ib(x) - b(y)1 ~ A(B, R, IX) Ix _ yla. 

Proof: The proof is constructed in the same way as 
the proof of Theorem 8. 

Theorem 9: The operator Li maps 5E into 5E; 
IIVl[i(x)]II is bounded by a number which depends 
only on IIfll, R, and B. 

Proof: The functions Li[P(X)] of (3.6) are sums 
of terms of the type bD1;, (opbP);, and b2¢. On 
account of (2.1) and Theorems 1 and 2, Ibl, (oflbfl)I;/' 
and I Dl ~I are bounded by a number depending only on 
IIfll, R, and B. Hence, the same holds for Li[fi(x)]. 
Since b(x) is bounded and IX-Holder continuous and 
since, by Theorem 1 and 8, Dl~ is bounded and IX­
Holder continuous, bDl~ is IX-Holder continuous. 
Similarly, the IX-Holder continuity of terms of the 
type (opbP)~ and b2~ follows from the boundedness 
and IX-HOlder continuity of b, opbP, and ~. Since all 

the bounds and Holder coefficients referred to above 
are bounded by a number depending only on Ilfll, R, 
and B, the Holder coefficient of £i[fi(x)] is bounded 
by such a number. 

The IX·G property of V is proved by showing 
that this property holds for Ll = bDI $, L2 = (opbP)~, 
and L3 = b2 $. We havt" 

IL1(x) - L1(y)1 s Ib(x)IIDl$(X) - D1¢(y)1 

+ IDl~(y)llb(x) - b(Y)I. (5.35) 

Using Theorems 1,2, and 8 and Eq. (2.1), we conclude 
from (5.35) that for R < x ~ y 

ILlx) - Lly)1 s A(IIfII'4 R, B) Ix _ yla. 
x 

Similarly, we have 

IL2(x) - L 2(y) I s IOpbfl(x)II$(x) - ~(y)1 

+ 1~(Y)llopbP(x) - opbP(y)l; 

using (2.1) and Theorems 2 and 7, we conclude that 

IL
2
(x) - Lb)1 ~ A(IIfII'4 R, B) Ix _ yla. (5.36) 

x 
Finally, we have 

ILaCx) - LaCy) I ~ Ib(x)121~(x) - $(y) I 

+ Ib(x)~(y)llb(x) - b(y)1 
+ Ib(Y)~(Y)llb(x) - b(y) I 

~ A(IIfII,/, B) Ix _ Yla, (5.37) 
x 

on account of Theorems 1, 2, and 7. 
The asymptotic property 

x4 IL[f(x)]1 S A(lIfll, R, B), x > R, 

follows from the asymptotic properties of b, (opbP)~, 
and D1$ [(2.1) and Theorem 2]. I 

We are now prepared to prove the following 
theorem: 

Theorem 10: The operator Li is completely con­
tinuous. 

Proof' Consider any infinite setlS {fni} c m for 
which IIfnili .:::;; C. We must show that the set {Li[fnjl} 
is compact. Since we already know that 5E is com­
plete, it suffices to show that every infinite subsequence 
of {Li[fnil} contains a Cauchy sequence with respect 
to the norm (3.11). 

From IIfnili ~ C and Theorem 9 it follows that 
ILi[f/(x)] I .:::;; A(C, R, B). Since the 3-dimensional 
Euclidean space is separable, the bounded sequence 
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of functions {V[fni(x)J} contains a weak Cauchy 
sequenceI9 {Li ff,,/(x)]}: 

IE[fn/(x)] - E[fm/(x)] I < E, nl , m1 > NI(E). 

(S.38) 
For Theorems 1 and 2 it follows that 

l~ffnli(X)]1 < A(e, R) 
and 

x 1~[fnli(x)]1 < A(e, R), x> R. 

In the same way as we arrived at (S.38), it follows that 
there exists a subsequence 

such that 
{fn/} C {fn/} 

l;[f"2i] - ~[fm2i]1 < E, 

X IHfn2i] - Hfm.iJI < E, n2' m2 > N2(E), x> R. 

(S.39) 
From Theorems 1 and 2 we have 

ID1Hfn/]1 < A(e, R) 
and 

x2IDl~[fn/]1 < A(e, R), x> R. 

Therefore, a subsequence {fn/} C {fn/} exists such 
that 

IDl~[fn3i] - DIHfm3
i

]1 < E, 

x2IDI~[fn3i] - Dl~[fm3i]1 < E, n3, m3 > N3(E), 

x> R. (S.40) 

Similarly, from Theorems 5 and 6 it follows that there 
exists a further subsequence {fn/} C {fn/} such that 

ID2~[fn4i] - D2~[fm4i]1 < E, 

x3ID2~[fn/] - D2Hfm/JI < E, n4' m4 > N 4(E), 

x > R. (5.41) 

By the method used in the proof of Theorem 7, 
(5.39), (5.40), and (S.41) have the consequence 

Ha[;[fn/] - ~[fm/]] < EA(R, IX) (5.42) 
and 

H"[D1Hfn.i ] - Dl~[fm4i]] < EA(R, oc). (5.43) 

From (S.39), (S.40), (S.42), (S.43), Lemma 5, and the 
fact that band opbli are bounded by a number which 
depends only on B, it follows that 

Ha[Li[fn/l - Liffm/ll < EA3(B, e, R, IX). (S.44) 

In a similar manner it follows that 

Ga[V[fn/l - Liffm/l1 < EA4(B, e, R, oc) (5.4S) 

and 

K[Li[fn/l - Li[frn/ll < EA 5(B, e, R, IX). (5.46) 

From (S.38), (S.44), (5.4S), and (5.46) it follows that 

IILi[fn/] - Li[fm/lll < EAG(B, e, R, IX), 

I 
The existence of solutions f(x) E j8 of the functional 
equations (3.S), for nondegenerate b and for any 
values cm in (3.7), follows from the complete con­
tinuity of the operator Li on j8, and the nonexistence 
of nonnull solutions of the associated homogeneous 
problem (4.1), (4.2), for nondegenerate b, by appli­
cation of the determinant-free Fredholm alterna­
tives.3.4 The solution ~i(X) has the property Dl~i(X) = 
o (x- 2) , on account of Theorem 2. Furthermore, the 
solution ~i satisfies (3.3), which together with (3.9) 
shows that apap~i = O(x-4). Hence, the solution 
~i(X) of the boundary-value problem (3.1) satisfies 
the asymptotic conditions (3.2). Hence the orthogonal 
isospin transformation theorem (Sec. II) is proved, 
and it follows that the Yang-Mills field with configura­
tion space Q has physical states with a nonvanishing 
isospin component. 

6. TRANSVERSE POTENTIALS 

The second existence problem which has bearing 
on the configuration space concerns potentials b 
which can be transformed to transverse potentials by 
a local gauge transformation 

Sex) = exp r/(x)Li ; (6.1) 

such potentials are here called normal potentials. The 
question arises whether all potentials b E Q are 
normal; this would be desirable if one wants to use 
transverse potentials in calculations. In the present 
paper, we do not solve this existence problem, but 
we reduce it to a simpler uniqueness problem. This is 
done by using a method of Boulware9 which reduces 
the nonlinear problem to a linear problem and by 
proving the complete continuity of the relevant 
operator occurring in the equivalent functional 
equation. Boulware's method9 amounts to finding the 
conditions that in Q all potentials b + ob infinitesi­
mally close to normal potentials b are normal. For a 
finite local gauge transformation (6.1) one has 

(6.2) 
where 

rp = b/Li , rp = b;/Li , (6.3) 

and the V are constant basis elements of the Lie 
algebra of SU(2). For transverse potentials bT

Pi one 
has 

:l pi 
upb T = 0 (6.4) 
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and, therefore, also using the asymptotic condition (2.3), we may write 
(6.5) the solution 1l of (6.15) in terms of hi as 

When considering local gauge transformations which 
are not infinitesimal, it is easier to work with the rp 
than with the b/ Suppose that the rp En are normal, 
i.e., there exists a transformation S of the form (6.1) 
with 'f/(x) subject to the asymptotic conditions (2.3) 
and (2.4), such that 

1Ji[h i
) = - ~ fd3Yhi(y)!, P = Ix - YI· (6.16) 

4rr P 

With (6.16), the boundary-value problem (6.14), (2.3) 
may be expressed as the functional equation 

r TP = s-lrPs - S-lOPS, 

where the r T P satisfy (6.5); i.e., 

(6.6) where 

op(S-lrpS - S-lOPS) = O. (6.7) 

Let brp En be an arbitrary infinitesimal change of 
P. Let the associated change in S which keeps (6.7) 
valid be bS = SX; X then must satisfy the equation 

OpV TPX = op(S-lbrpS), (6.8) 

where V T P X is the covariant derivative of X, belonging 
to the potentials r T P : 

(6.9) 

On account of (6.2) one may write 

(6.10) 

where br'p is the change in r TP due to b Iii, keeping 
S fixed. Clearly, if r and or belong to .0, and S is 
a local gauge transformation, then br' belongs to .0 
as well. Therefore, with 

(6.11) 

the Db,pi(x) satisfy conditions (2.1). I + X must be a 
local gauge transformation, and since X is infinitesi­
mal, we may write 

(6.12) 

where the 1}i are subject to conditions (2.3) and (2.4). 
In terms of 1}i(X) and Db'Pi, (6.9) reads 

(6.13) 

Since Db'Pi En, the right-hand side of (6.l3) satisfies 
the condition (3.9) and therefore lies in the Banach 
space 58 defined in Sec. 3. Writing out the covariant 
derivative in (6.l3) gives 

OpOP1}i - Cn/bTPiOp1}k = opbb,pi. (6.14) 

We will introduce the functions hi defined by 

oi)Pr/ = hi; (6.15) 

i i pj Ie M [h) = cjk bT op1} [h). (6.18) 

As shown in Sec. 5, the operator Li of (3.6) is a 
completely continuous operator on lB. Mi of (6.18) 
is proportional to the first term of Li, and from the 
proof of complete continuity of Li it can be seen 
that Mi is also a completely continuous operator on 
iB. Since OpOb'Pi belongs to lB, it follows byapplica­
tion of determinant free form of the Fredholm 
alternatives3 •4 that the boundary-value problem 
(6.13), (2.3) has a solution in lB if the associated 
homogeneous problem 

(6.19) 

with asymptotic condition (2.3), only has the null 
solution in lB. Moreover, if the boundary-value 
problem (6.13), (2.3) has a solution in lB, it follows 
from (6.15), Theorem 2, and (3.9) that property (2.4) 
is satisfied for the solution. Hence, if for all bT En, 
(6.19) and (2.3) has only the null solution in lB, the 
boundary-value problem (6.13), (2.3), (2.4) has 
a unique solution in lB, and then all potentials bEn 
infinitesimally close to normal potentials are normal. 
Since there certainly exist some normal potentials in 
0, it would follow that all potentials bEn are normal. 
Hence we have the result: 

Reduction Theorem: If the homogeneous problem 
(6.19) and (2.3) only has the null solution, for all 
bT En, then for every bEn there exists a unique 
local gauge transformation b -->- b' such that b' is 
transverse. 

7. TENTATIVE CONFIGURATION SPACE 

The configuration space considered in this paper 
is the metric space of all real-valued spatial Yang­
Mills potential functions bpi(x), subject to conditions 
(2.1), taking as the distancel between b/(x) and 
b/(x) + f1bp

i (x) 

(f d3
x f1b /(x) f1b fJ

i (x) r (7.1) 
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For ease of reference, we separately show the condi­
tions which make up (2.1): 

Ibl ~ B, (7.2) 

ID1bl ~ B, (7.3) 

ID1b(x) - D1b(y)1 ~ B Ix - YI~, 0 < (J. < 1; (7.4) 

x> R, 

x2 1bl ~ B, 

x3 1D1bl ~ B, 

x410pbfJi l ~ B; 

R < x ~ y, 

(7.5) 

(7.6) 

(7.7) 

X4 IOpbfJi(x) - OpbfJi(y) I ~ B Ix - yla. (7.8) 

Conditions (7.2) and (7.3) ensure that the space­
space components of the Yang-Mills field 

are bounded. The asymptotic condition (7.5) ensures 
that the distance (7.1) between any two points band 
b + ilb of n is finite. 

Adopting the asymptotic electromagnetic identifi­
cation/ which amounts to identifying, in the world 
where there exists only the Yang-Mills field, the far­
away Yang-Mills field as electromagnetic, we allow 
a non vanishing total magnetic moment by the 
asymptotic condition (7.5) for b. Photons at spatial 
infinity are excluded by (7.5), and this may seem 
objectionable. However, in considering scattering 
problems which involve photons in the in and out 
states, one can take these states at times such that the 
photons do not appear at spatial infinity, if the 
photons are taken as localized packets. This amounts 
to considering the S matrix between large negative and 
positive times ± T, instead of ± 00. In a calculation 
based on absence of photons at infinity, a definite S 
matrix may be obtained by letting T go to infinity as 
a final step. In the asymptotic electromagnetic 
identification, the different i components of the 
expectation values for Bot/(x) and BII/(x) must be 
proportional for all values of {3, y, and x/x, as x -* 00, 

since there is only a single electromagnetic field. To 
achieve this, further restrictions may have to be 
imposed on the configuration space, but this problem 
must be studied considering the state space and the 
development of states in time as well. 

In preparation for comments on the asymptotic 
condition (7.7) for 0llbfJi , we consider in n the decom­
position of an arbitrary infinitesimal vector fJb~i at b 
into a vector fJ 1. b orthogonal to the gauge-invariant 

manifold X at b and a vector bllb along X: 

fJbPi = 01. bPi + 011 bPi. (7.10) 

In the same way as we derived (2.16), it can be shown 
that 

(7.11) 

Since 0llbPi is due to a local gauge transformation, we 
have 

(7.12) 

Taking the covariant divergence of (7.10) and using 
(7.11) and (7.12) gives 

(7.13) 

The existence proof given in Sees. 3, 4, and 5 applies 
to the solution 'f/(x) of Eq. (7.13) subject to the 
asymptotic conditions (2.3) and (2.4). Also, the con­
siderations of Sec. 4 apply to the homogeneous 
problem associated with (7.13). Consequently, we 
have in n existence and uniqueness of the decomposi­
tion (7.10) at every nondegenerate bEn. 

If the asymptotic condition (7.7) for opbfJ i were 
dropped, then (7.6) would set the asymptotic behavior 
of opbPi, which would be O(x-3) instead of o (x-4). 

Since 
OfJop(x-lln x) = O(x-3), 

there would then exist a displacement ob/(x) in n 
and a 'i)i(X) = O(x-1ln x), for which (7.13) is satisfied. 
For nondegenerate bEn, the solution 'i)i(X) of 
(7.13) is unique; this follows from the argument of 
Sec. 4, which goes through here because the surface 
integral in (4.4) vanishes for x -* OJ, if'i)i = O(x-1lnx) 
is taken instead of ~i. Hence, if condition (7.7) were 
dropped, there would exist a displacement obPi(x) in 
n such that the solution 'i)i of (7.l3) is of order 
O(x-1 In x); for that solution 'i)i the 0llb/Ji calculated 
from (7.12) would be of order O(x-1ln x), and there­
fore the displacement 0llb/Ji would not lie in n. 

Dropping (7.7) would also have consequences for 
the reduction theorem and for the orthogonal 
isospin transformation theorem. The right-hand 
side of (6.13) would be of order o (x-3

) , which is 
outside ~. If ~ were modified to include func­
tions hi(X) of order O(x-3) instead of O(x-4), then 
1]i[hi] calculated from (6.16) would be of order 
O(x-1 In x) for certain hi (x) ; the vector ob calculated 
from (2.2) would then be of order O(x-2 In x) and 
therefore would not lie in n. The second term on the 
left-hand side of (6.14) cannot bring relief because it 
is of order O(x-4

), if 1] is of order O(x-1) as desired. 
Hence, if (7.7) would be dropped, there would exist 
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potentials bEn, which cannot be transformed to 
transverse potentials. Dropping (7.7) would have a 
similar effect on the considerations regarding the 
existence of a solution of Eqs. (3.1) and (3.2). As a 
result, the orthogonal isospin transformation theo­
rem would read: The set 91 includes all nondegenerate 
potentials bEn for which apbPi is of order O(x-4). 

Since this set has a nonvanishing measure in n, it 
still would follow that the Yang-Mills field (with this 
modified configuration space) has physical states with 
a nonvanishing isospin component. 

The undesirable factor which would result from 
dropping (7.7) is only logarithmic; hence, a restriction 
weaker than (7.7) may be sufficient to avoid the 
problems discussed. However, if one allows only 
asymptotic restrictions expressed by an integral 
power of x, then (7.7) is the weakest restriction with 
the desired effect. Instead of including a restriction 
like (7.7), one could attempt to enlarge n such that 
potentials of order O(x-2 In x) are allowed. However, 
there does not seem to be a physical need to include 
such configurations; on the other hand, the condition 
(7.7) does not seem to constitute a physical restriction. 
Hence, we see no merit in such a modification of the 
configuration space. 

The IX-HOlder continuity condition (7.4) is a 
minimum smoothness condition. In practice, we 
need second derivatives of b/ in the theory, and we 
would demand 

If still higher derivatives of b are required, similar 
conditions for the higher derivatives would be im­
posed on the configuration space. Conditions (7.14) 
imply the Holder continuity (7.4); the purpose of 
imposing (7.4) instead of the stronger condition 
(7.14) is to state the orthogonal isospin transforma­
tion theorem and the reduction theorem in as sharp 
a form as we know, i.e., with the weakest conditions 
on the bpi (x). A similar comment applies to the 
IX-G condition (7.8) for apbpi• 

8. THE CONSTRAINT EQUATION FOR 
THE CLASSICAL THEORY 

The existence of solutions ~i of (2.16), subject to 
the boundary conditions (2.8) and (2.9), has bearing 
on the constraint equation 

(8.1) 

of the classical theory. The "electric" part Bopi of the 

Yang-Mills field may be written7 

(8.2) 

where '1fJ PYi is antisymmetric in fJ and y. The decom­
position (8.2) gives, for the constraint equation (8.1), 

V' V'Pmi - .lei B j lIl
pyk (8.3) P T - 2 ik fly T , 

if use is made of the identity6 

(8.4) 

Equation (8.3) for cpi is of similar form as (2.16), 
which with (2.8) may be written 

(8.5) 

only the source terms on the right are different. For 
BOPi in (8.2) to be of order O(x-2) we take 

cpi = O(x-l), (8.6) 

and '1fJPYi = O(rl); then, cpi(X) is restricted asymp­
totically by the same condition as ;i(X). In order that 
our existence theorem applies to (8.3), the right-hand 
side lei jk Bp/ '1fJPYk must lie in the Banach space iE. It 
can easily be seen that this is the case if the '1fJPYi(X) 

are bounded and IX-HOlder continuous, '1fJ PYi = O(x-l ), 

and if '1fJ PYi(X) and bai(x) En satisfy the modified 
asymptotic Holder conditions 

x 1'1fJ(X) - '1fJ(y) I ::; Ga Ix _ Yla, 

x 3 ID l b(x) - D1b(y)1 ::; Ga Ix - Yla, R < x ::; y. 

(8.7) 

Then, Eq. (8.3) subject to the asymptotic condition 
(8.6) has a (unique) solution cpi E iE, if the homo­
geneous equation associated with (8.3) has only the 
null solution; in Sec. 4 it is shown that this is the case 
if the holonomy group of the bai(x) is the full SU(2). 
Only the covariant-longitudinal part Wcpi of (8.2) 
contributes to the isospin. 7 
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. We consider an irreducible :epresentatio~ of a semisimple Lie algebra L. When restricted to a semi­
sImple subalgebra K. o.f .L, thIs repr~s~ntatIo~ can be reduced with respect to K. We derive a general 
formula for the multIplICIty of a certam IrreducIble representation of K, which occurs in it. The result is an 
extension of Kostant's formula for the multiplicity of a weight, where the subalgebra K is the Cartan 
suba~ge.b:a of L. Using Kostant's for:nula, we write down a set of equations, containing the required 
multIplICIty, completely analogous wIth the usual formula involving the characters. We rewrite these 
equations .using some properties .of the partition fU,~ction (used in Kostant's formula) and of the Weyl 
groups. Fmally we solve them wIth the help of an orthogonality property." We illustrate the applica­
bility by working out two nontrivial examples. 

I. INTRODUCTION 

Some of the most important rules in the application 
of semisimple Lie groups and their Lie algebras in 
particle, atomic, and nuclear physics are the so-called 
branching rules. In the reduction of an irreducible 
representation of a semisimple Lie algebra L with 
respect to a semisimple subalgebra K, the different 
irreducible representations of the subalgebra K which 
occur, together with their multiplicities, are then given 
by these rules. 

A general closed formula, valid for finite-dimen­
sional representations, was obtained by Straumann1 

and by Delaney and Gruber. 2 This formula involves 
the knowledge of the multiplicities of the different 
weights in the considered irreducible representation 
of L. 

In this paper we present another closed formula 
which does not make use of these mUltiplicities. It 
contains a formula of Mandel'tsveig3 as a special 
case. The result is similar to Kostant's formula4 for 
the multiplicity of a weight. Moreover, it is an 
extension of this formula because, in the special case 
where the subalgebra K is the Cartan subalgebra, the 
different irreducible representations of the sub algebra 
(which are all I-dimensional) are given by the different 
weight, together with their multiplicities. 

In fact, our starting point is Kostant's formula. We 
consider the multiplicity of a weight in an irreducible 
representation of the semisimple Lie algebra L. 
We restrict this representation to the sub algebra K, 
and we derive a formula for the multiplicity of a weight 
(with respect to K) in this (usually) reducible repre­
sentation of K. 

On the other hand, this multiplicity equals the sum 
over the irreducible representations of K of the 
product of the multiplicity of a weight in an irre­
ducible representation of K times the multiplicity of 
this representation in the restriction to K of the 
considered representation of L. Modifying the two 

results, we can use a property of the considered 
partition functions-closely related to the orthogo­
nality relations of the characters-to extract the re­
quired mUltiplicity. 

But, before we can start, we are forced to give a few 
introductory notions and some properties of the 
considered partition functions. We also prove two 
lemmas, related to the commutant of the Cartan 
subalgebra J of K in L. These two lemmas are essential 
in the interpretation of an important factor in the 
formula. In the Appendix we treat two examples. 

II. BASIC CONCEPTS 

We consider a semisimple sub algebra K of a semi­
simple Lie algebra L over the field of real numbers. 
If J is a Cart an subalgebra of K, we can find a Cartan 
subalgebra H of L such that H contains J (see Ref. 5, 
p. 149). 

We denote the real vector spaces, generated by the 
roots of L, by H* and of K by J*. Thus, the elements 
of H*(J*) are linear functions on H(J). We denote by 
A and C the set of positive roots of Land K, respec­
tively. (Positivity in H* and J* will be introduced 
later.) 

The partition function PB (}.) , where}. E H* (respec­
tively J*) and B is a finite subset of H* (respectively 
J*), is defined as the number of nonnegative integer 
solutions of the equation in Xa , IX E B, 

The special function bB is defined as t Z<XEB IX, 

where B is as before. The Weyl groups of K and L are 
denoted by W K and W. 

We can now formulate the problem in mathematical 
terms. The multiplicity n(A, }.) of a weight}. E H* in 
the irreducible L-module with highest weight A E H* 
is given by Kostant's formula 

n(A,}.) = Z (det S)PA«A + bA)S - (). + bA», 
SEW 
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so that the multiplicity fiCA, m) of a weight mE J* 
in the restriction to K of the irreducible L-module of 
highest weight A E H* equals 

fleA, m) = I n(A, A), (1) 
).,)'(J)=m 

where we denote by )"(J) the restriction of a function 
A E H* to J. 

On the other hand, if we denote by N[A, M] the 
multiplicity of the irreducible K-module with highest 
weight M, which occurs in the restriction to K of the 
irreducible L-module with highest weight A, we have 
the equality 

fleA, m) = I N[A, M]n(M, m), 
MeJ* 

where the summation runs over those weights M E J* 
which can be the highest weight of an irreducible 
K-module. 

These two expressions of fleA, m) yield an equation 
for every m E J*. In order to solve this set, we rewrite 
both sides, and we use a property of the partition 
function to get rid of the summation over M. The 
result is an expression for N[A, M]. 

III. PROPERTIES OF THE PARTITION 
FUNCTIONS 

We first prove three properties of the partition 
function. 

Property 1: If AI' A2 , and A are three finite subsets 
of H* such that Al U A2 = A and Al n A2 = 0, 
then we have for all A E H* that 

(This property is closely related to the recursion 
formula for the partition function of the algebra A z 
of Radhakrishnan.6) 

Proof' Consider the two equations in x,,, x" 2 0: 

).. = fl + I 0( • x" , 
"eAl 

f-l = .2 0(' Xa' 
"EA. 

The number of solutions of the set equals the product 
of the number of solutions of the first times that of the 
second. So, it is 

PAP" - f-l)P A.(fl)· 

Eliminating the f-l in the equations, we get 

).. =.20(' X"'. 
aM 

SO, we have here .2I'PA1()" - f-l)PA.(f-l) solutions. On 
the other hand, this number is PA ()..) and the property 

is proved. Clearly, the same result holds if H* IS 

replaced by J*. 

Property 2: If A is a finite subset of H* and B the set 
of restrictions of the elements of A to the subspace J 
of H, then for every m E J* we have that 

PB(m) = .2 p.i)..)· 
).EH* 

).(J)=m 

Proof' Consider the two equations in X,,, XIX 2 0, 
and A: 

)..(J) = m. 

For every).. such that )"(J) = m, we have PA ()..) solu­
tions. Thus the number of solutions is 

.2 PAC)..). 
).,).(J)=m 

Eliminating A, we get the equation 

m = .2 x" . !X(J). 
aeA 

By the definition of B, the number of solutions of this 
equation is PB(m)~ and it follows that 

PB(m) = I P A()..)· 
).,).(J)=m 

Property 3: If C is a finite subset of the positive 
elements of J* and if, for every m E J* , 

.2 Po(n - m)Xn = 0, Xn E 7l., 
nEJ* 

then it follows that either all Xn = 0 or that there 
exists an no such that Xno ~ ° and there are infinitely 
many elements of the form 

n = no + .2 !X • x,,, x" 2 0, 
"eO 

with Xn ~ O. 

Proof' Suppose that there exists an no with Xno ~ 0. 
Consider the following equation with m = no: 

.2 Po(n - no)Xn = O. 
neJ* 

SincePo(n - no) = 0, ifn < no, andPc(n - no) = 1, 
if n = no, we can rewrite the equation as 

n>no 

The left-hand side must be different from zero since 
Xno ~ O. Thus there exists an n > no of the form 

n = no + .2 0( . X,,, x" ~ 0, 
aeO 
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with Xn ¥= O. It follows immediately that there are have the following properties, oc E H*: 
infinitely many elements of this form with Xn ¥= O. oc > 0 => oc(J) ~ 0 

IV. THE COMMUTANT IN L OF THE CARTAN 
SUBALGEBRA J OF K 

Let us consider Property 2 of the partition function, 
and suppose that there exists an element oc E A such 
that its restriction to J, oc(J) is zero. It follows that B 
contains zero as an element, and so PB(m) is always 
infinite or zero. 

Indeed, PB(m) is the number of solutions of 

m = 'LP' Xp. 
pER 

Clearly, if ° E B and if there exists a solution {xp}, 
then, for every positive integer n, we have that 

m = L P . xp + n . 0, 
PER 

and so {xp + nr5(p, a)} is also a solution. 
Now we want to use Property 2 to work out the 

sum over A with A(J) = m in formula (1). Since 
n(A, A) contains the partition function P A' where A 
is the set of positive roots of L, it is clear from these 
considerations that the subset of A, {oc E A, oc(J) = O}, 
will play an important role in our treatment, and since 
oc(J) = 0 means that the corresponding generator Ea 
in L commutes with J, Ea belongs to the commutant 
of J in L if oc is an element of this subset. 

Therefore, we prove two lemmas concerning this 
commutant and its Weyl group. 

Lemma 1,' If J is a subalgebra of a Cartan sub­
algebra H of L, then the subalgebra L1 of L, con­
sisting of elements commuting with H, is the direct 
sum of a commutative and a semisimple part. 

Proof' Consider the set of roots in L, according 
to the Cartan subalgebra H, and the corresponding 
basis {Ea , oc a root} in L. Suppose that an element 
La Aa . Ea E L1 and so commutes with all elements 
h EJ. Thus, 

(~AaEa, h) = ~ Aa[Ea, h] 

= L Aaoc(h)Ea = O. 
a 

Since the {Ea} constitute a basis, we have for every h 
and oc that 

A.aoc(h) = 0, 

which is equivalent to saying that 

A.a = ° if oc(h) ¥= 0, 

and so {Ea' oc a root, oc(J) = O} is a basis in Ll • 

We now introduce an ordered basis in J* and H* 
such that the corresponding sets of positive elements 

and 
oc(J) > ° => oc > 0. 

Consider a basis in H*, {A;, i = 1, /}, and consider 
the restrictions to J, {Ai(J)}. We can rearrange the 
indices so that the first restrictions constitute a basis 
in J*. If k is the dimension of J, then we may suppose 
that {Ai(J), i = 1, k} is a basis in J*. 

We can now write the restrictions AiJ) with q = 
k + 1, / in terms of the basis in J* , 

k 

AiJ) = L a~A;(J), k < q S 1, 
i~l 

and redefine the basis in H*, 
k 

A~ = Aq - L a~Ai' if k < q S I, 
i=l 

A~ = Aq , if 0 < q S k. 

An element of J*, written as 'L~~1PiAi(J), is called 
positive if the first nonzero coefficient is positive; an 
element of H*, written as 'L~~l PiA; , is called positive 
if the first nonzero coefficient is positive. The inclusion 
properties can easily be verified. Having defined the 
positive roots in L, we can associate the corresponding 
simple system of roots in L, and we denote it by 
TT = {ocl , oc2 , ••• , OCt}. 

Let us consider a positive root P such that P(J) = O. 
Since {oc i } is a simple system, we can write 

P = 'LkiOCi' V k; ~ O. 

Restricting to J, we have 

(J(J) = 0 = 'L kioci(J)· 

Since oc;(J) ~ 0, we have that k; = ° if oci(J) > 0. 
If we call TT' the subset of TT for which OCi(J) = 0, 

then every positive root p, P(J) = 0, can be written as 
a sum with nonnegative coefficients of the basis roots 
TT'. We may conclude that TT' is a simple system for the 
roots with zero restriction to J (see Ref. 5, p. 121). 

Next we consider the canonical generators {hi' ei ,j;} 
according to the system TT, and we define L2 to be the 
subalgebra of L generated by the subset {hi' ei ,j; 
with OC; E TT'}. It is easy to see that L2 must be semi­
simple. If OC; E TT', then the ei and j; commute with J 
and so do the hi' and it follows that L2 is contained in 
L l • 

Next we consider the subalgebra H2 of H defined as 
the set 

{h, h E H, V OC i E TT' => oci(h) = O}. 

It is now possible to show that Ll is the direct sum of 
H2 and L2. Indeed, if oc is a nonzero root and if the 
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corresponding generator Ea commutes with J, we can 
write 

and Ea is generated by {ei ,j; with !J..i E 7T'} and hence 
belongs to L 2 • On the other side, if h E H, then we 
can solve the set of equations (!J..i E 7T' and summation 
over those indices such that !J.. j E 7T') 

because !J..i(h j) is the Cartan matrix of L2 , which is 
nonsingular. It follows that !J..i(h - L kjh j) = 0 for 
!J..i E 7T', and so h - L k jh j E H2 • Furthermore, it is 
clear that H2 commutes with L 2 • 

Lemma 2: The subgroup Wo of the Weyl group W 
of L, defined as the set 

{S, SEW, V A E H => AS(J) = A(J)}, 

equals the Weyl group WL • of the algebra L2 (as 
defined in Lemma 1). 

Proof" It is easy to show that WL • S; Wo. Suppose 
that !J.. is a nonzero root of L2 ; then the mapping 
Sa: H* ->- H* is defined as 

ASa = A + [(A, !J..)/(!J.., !J..)]!J.. (see Ref. 5). 

If we restrict to J, we get 

ASa(J) = A(J) since !J..(J) = O. 

This holds for all A E H* and all the nonzero roots 
of L2 , and, because WL • is generated by the reflexions 
Sa , where !J.. is a nonzero root of L2 , we may conclude 
that 

WL • S; Woo 

To prove that Wo S; WL ., we show that, for every 
S E Wo, there exists a S1 E WL • such that SS1 leaves 
the simple system 7T of L fixed, and so (see Ref. 5, 
p. 242) SS1 = 1 and SE WL •. Given SE Wo, we 
first construct such an element S1 of W L • . We consider 
the simple system 7T' in L 2 , contained in 7T (as in 
Lemma 1) and we show that 7T'S is again a simple 
system in L 2 • 

Take an arbitrary nonzero root fJ of L 2 ; fJS~1 is 
again a nonzero root of L2 because S E Wo. Thus it 
can be written in terms of the simple system 7T': 

fJS~1 = I kifJ;, 
PiE1T ' 

with V k i ~ 0 or V k i ~ 0 (see Ref. 5, p. 121). 
It follows that fJ = I k;(fJiS) with the same condi­

tion for the coefficients, and, since fJ was arbitrary, the 

set 7T" = 7T'S is a simple system for L 2 • Hence, by a 
property of the Weyl group, there exists an element 
S1 E W L. such that 

We can now show that 7TSS1 = 7T. Clearly, 7TSS1 is a 
simple system because SS1 E W. 

Consider a simple root !J..i E 7T~7T'. We have that 
!J..;(J) > 0 and 

and by the construction of the positive roots !J..iSS1 > 
O. On the other hand, we have that 7T'SS1 = 7T', so 
that the set 7TSS1 consists of positive simple roots. It 
follows that 7TSS1 = 7T by a property of simple 
systems. QED 

V. A FORMULA TO DERIVE BRANCHING 
RULES 

Theorem 1: The multiplicity of a weight m E J* in 
a K-module, which is the restriction to K of an 
irreducible L-module with highest weight A (E H*) is 

fiCA, m) = I (det S)PB«A + t5.1)S(J) - (m + t5B» 
SeW 

where A is the set of positive roots of L, B the set of 
nonzero restrictions of A to J, Al the subset of A, 
having zero restriction to J, dim [A] = 0 if A is not 
dominant (with respect to L2),7 and dim [A] = 
dimension of the L2-module with highest weight 
equal to the restriction of A to L2 , if A is dominant. 

Proof Clearly, the considered multiplicity 

fiCA, m) = I n(A, A), 
i..i.(J)~m 

where n(A, A) is the multiplicity of the weight A E H* 
in the irreducible L-module with highest weight A. 
Thus by Kostant's formula 

fiCA, m) = I I (det S) 
i.,A(J)~m SeW 

To prove the theorem, we must evaluate the sum over 
A. However, we are not allowed to commute both sums 
since, if e.g., !J.. E A and !J..(J) = 0, then 

I P.1«A + t5.1)S - (A + 15.1) 
A,A(J)~m 

might be infinite, as we already mentioned in Sec. IV. 
Therefore, we introduce the subsets of A, 

Al = {!J.. E A, !J..(J) = O}, 

A2 = {!J.. EA, !J..(J) > O}. 
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We already saw in Lemma I that A = Al U A2. 
Clearly, Al n A2 = rp, and so we can use Property 1 
to get 

fiCA, m) 

=! ! (detS) 
)..).(J)~m SEW 

x ! PA2(fl - A)PA1«A + 15 A)S - (fl + 15 A» 
p.EH· 

! "'i P A2(fl - A) 
)..).(J)~m p. 

X ! (det S)PAl{(A + bA)S - (fl + bA»· 
SEW 

Now 

! PAifl - A) = PB{fl(J) - m) 
)..).(J)~m 

by Property 2, and, because B is a set of positive 
elements, the result is finite. Thus we may commute 
the sum over A and fl and use Property 2. 

Hence, 

fiCA, m) = ! PB(fl(J) - m) 
p. 

X ! (det S)PAl{(A + bA)S - (fl + bA»· 
SEW 

We have that PAJA) = 0 or A = "'iaEAl XaiJ., and so 
A(J) = O. 

It follows that we may replace fl(J) by 

(A + bA)S(J) - bA(J), 

and then we find 

fiCA, m) =! "'i (det S)PB«A + bA)S(J) 
p. SETV 

- (m + bB»PA1{(A + bA)S - (fl + bA»' 

The last factor is a partition function over the ele­
ments AI' which are the positive roots of the algebra 
L 2 ; since fl occurs only in this term and we sum over fl, 
we only miss a summation over the Weyl group of 
L2 in order to have a dimension of an irreducible L 2-
module. But we know from Lemma 2 that this Weyl 
group is the subgroup Wo of W. 

So we introduce this subgroup, and we split the 
sum over W, into a sum over the left cosets and over 
Wo itself. 

Since (A + 15 A)SSO(J) = (A + bA)S(J) if So E Wo, 
we get 

fiCA, m) 

= ! ! (det S)PE«A + bA)S(J) - (m + bE» 
p. SETV/TVo 

X "'i (det SO)PAl{(A + bA)SSo - (fl + 15...1»' 
SoEJf' 0 

Wo is the Weyl group of L2 by Lemma 2, and the Al 

are the positive roots of L2 ; thus we have that 

! z (det So)P Al«A + 15 A)SSO - (fl + 15 A» 
I' Wo 

= ! ! (det So)PAJ«A + bA)S - 15...11 + bAl)So 
I' W L2 

- (fl + 15...1)] 

(we may replace bA by bAl because we sum over fl) 

= dimension of the L 2-module with the restriction 
to the Cartan subalgebra of L2 of (A + bA)S -
15 A, as highest weight, if this weight is dominant 
with respect to L 2 • 

It is easy to see that there is only one S in every coset 
such that (A + 15 A)S - 15...1 , is dominant with respect 
to L 2 • Suppose that 

(A + bA)S - bAl and (A + bA)SSo - bAl 

are both dominant; then so are (A + bA)S and 
(A + 15 A)SSO' and it follows that So = 1 (Ref. 5, 
p.262). 

As a result of the preceding considerations, we may 
write 

fiCA, m) = "'i (det S)PB({A + bA)S(J) - (m + bE» 
SEW 

x dim [(A + bA)S - bAJ 

provided that we define dim [A] = 0 if A is not 
dominant: otherwise, 

dim [A] = ! "'i (det SO)PA,«A + bA)So - (fl + bA,». 
I' W L2 

QED 

Theorem 2: The multiplicity of the irreducible K­
submodules with highest weight ME J in the restric­
tion to K of the irreducible L-module with highest 
weight A equals 

N[A, M] = "'i (det S)PD«A + bA)S(J) - (M + bE» 
SEJf' 

x dim [(A + 15 A)S - 15 A,], (3) 

where D = B", C, C the positive roots of K, and 
B, A, AI, and dim [J.] are as in Theorem I. 

Proo!, As we already mentioned in Sec. II, the 
equation 

fiCA, m) = "'i N[A, M]n(M, m), (4) 
...11 dominant 

with 

n(M, m) 

! (det SK)Pc«M + bO>SK - (m + 150», 
SKETf'K 

holds for all m EJ*. Theorem 1 provides us another 
formula for fleA, m), but we are not yet able to use 
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Property 3: On the one hand, we have a partition 
function over B and, on the other hand, a partition 
function over C. Obviously, C is contained in B 
because an element {3 of B is a positive solution of the 
set of eigenvalue equations 

V h EJ, [h, x] = {3(h)x, x E L, 

and an element of C is a similar solution, but with 
x in the subspace K of L. 

This suggests that we should use Property 1 again, 
to arrive at the same partition function on both sides, 
and then use Property 3. So let D = B~ C and let us 
rewrite formula (2) using Property 1 : 

fiCA, m) = L (det S) dim [(A + OA)S - O.d 
SEW 

X LPD«A + OA)S(J) - m1)Pdml - (m + 0B»' 

By a redefinition of ml and a re-ordering of the terms, 
we get 

X L (det S) dim [(A + /jA)S - 0.1,] 
SEW 

Here we have a summation over m1 E J*, in formula 
(4) we have a summation over M dominant and over 
SK E WK' In fact, both are summations over the 
whole space J*: Consider the subset 

j) = {(M + OdSK' SK E WK , M dominant}. 

All these weights are different; suppose that two 
of them are equal: 

(M + OdSK = (M' + bdS'x. 
Then 

and, because M and M' are dominant, 

S KS'i/ = 1 (Ref. 5, p. 262) 
so that 

M + be = M' + be. 

It follows that with every element m1 E j) we can 
associate a unique SK(m1) and M(m1) such that M(m1) 

is dominant and 

Now we can rewrite formula (4): 

fiCA, m) 

= L Pe(m1 - (m + (Jd) det SK(m1)N(A, M(m j », 
m,E:D 

and we can extend the summation over the whole 
space, because, if m1 f/= j), then we may put 

N(A, M(m1» = O. 

Equating the two results for fiCA, m), we have 

with 

X(m1) = [det SK(ml)]N(A, M(m1» 

- L (det S) dim [(A + (JA)S - (JA,] 
SEW 

X PD«A + (JA)S(J) - (m1 + 0D»' 

We can now use Property 3. Therefore, we first 
suppose that X(ml ) =F 0 for an element m1 = no, and 
so there are infinitely many points of the form n = 
no + L"'EO X",IX, x", ~ 0, such that X(n) =F O. 

On the other side, we know that N(A, M(ml » is 
only different from zero for a finite set of points M 
and so for a finite set of points m1 . Therefore, there 
should be infinitely many points such that the second 
part of the sum is different from zero, and, since W 
is finite, this should be true for some element S of 
W. But PD«A + (JA)S(J) - (ml + 0D» can only be 
different from zero if 

"'ED 

It follows that there are infinitely many points m1 of 
the form 

m1 = no + L X",IX = (A + (JA)S(J) - OD - L X",IX, 
"'EO "'ED 

and so we have infinitely many solutions of 

"'EO "'ED 

Thus, PB«A + OA)S(J) - (no + 0D» would be in­
finite, which is impossible since B is a finite set of 
positive roots. 

We conclude by Property 3 that X(ml ) = 0 for all 
ml , and, if we take a point ml with SK(ml ) = 1, we 
get 

N(A, M) = L (det S) dim [(A + (JA)S - /jA,] 
SEW 

X PD«A + /jA)S(J) - (M + (Jo + (JD»' 

and, since be + 0D = 0B' we have proved formula (3). 

Remarks: 
(i) In formula (3) the sum over SEW runs effec­

tively over those elements such that 

(A + 0A)S - b A, is dominant with respect to L2 
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and 
(A + ~A)S(J) - ~B ~ M. 

Because A + ~A ~ (A + bA)S, we have that 

A(J) ~ (A + b A)S(J) - IJB . 

Therefore, there is, in fact, only summed over a subset 
of the cosets WI WO a subset, which is, in many 
cases, small with respect to the whole W. This is, 
of course, a great advantage. 

(Ii) Applying formula (3), one should take care of 
the fact that A, the set of positive roots of L, when 
restricted to J must yield positive or zero weights 
with respect to the ordering in J*. 
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APPENDIX 

As a first illustration of the applicability, we treat 
the nontrivial case of the subalgebra Al of the simple 
Lie algebra G2 , encountered in nuclear and atomic 
physics (see, e.g., Ref. 8, p. lO6). 

We first determine the various elements that are 
to be used in the formula. We consider the canonical 
generators of G2 , {hi' ei ,j;; i = I, 2}, and we denote 
the elements A of H* by 

(AI' 1.2) = (A(hI ), A(h2»' 

In this notation we have that IJA = (I, 1), and the 
different possibilities for (AI' A2)S and det S are (see 
Ref. 5, p. 235) 

(AI' ).2)+, (-AI' A2 + 3AI)-, (AI + A2 , -A2)-, 

(2AI + A2, -A2 - 3AI)+, (-AI - A2, 3AI + 2A2)+, 

( - 2AI - A2, 3AI + 222)-, (2AI + A2, - 321 - 2A2)-, 

(AI + A2, -3AI - 2A2)+, (-221 - A2, +22 + 3AI)+, 

(-AI - 1.2, A2)-, (AI' -22 - 31.1)-, (-AI' -A2)+· 

(The plus or minus sign indicates whether det Sis + 1 
or -1.) 

In this special case, the adjoint representation of G2 

reduces with respect to Al into a 3- and II-dimensional 
representation. It follows immediately that the commu­
tant of the Cartan subalgebra J of Al contains only 
one element apart from J itself, so that it is commuta­
tive, and that the factor 

dim [(A + IJA)S - IJAJ is always equal to 1. 

Knowing the different roots of G2 , one can find that 
the canonical element h of J is 10hi + 6h2 , and, if 
we denote the elements M ofJ* by 1= iM(h), we find 

that the restriction of a weight (AI' ).2) of H* to J is 

(AI' A2)(J) = 51.1 + 3A2. 

In this notation we also find that 

B = {5, 4,3,2, I, I}, D = {5, 4, 3, 2, I}, 

so that bB = 8. 
The different possibilities for the weight 

«A + IJA)S(J) - IJB ) 

and det S, such that this weight can be positive, are 

(SAl + 3A2)+, (4AI + 3A2 - 1)-, (51.1 + 2A2 - 1)-, 

(AI + 2A2 - 5)+, (4AI + 1.2 - 3)+, 

(A2 - 21 - 8)-, (IAI - A21 - 8)-. 

Using all these results and the fact that PD(n) = 0 if 
n < 0, weare able to write down our formula as 

n[(AI' A2), /] = PD(5AI + 3A2 -I) 

- PD(4A I + 3A2 - 1 - I) 

- PD(SAI + 2A2 - 1 - I) 

+ P D()'I + 21.2 - 5 - I) 

+ P D( 4AI + A2 - 3 - /) 
- PD(IAI - A21 - 8 - I), 

and the first few values of P D are as follows: 

n:O 1 2 3 4 S 6 7 8· .. ; 
PD(n):l 12357 lO 1318 .. ·. 

Having done all this preliminary work, we now find 
it easy to decompose an arbitrary irreducible G2-

module with respect to AI' Consider, e.g., the 
G2-module of highest weight A = (1, 1) and dimen­
sion 64. Our formula becomes 

n[(1, 1), l] = PD(8 -I) - 2PD(6 - I) + PD(2 -I). 

The result is 
/ = 0 1 2 3 4 S 6 7 8, 

n[(1,I),l]=O 0111 1011, 

in agreement with Ref. 8, p. 147, where the irreducible 
representations of G2 are labeled by (AI + A2, AI)' 

As a second example, we take the chain Aa ::J Al E8 
Al (SU4 ::J S04 in group theoretical notations). If 
{hi' ei ,j;, i = 1,2, 3} is a set of canonical generators 
of Aa, we denote the elements A of H* by9 

[AI A2 Aa 0] = [A(h l + h2 + ha)A(h2 + ha)A(ha)O]. 

In this notation we have that IJA = [3,2, 1,0], and, if 
we define [fll fl2 fla {t4] = A + IJ A, we find that the 
Weyl group acts by permutations on the indices of the 
fl's. 
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For every permutation (PI' P2 , P3 , P4) of (1,2, 3,4) 
we have a possibility for (A + 0 A)S, namely 

[,u P1 - ,up" ,up. - ,uP" ,uPs - ,ul\, 0]. 

In order to satisfy the relations between the positive 
elements of H* and J* (see Lemma 1), we choose the 
canonical elements of J, the Cartan subalgebra of 

Al EB AI' as 

hI + 2h2 + h3 and hI + h3' 

and we denote the elements M of J* as 

(ml , m2) = (M(hl + 2h2 + h3), M(hi + h3)), 

so that the restriction of an element A of H* to J 
becomes 

(AI + A2 - A3, Al - A2 + A3)' 

The sets Band Dare 

B = {(2, 2), (2,0), (2,0), (2, -2), (0,2), (0, 2)}, 

D = {(2, 2), (2,0), (2, -2), (0, 2)}, 

and we have that OB = (4,2). 
Clearly, the dimension factor is always equal to 1, 

so that our formula becomes 

N[[AI AZA30], (m l , m2)] 

= .L(-l)PPn«,u1'l + ,uP. - ,up. - ,up, - m1 - 4, 
P 

where (-1)1' is + 1 or -1 whether the permutation P 
is even or odd. 

We only require results for those multiplicities 
N[A, M] such that M is dominant, which means that 
m1 and m2 are not negative, and from the knowledge 
of D we may conclude that only those permutations 
must be taken into account for which either 

,uP + ,ul' - "1' - lip - 4 = k > 0 
1 2 13 '4 

and 
"l' - lip + lip - 111' - 2 > - k 11 ,"2 i"a'4 -

or 

and 

#1'1 - #1'2 + #1'. - ,up, - 2 2: O. 

Let us now turn to an explicit example: Consider the 
regular representation of A3 with A = [2 1 1 0]. We 
have that A + 15 A = [5 3 2 0]. The only possible 
permutations satisfying the above restrictions are 

[5 3 2 0], [3 5 2 0], [5 3 0 2], [5 2 3 0], 

so that the result is 

N[[2 1 1 0], (ml' m2)] 

= Pn«2 - m1, 2 - m2)) - Pn« -ml , 4 - m2)) 

- 2Pn«2 - mI , -2 - m2)). 

And we get by a simple calculation the following 
table. 

TABLE AI. 

(m1, m.) P n((2 - m" 2 - m.) Pn« -ml> 4 - m.» PD«2 - m" -2 - m2) N 

(2,2) 1 
(2,0) 1 
(0,4) 1 
(0,2) 2 
(0,0) 3 

We can easily check the relation between the dimen-
sions: 

15 = I (m! + 1)(m2 + 1). 
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We investigate a class of nonrelativistic, self-interacting model field theories, assuming the existence 
of field and momentum operators that satisfy the canonical commutation relations (CCR's). The large 
symmetry that we assum~ perm!ts us to deter~ine explicitly all the relevant <?CR.represe~tations ~nd 
Hamiltonians. For each Irreducible representation there eXists only one Hamlltoman, which descnbes 
no interaction. Hence every model with interaction requires a reducible CCR representation. We expect 
a nontrivial S operator to exist for many of these models. We examine how close our models can come 
to relativistic theories. 

1. INTRODUCTION 

No models describing interacting particles and 
satisfying all the Wightman axioms are known at the 
present time. Recently Glimm and Jaffe constructed 
a model that fulfills many of the axioms but violates a 
fundamental one: Their space has one dimension, 
not three. There is not much hope that this short­
coming can be overcome with their techniques. To 
get a better insight into the difficulties and to find the 
best approach to our goal of finding realistic theories 
of interacting fields, it is imperative to look also for 
interacting models in three space dimensions that 
satisfy some of the Wightman axioms. This paper is 
a contribution to this program. l 

We start by writing down a set of basic assumptions 
containing a symmetry requirement that we illustrate 
before by considering a class of classical Hamiltonians. 
This symmetry is the only manifestly unrealistic as­
sumption that we shaII make. It permits us to find 
all models that satisfy the assumptions, and this is so 
even though our list of axioms is much shorter than 
Wightman's. The solutions are found by mathematical 
techniques that avoid boxes, momentum space 
cutoffs, and divergencies. They are simple compared 
to the sophisticated ones employed by Glimm and 
Jaffe in the construction of their model. 

This paper is based on work by Klauder on "rota­
tionally symmetric" models.2 •a It avoids a number of 
their unphysical features while preserving the possi­
bility of deriving strong and explicit results by simple 
methods. RotationaIIy symmetric models have Hamil­
tonians with a discrete spectrum only (leading to a 
trivial S matrix) and with interactions involving the 
relation between the values of the field at points with 
equal time, yet arbitrarily large spatial separation. 
Our models will not show these undesirable features. 

The noninteracting ones among our models are 
similar to some that have been considered in statistical 
mechanics.4 •5 

In Sec. 2, after stating the basic assumptions, we 
give our main results, grouped into two theorems. 
We discuss their physical interpretation and a special 
model, which shows how close solutions satisfying our 
assumptions can come to realistic theories. Sections 
3 and 4 are devoted to the proofs of the two theorems. 

2. FORMULATION OF THE PROBLEM, 
SUMMARY AND DISCUSSION OF 

THE RESULTS 

A. The Classical Models 

We want to find the quantum theories corresponding 
in some sense to the classical theories with Hamil­
tonians of the form 

H(f, g) = H(f,f) + V{(gi' gj)}], (1) 

where the classical field g and momentum fare 
elements of some linear manifold, which we shall 
finally choose as L;(Ra), the space of real-valued 
square-integrable functions with arguments in the 
3-dimensional Euclidean space Ra. (f,f) denotes the 
scalar product in VeRa). V depends on infinitely many 
arguments, labeled by two triples of integers, i, 
j EZa . We have 

(hi, hj) = lh'*(i + x)h(j + x) dx, h', h E L2(Ra), 

(2) 

where c denotes the integration over the unit cube 
whose center is at the origin of a Cartesian coordinate 
system in Ra and whose edges are parallel to the 
coordinate axes. 

As an illustration, consider how close such a 
Hamiltonian can be to the one for the relativistic 
scalar field with quartic self-interaction, 

HrCf, g) = l J dx[P(x) + (Vg)2(X) 

+ m2g2(x) + Ag4(X»). (3) 

3283 
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We have to approximate (Vg)(x) by (g(x + e1) - g(x), 
g(x + e2) - g(x), g(x + ea) - g(x», where ei is a 
unit vector parallel to the ith coordinate axis. Choos­
ing a very small length unit, we should get a good 
approximation: 

HaCf, g) 

= i[(f,f) + 2(f:(gj. 3gj - gi+el- gj+e2 - gi+es») 

+ m2(g, g) + At (gj, gj)2]. (4) 

Notice that the interaction is no longer local, but, by 
choosing a length unit of 10-16 em, relations between 
the values of the field g at points more than .J3 x 
10-16 em apart will have no effect, in agreement with 
experiment. Later I shall return to this example. 

We denote by X' the group of real linear trans­
formations T that satisfy H(f, g) = H(TI, Tg) for 
all H of the form (1). X' does not contain transla­
tions. In agreement with our division of space into 
cubes, we content ourselves with invariance of H 
under the group X" of "lattice" translations, whose 
elements Tn, n E Za, are defined by 

f(x) = (Tnf)(x + n). 

This requires 

V{(gj' gj)} = V{«Tng)j' (Tng)j)} for all n E Z3' (5) 

If we restrict the set of H(f, g) by imposing (5), then 
H(I, g) = H(Tf, Tg) will remain true for T EX = 
X' @ X". H(f, g) is also invariant under "time 
reversal," i.e., under the replacementf ~ -I, g ~ g. 

B. The Basic Assumptions 

1. Cyclic Representations 01 the Canonical 
Commutation Relations 

For all IE L;(Ra), there exist two self-adjoint 
operators c/>(I) and n(I) acting on a separable 
Hilbert space ~ with positive-definite metric and 
satisfying 

c/>(cf) = ccp(f), n(cj) = cn(j), for all c E R, (6) 

such that 
uri, g] == exp {i[c/>(j) - neg)]} (7) 

fulfills 

U[!" g']U[I, g] = exp {it[(j/, g) - (g',j)]} 

x U[f' + I, g' + g]. (8) 

There exists a vector $0 E ~, 1/$01/ = 1, such that the 
set (J of vectors 

$[f, g] == U[f, g]!l>o 

is total, i.e., the finite linear combinations of vectors 
in (J are dense in ~. 

Since the Uri, g] are unitary, no domain questions 
arise in (8), which is the Weyl form of the CCR's. One 
easily deduces from (8) the Heisenberg form of the 
CCR's, [cp(f), neg)] = i(f, g). We shall avoid the 
use of cp(x) , which can formally be introduced by 
writing CPU) = S cp(x)I(x) dx, because only the 
smeared quantities cp(f) and neg) are operators, a 
term that we shall reserve for densely defined linear 
transformations. The last assumption does not imply 
that every bounded operator that commutes with all 
the U[j, g] is a multiple of the identity; i.e., besides 
the irreducible representations of the CCR's, some 
reducible ones are also cyclic. 

2. Existence and Uniqueness of an Invariant Vector 

For all T E:t there exists a unitary transformation 
UrT1 with the property 

U[T]$[j, g) = !l>[Tf, Tg), (9) 

and there exists an antiunitary transformation J such 
that 

J!l>[f, g] = $[ -f, g]. (10) 

Up to a constant, there is only one vector that is 
invariant under all the U[T] with T E X'. 

3. Properties of the Hamiltonian 

There exists a self-adjoint operator Je ~ 0 such that 
under suitable domain conditions 

[U[T], Je] = 0, for all T EX, (11) 
and 

[cp(f), Jel = in(j). (12) 

Up to a constant, 
Je!l> = 0 (13) 

has a unique solution. 

Equation (11) expresses the assumed symmetry of 
Je, and Eq. (12) was gained by the usual replacement 
of the Poisson brackets of the classical theory by 
commutators. The ground state of Je, which we 
introduced in (13), coincides with the vacuum state $0' 

Proof: 0 = Je<l> = U[T]Je!l> = JeU[T]!l>. Hence 

U[T]!l> = oc(T)$, 

where oc(T} is a complex number. Equation (7) 
requires U[T]U[T'] = U[IT']. The oc(T) form there­
fore a l~dimensional representation of X'. However, 
Z' has only the trivial I-dimensional representation. 
According to the last of the assumptions in sub­
section 2B2, this implies $ = c$o. 



                                                                                                                                    

CELL MODEL FIELD THEORIES 3285 

The above axioms suffice to determine all solutions 
without too much difficulty. Instead of adding other, 
physically motivated assumptions, we shall first search 
for the solutions and then single out special cases 
with additional welcome properties. 

C. The Main Results 

The first theorem deals with the vacuum expectation 
value of U[J, g], (<1>0' U[J, g]<I>o) = (<1>0' <1>[/, g]), 
which we shall call the reproducing kernel. It deter­
mines (<I>[J', g'], <1>[/, g]) because of (8). For I(x) E 

L2(Ra), we define a partial Fourier transform /(x, k) 
by 

I(x + I) = Ldkj(X, k)eikl
, (14) 

satisfying assumptions 3 have the form 

(<I>[f', g'], Je<l>[f, g]) 

with 

= H<I>[f', g'], <I>[f, g]) 

x (L[(j'(k) - im{k)g'(k)./(k) - im(k)g(k» 

+ 2e(k)(G'(k), G(k))] dk + F{(G'(k'), G(k»}) 

(17) 

F{(G'(k'), G(k»} 

= 5: 2(fI r r dk~ dki(G'(k~), G(k;») 
n=2 n! i=1 J D J D 

h 1 Z I I
tT ItT ItT d dAk • b(k{, k1 , •.• , k~, k n), (18) 

were x E C, E 3, D = -tT -tT -tT' an = 
(27T )-3 dk. b(k~ , k1, ... , k~, k n ) 

Theorem 1: For a solution of assumptions 1 and 2 
(Sec. 2B), it is necessary and sufficient that 

(<1>0' <I>[f, g]) 

= exp (-1 Ldk idx[~(k)m-l(k) I/(x, kW 

+ m(k) Ig(x, kW]), (15) 

where6 C-l < m(k) = m( - k) < C and 1 ~ ;(k) = 
e( -k) < C for some constant C. Two CCR represen­
tations are equivalent if and only if their corresponding 
pairs {m(k), ~(k)} are equal. The representation is 
irreducible if ~(k) == 1 and reducible otherwise. 

The second theorem deals with the Hamiltonian. 
I have found that, for the irreducible representations, 
there exists one and only one Je satisfying assumptions 
3 (Sec. 2B); for the reducible ones, there are infinitely 
many. In general, an equivalence class of'representa­
tions will therefore not uniquely determine the func­
tional (<I>[J',g'],Je<l>[/,g]). For its form, I have 
derived only a necessary and a sufficient condition, 
which do not coincide. In formulating the results, we 
shall make use of the following abbreviations: 

(h'(k'), liCk»~ = 1 dxli'*(x, k')li(x, k) (16) 

and 

G(x, k) = {tm(k)[e(k) - l]e-1(k)}! g(x, k). 

(19) 

= h(k{, k1 , ••• , k~) • (27T)3 L t5 (27TI + i k; - k;), 
IeZa ;=1 

(20) 

and 
e(k) > 0 for all k with ~(k) > 1. 

I can prove that such Je exist if e(k) < C and if 

F{(G'(k'), G(k»} = L bM r r dk~ dk1P(kDt1*(k1) 
M JD JD 
x exp [iM(k{ - kl)](G'(k~), G(kl» 

x L dk~P(k~)t1*(k~ + k~ - k 1) 

x (G'(k;), G(k~ + k~ - k 1» (21) 

with IP(k)1 < C and 0 ~ bM = b_M < C for some C. 

The necessary conditions above do not ensure 
Je ~ O. On the other hand, it can easily be shown 
that we may have terms of higher than fourth order in 
G' and G. 

Given a classical Hamiltonian H(j, g), one usually 
replaces I and g by operators 7T and cp satisfying the 
CCR's and imposes normal ordering. We shall call 
this prescription the correspondence principle (CP). 
Then7 

(<1>[/, g], Je<l>[/, g]) = H(/, g). (22) 

Notice that G(x, k) == 0 for irreducible representations. An argument due to ArakF shows that, for reducible 
representations, the Hamiltonians of Theorem 2 

Theorem 2: The (] matrix elements of the Hamilto- cannot be constructed as functions of cP and 7T alone. 
nians Je belonging to a reproducing kernel (15) and The CP gives Je expressed in terms of cP and IT, thus 
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restricting us to the rather trivial irreducible repre­
sentations. We abandon therefore the CP despite its 
important role in the historical development of quan­
tum mechanics. That the CP is often a too strong 
requirement is indicated also by the work of Arens 
and Babbitt. 8 Our basic assumptions show that we 
maintain the connection between commutators and 
Poisson brackets of c/> and 7T and of c/> and Je. We 
maintain also (22). The right side of (17) has, for 
diagonal matrix elements, the form 

HC/,f) + V{(g(k'), g(k»}], (23) 

which is equivalent to the right side of (1). The 
restriction (20) ensures that (5) is satisfied. Not all 
classical theories satisfying (1) and (5) have a quantum 
counterpart that fulfills assumptions 1-3 because 
these assumptions lead to further properties of V, 
e.g., V = V*. We shall not investigate further the 
relation between classical and corresponding quantum 
theories. This could be done along the lines described 
by Klauder in an article on the weak correspondence 
principle (WCP). 9 The relation (22) explains why, for 
the smearing functions of the field (and momentum) 
operators, we found it convenient to use the same 
letters / (and g) as for the classical momentum (and 
field). 

D. The Two-Point Function 

If Je has the form (17) with F == 0, one finds 

(II>[/" g'], e-itJeIl>[f, gD 

= N' N exp (Ldk«=~.+e-itm«(k)(h~(k), h«(k») , (24) 

where 

N' = (11)[1', g']' 11>0), N = (11)0,11>[/, gD, 

m±(k) = t(m(k) + e(k) ± ([m(k) + e(k)]2 

- 4m(k)e(k)~-1(k)}!), (25) 

h±(x, k) = [tp±(k)m;;I(k)]![/(x, k) - im±(k)g(x, k)], 

(26) 

and 

p±(k) = ±m±(k)[m+(k) - m_(k)]-l 

X [1 - ~(k)m'f(k)m-l(k)]. (27) 

We use this result to calculate the two-point function 

(<Po, c/>U', t' + t)c/>(f, (')<Po) = (<Po, c/>(!')e-itJe c/>U)4>o) 

= (4)0' c/>U', t)c/>(f)4>o), 
(28) 

where 
(29) 

Setting g == g' == 0 and equating terms that are linear 
in I' and /' we conclude from (24) 

(<Po, c/>Cf')e--itJec/>U)<Po) 

= Ldk«=~}paCk)m;\k)e-itm«(k)<1'(k),.f(k». (30) 

This holds even if F :ji5 0 because F does not affect the 
two-point function. To bring (30) into a more familiar 
form, we formally calculate it for f'(x') = o(x' - x) 
and/(x') = o(x' - y): 

(01 c/>(x, t)c/>(y) 10) 

== (11)0' c/>(x, t)c/>(y)lI>o) 

= J Jkeik(X-Y)«=~}paCk)m;\k)e--itrna(k). (31) 

Here the integration extends over all of Ra; p«(k) and 
m«(k) have been extended to functions with period 
D defined for all k ERa. In the case of an irreducible 
representation of the CCR's, (31) reduces to 

(01 c/>(x, t)c/>(y) 10) = f dktm-\k)eik(X-YHm(k)~ 
If we replaced m(k), which is periodic in kl' kz, and 
ka, by (Uk = (m2 + IkIZ)!, we would get the two-point 
function of a relativistic free field. 

E. Physical Interpretation 

The way in which k and m±(k) enter (31) allows us 
to consider them as momentum and energy. Consider 
a state with definite energy and a definite momentum 
ko. Two such states with different energies m±(ko) 
are created by the field with relative strengths 
p+(ko) > 0 and 0 < p_(ko) = 1 - p+(ko) if ~(ko) > 1, 
but only one is created if ~(ko) = 1. One can write 

(11)[1', g'], 1I>[f, gD 

= N' N exp (L dk[(h~(k), h+(k» + (h~(k), h_(k)))). 

(32) 

As we shall discuss later in more detail, this implies 
that the abstract Hilbert space f, can be realized as 
follows: 

co 

f, = EB f,n' 
n=O 

where f,n is the symmetrized direct product of n 
factors f,l; f,o = C is spanned by <Po· The component 
of 4>[/, g] in f,l is N(h+Cx, k) EEl h-<x, k». The two­
point function, (C/>(f', t)4>o, c/>Cf)<Po), is the scalar 
product of two vectors in f,l' We can consider ?n 
as the n-particle subspace of f,. Our models descnbe 
two kinds of particle for those values of k for which 
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Hk) > 1. A wavefunction describing two or more 
particles will be left invariant if we exchange simul­
taneously the coordinates and the labels indicating 
the type of any two particles. 

A problem of great interest, which is still under 
investigation, concerns the S operator. We write Je = 
Jeo + 'U, where Jeo is the operator whose (J matrix 
elements are given by (17) with F == O. Note that JCo 
and 'U act in the same Hilbert space as JC. Therefore, 
we may try to define 

S = lim lim eiJeotle-;JetleiJet2e-;Jeot2. 
tt -'+00 t2-+-00 

Preliminary results indicate that for many nonzero 
'U's the limit S exists in the strong sense, is unitary, 
and describes scattering and exchange of particles. 
Our models cannot describe production because Je 
leaves each fln invariant. 

F. A Special Model 

We want to discuss the models satisfying assump­
tions 1-3 that correspond to HaC!, g) of the form (4). 
Before looking at the general case, we take A = O. 
Then Ha approximates the Hamiltonian of a relativis­
tic free field. We shall show that, as in the relativistic 
case, there exists an irreducible CCR-representation 
whose Hamiltonian has the required diagonal (J ma­
trix elements. Theorem 2 gives, for irreducible repre­
sentations, 

($[f, g], Je<l>[f, gJ) 

= t(f,f) + In dkm2(k)(g(k), g(k»). 

This becomes equal to (4) if we choose 

m2 (k) = m2 + f(k) 
with 

f(k) == 2(3 - cos kl - cos k2 - cos k 3), 

where kl' k2' and k3 are the components of k. m(k) 
has the properties required in Theorem 1 if m2 > O. 
For Ikl « 1, we obtain 

m 2(k) ~ m2 + Ik1 2
, 

i.e., the relativistic energy-momentum relationship. 
We may take the momentum unit so large that 
Ikl «1 is satisfied for all momenta in the experi­
mentally accessible range just by choosing a very 
small length unit. 

If we take a reducible representation, we shall 
desire p+ to be independent of k and m±(k) to have 
the relativistic form for Ikl« 1. In the relativistic 
case, the energy is uniquely determined by the mass 
and the momentum. In analogy, we require m~(k) = 
m~ + f(k). Elementary calculations yield the follow-

ing beautiful results. Theorems 1 and 2 guarantee the 
existence and uniqueness of a quantum theory with 
F == 0 for given values m_, m+, and p+ that satisfy 
o < m_ < m+ and 0 < p+ < I. The corresponding 
classical model has the form (4) with m2 = p+m! + 
p _m: and A = O. More specifically, the quantum 
theory is given by 

and 

m(k) = p+m+(k) + p_m_(k), 

e(k) = m+(k) + mjk) - m(k), 

;(k) = m(k)e(k)[m+(k)m_(k)fl. 

This result holds also for other forms of f(k) , 
except that the classical model will no longer have 
the form (4). 

Let us turn to the case of arbitrary A. We can write 

~ (gj' gj)~ = r r dk; dkl;J(k~);J(kl)(G(k~), G(k]) 
J JD In 

where 

x Ldk~;J(k;);J(k~ + k; - k l ) 

x (G(k~), G(k~ + k~ - kl»' 

;J(k) = am(k)[~(k) - l]~-I(k)r!· 

1;J(k)1 < C is easily verified. Therefore, if A > 0, 
Theorem 2 ensures the existence of a quantum theory 
corresponding to HaC!, g) with m(k), e(k), Hk), and 
;J(k) given above, and;JM = AOM.O• 

3. THE REPRODUCING KERNEL 

In this section we prove Theorem I as follows. We 
begin by deriving some of the restrictions on the 
functional ($0' <1>[/, g)) that follow from our basic 
assumptions. Many of the methods we use have been 
suggested by Ref. 2. A theorem due to Araki, which 
we shall state as Lemma 5, will help us to find further 
necessary conditions, strong enough that, for each 
functional that fulfills them, there exists a representa­
tion of the CCR satisfying assumptions 1 whose 
reproducing kernel is equal to the functional in 
question. It remains then to check whether the 
assumptions 2 are satisfied by these representations. 

Functional Form and Continuity of the 
Reproducing Kernel 

In the following we shall often label the unit cubes 
by elements of Z+, the set of positive integers. (hi' hj) 
tells us to replace i and j by the corresponding i and j 
and to apply (2). 

Lemma 1,' <I> [f + af', g + ;Jg'] is strongly con­
tinuous in the real parameters a and ;J for all f, g,f', 
and g' in L~(R3)' 
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It suffices to prove continuity at IX = P = 0. We 
introduce the abbreviations W[f] = U[f, 0] and 
V[g] = U[O, g]. Using the unitarity of the U[f, g], 
which follows from assumptions 1, we find 

II <I> [f + rl.J', g + pg'] - <I>[J, g]11 

~ II(W[f + rl.J'] - W[f])<l>oll 

+ II(V[g + pg'] - V[g])<l>[f,O]11 
+ leit(t+af'.Y+PY') _ e;t(f'Y)1 

=Ta +T2 +T1 • 

There exists, for each given E > 0, a (h(f, g,J'g') > ° 
such that Tl < iE if 1rl.1 + IPI < b1. We have 

T2 = II (V[pg'] - 1) V [g]<I> [f, 0] II· 

Because V[cg] = e-ic"(g) implies that V[cg] is strongly 
continuous in the real parameter c, there exists 
b2(f, g, g') > ° such that T2 < iE if IPI < b2. 
Similarly, one shows that there exists ba(f'/') > ° 
such that T3 < iE if IIXI < b3 , which completes the 
proof of the lemma. 

We shall apply this lemma to the investigation of 
(<I>[J', g'], <I>[f, gD. Since 

(<I>[J', g'], <I>[J, g]) 

= e-4Wf ,g)-(g'.f)l(<I>o, <I>[f - /" g - g']), (33) 

it is sufficient to consider the following: 

(<1>0' <I>[f,gD = (<1>0' <I> [Tf, Tg]), forall TE'X, 

(34) 

because U[T]<I>o = <1>0' It follows, even if we restrict 
our attention to T E 'X', that (<1>0' <I> [f, g]) can depend 
only on (fi,fj)' (fi,gj), and (gi,gJ, i,jEZ+. We 
write 

(<1>0' <I>[f, gD = K{lXi1 = (I;'/j), 

Pij = (I;, gj), Yo = (gi' gj)}' 

Let us prove that the reproducing kernel is continuous 
in each of the arguments appearing in K. We shall 
write f1, gl "" f2, g2 if there exists aTE ;:t' such that 
f2 = Tf1 and g2 = Tg1. Consider f, g and], g such that 
(j; ,f;) = (]i ,];) and (gi' g;) = (gi' g;) for i ~ j and 
(I;, gj) = (]i' gj) for all i and j with the exception 
that one of the scalar products with carats is E2 larger 
than the corresponding one without a carat. I shall 
prove that there exist L;(R3)-functions with the 
properties 

IIfl - PII + Ilgl - g211 + 11]1 -]211 
+ Ilgl - g211 ~ 4E 

and 
J, g "" f1, gl, f2, g2 "" J2, g2, Jl, gl "" J, g. 

It follows from Lemma 1 that (<1>0' <I>[J, g]) comes as 
close to (<1>0' <I> [f, g D as we like if we choose E > ° 
small enough. If (Jk ,]k) = (fk ./k) + E2 for a certain 
k, then we can take P = f1 + Ehk' g2 = gl and 
J2 = Jl = J, g2 = gl = g, where hk lies in the subspace 
L;(k) of L;(Ra) whose elements vanish outside cell k, 
(hk,hk) = 1, and (hk,l;) = (hk,g;)=O for iEZ+. 
If we insisted on the fact that fl = f and gl = g, hk 
would not always exist. The situation is similar if 
(gk,gk) = (gk,gk) + E2, but a little more complicated 
in the other cases. Take, e.g., (lk' g /) = (fk' g /) + E2; 

consider hk' hi' hk' and hi such that 

(hk' hk) = (hi' hi) = 1, (hk' hi) = 1, 

(hi ./j) = (hi' gj) = 0, 

(11k> hk) = (hi' hi) = 1, (hk' hi) = 0, 

(/li ./j) = (hi' gj) = 0, 

for i = k, landj EZ+.P = fl + Ehk,g2 = gl + Ehl' 
12 =11 + Ehk• and g2 = gl + Ehl have the required 
properties. The argument is similar in the remaining 
cases. 

The reproducing kernel has the further properties 

and 

(<1>0' U[f, g]<I>o)* = (<1>0' U-l[f, g]<I>o) 

= (<1>0' U[-f, -g]<I>o) 

(<1>0' U[f, g]<I>o) * = (J<I>o, JU[f, g]<I>o) 

= (<1>0' U[ - f, g]<I>o)· 

We collect the results in the following. 

Lemma 2: Every reproducing kernel (<1>0' <I>[f, g]) 
satisfying the assumptions 1 and 2 has the functional 
form 

K {lXij = (I; '/j), Pij = (I;, gj), Yij = (gi' gj)}' 

K is a continuous function in each of its arguments 
and satisfies 

K*{rl.ij , Pii' Yii} = K{lXii , Pi;, Yi;} 

=K{rl.ii,-Pii'Yii}' (35) 

Determination of All Reproducing Kernels 

In the beginning of this subsection, we shall con­
sider the reproducing kernel for the slightly different 
set of assumptions l' and 2' obtained by replacing 
L;(R3) by L everywhere in 1 and 2. L is the subspace of 
L;(R3) whose elements have compact support. Lemma 
2 can be proved as before. 
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Consider two sequences Ik and gk, k E Z+ , satisfying 
(a) (Ik, g) -+ 0 and (gk,/) -+ 0 as k -+ 00 for all 

f, gEL; 
(b) Urlk, gk] converges weakly to a bounded 

operator A. 
It follows from these two assumptions and 

U[fk, gk]U[f, g] = exp U(jk, g) - i(gk,/)] 

x U[f, g]U[Ik, gk] 
that 

AU[f, g] = U[I, g]A. (36) 

We call A, which depends on the sequenceslk and gk, 
a tag operator, II A 1/ ~ 1. 

In the sequel we shall repeatedly use the following 
theoremlO: 

Lemma 3: Let Bn be a sequen~ of uniformly 
bounded operators. If lim (<1>, Bn'¥) as n -+ 00 exists 
for all <1>, '¥ of a total set, the Bn will converge weakly 
towards an operator Band 

(<I>, B'¥) = lim (<1>, Bn'¥). 

This tells us that it is sufficient for establishing (b) 
to prove the existence of lim (<I> [f', g'l, U[fk, gk] x 
<1>[1, g)) as k -+ 00 for all /', g',f, gEL. Because of 
(a) and (8), we only have to look at 

(<1>0' U[f + 1\ g + gk]<I>O) 

= K{(/; + I~ ,Ii + f~), (/; + f~, gi + g~), 
(g; + g~, gi + g~)}. (37) 

To define appropriate sequences, choose /', g' E L. 
Let i1 < i2 < ... < im and im+! < ... < im+n be 
the numbers of the cells in which /' and g', respec­
tively, do not vanish identically, and let i,. be the 
coordinate of the center of cell i,.. We can write 

r 

f:r(x) = LPiu1(x - ir) 
1=1 

and 
s 

g;,Cx) = L p~Ui(X - is), 
;=1 

where u;(x) E L~(c) and (u;, u;) = (\.1 for i, j = 1, 
2, ... , m + n. Complete this set of vectors to an 
orthonormal basis in L~(c). We choose the sequences 

,. 
tf.ex) = '1: p'ju1+kex - ir) 

:/=1 
and 

s 

g~.Cx) = ! p~U1+k(X - is), (38) 
;=1 

It is obvious that they satisfy (a), but they satisfy also 
(b), since the finite number of arguments in (37) that 

do not vanish for all k all converge: 

(<1>0' U[f+ fk, g + gk]ct>o) 

-+ K{C/;,Ii) + (f~,fj), (/;' g;) 

+ (I;, gj), (g;, gi) + (g;, gi)} 

= (ct>o, U[f, g]A<I>o). (39) 

Because the replacement 1-+ TI, g -+ Tg does not 
change the arguments in K, we get 

(<1>0' U[ -f, - g]A<I>o) = (<I>[f, g], A<I>o) 

= (<I>[Tf, Tg], A<I>o) 

= (<I>[f, g], U-1(T]A<I>o)' 

Since the <I>[f, g] form a total set and since only 
multiples of <1>0 are invariant under the U[T] for all 
T E X', we conclude that 

(40) 

where a is a number, called the tag, which can easily 
be determined by putting I = g = 0 in (39): 

a = K{(/;,lj), (/L gi), (g;, gj)}. 

Using (39) again, we find 

K{(j;,fj) + Cf;,fD,(fi, gj) 

+ (f~, gj), (gi' gj) + (g;, gj)} 

= K{(/;,f;), (/;' g;), (g;. g;)} 

X K{(f;,f;), (I;, gj), (g;, gi)}· 

By a lengthy but elementary argument, one showsll 

first that K is always positive and then, by making 
use of (35), that 

K{(/;,Ii)' (/;' gj), (g;, g;)} 

= K{U;,fj), (g;, g;)} 

= exp (-"I}Amn(fm,fn) + Cmn(gm, gn)]), 

with Amn = Anm = A!n and Cmn = Cnm = C!n' So 
far, we have exploited our assumptions for T E X' 
only. Using (34) also for T E X" and labeling the cubes 
by the coordinates of their centers, we find 

K{(jj,jj), (gj, gj)} 

= exp (-L [Am(/., Jm+n) + Cm(gn, gm+n)]), (41) 

with 

Am = A_m = A::; and Cm = C_m = C;:;. 

L Am(fn ,fm+n) ~ 0 for all f E L because K ~ 1. 
Therefore, L Am_nc!cn ~ 0 for each sequence {Cn I n E 
Za, Cn = 0 for all but a finite set of n E Za}. Hence, 
we can apply the following variant of Bochner's 
theorem. 
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Lemma 412 : If "2 Bm_nc!cn ~ 0 for each sequence 
{Cn I n E Zs, Cn = 0 for all but a finite set of n E Zs}, 
then B-n = B: , IBnl ~ Bo for n E Z3, and the Bn are 
the Fourier coefficients of some positive measure on 
D: Bn can be written as a Riemann-Stieltjes integral, 

where f D dfl{X) is finite. 

It follows that the reproducing kernel must have the 
form 

exp (-L [(J(k)'/(k» dfl(k) + (g(k), g(k» dV(k)]). 

(42) 

Using (33), we see that this gives for (<P~j', g'], 
<P[f, g)) the form 

K(j', g';f, g) 

= N' N exp (-it In dk[(l'(k), g(k» - (g'(k),J(k)))) 

x exp (2 L[<l'(k)..1(k» dfl(k) 

+ (g'(k), g(k» dV(k)]). (43) 

To see under what conditions this is, in fact, equal 
to (<P[j', g'], <P[f, g)) in a theory satisfying our 
assumptions, we shall make use of a theorem due to 
Araki,1s which can be stated as follows: 

Lemma 5: The necessary and sufficient condition 
that a functional K(O, O;f, g), f, gEL [or L~(R3)]' 
equal (<Po, <P[f, g]) of a theory satisfying (1)' [or (1)] 
is that, for all,{;, g; EL [or L;(Rs)], 

K(O, O;f, g)* = K(O, 0; -f, -g), K(O, 0; 0, 0) = 1, 

K(O, 0; Sfl + f2' tg1 + g2) is separately continuous in 
s, t, and 

n 
.2 c;*cjK(j;, gi;fj, gj) ~ 0 

We shall now return to our original assumptions. 
If a is total in ,f), the set a L consisting of the <P [f, g] 
with f, gEL will be total in some subspace ,f) L C ,f). 
Because all the other assumptions 1 and 2 imply the 
corresponding assumptions l' and 2', the restrictions 
we have found for the reproducing kernel will also 
apply if we use 1 and 2. It remains to find the addi­
tional restrictions that have to be imposed on fl(k) 
and v(k). 

The requirement that K(O, 0; sf, tg) be separately 
continuous in sand t for allf, g E L;{Rs) requires that 
the exponent which appears in (42) be finite for all 
f, g E L~(R3)' This implies that 

for some C E R and for all f E L;(Rs)' We can apply 
the Radon-Nikodym theorem14 because for any 
F(k) ~ 0 in LI(D) there existsfE L~CR3) such that 

F(k) = i dx IJCx, k)12. 

The theorem states that dfl(k) = A(k) dk, where 
A(k) is positive and bounded. A similar result holds 
for dv(k) = C(k) dk. 

The first three conditions of Lemma 5 are now 
satisfied for all f, g E L;(Rs)' The fourth one is easy to 
discuss in this case. Putting A(k) = !n(k) and C(k) = 
!m(k), we can write (43) as 

K(f', g';f, g) = N' N exp (t L dk[n(k)U"(k),/(k» 

+ m(k)(g'(k), g (k)) - i(l'Ck), g(k» 

+ i(g'(k)'/(k»]) 

and the fourth condition as 

i,j=l with 

for all integers n and for all sets of complex numbers 
Ci , where 

K(,{;, gi;fj, gj) = exp {-it[(,{;, gj) - (gi ,f,)J) 

X K(O, O;fj - ,{;, gj - gi)' 

Expression (42) satisfies the first three conditions. 
For a large class of fl(k) , v(k), it will also satisfy the 
last one. 

Aij = t Ldk[n(k)(J:(k),/;(k» + m(k)(Uk), g;(k» 

- iU:(k), g;(k» + i(glk),.i~(k»]. 

If two Hermitian matrices A and B are positive semi­
definite, then the matrix C, whose matrix elements are 
Cij = Ai;Bi; in some fixed orthonormal basis, is also 
positive semidefinite.15 The assumptions of Lemma 5 
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are therefore satisfied if ~ ~ 0, where 

N 

~ = I (ct Ni)(cjNj)Aij 
i,j=l 

= LdkidX 

x I f ciNi[2m(k)r-![J~(x, k) + m(k)ff;(x, k)] r 
+ [n(k)m(k) - 1) i f c;N;[2m(k)r!j;Cx, k) r· 

This shows that ~ ~ ° is satisfied if m(k)n(k) ~ 1. 
On the other hand, it is not difficult to prove that the 
fourth condition is violated if n(k)m(k) ~ 1 does not 
hold. Because there exists C such that m(k) < C and 
n(k) < C, it follows that C-l < m(k) < C and 
1 S ~(k) < C2, where ~(k) = m(k)n(k). 

We have shown that the reproducing kernel of a 
theory satisfying 1 and 2 has necessarily the form 
given in Theorem 1. To complete its proof, it remains 
to verify that the assumptions 2 and the reducibility 
and equivalence properties are satisfied. 

Verification of the Required Properties 

We can write 

(~[I', g'], ~[f, g]) 

= N' N exp (Ldki dx[h~*(x, k)h1(x, k) 

where 

+ lz~*(x, k)h2(x, k)]) , 

lzI(X, k) = [2m(k)ri [j(x, k) - im(k)g(x, k)], 

(44) 

hlx, k) = [2m(kW!ij(k)j(x, k), (45) 

?J2(k) = ;(k) - 1. 

Because of (9), it follows from this that 

(<1>[1', g'], U[T]~[f, g]) 

= (U[T-l]~[j', g'], ~(f, gJ), (46) 

which can hold only if U[T] is linear. Equation (9) 
determines therefore how U[T] acts on a dense set in 
~, i.e., U[T] is an operator. Equation (46) tells us 
that U+[T] = U[T-I] and (9) that 

~[f, g] = U[T-l]U[T]~[f, g] = U[T] U[T-l]<I> (J, g]. 

Hence U+[T]U[T] = U[T]U+[T] = 1. One shows in 
very much the same way that (10) defines an anti­
unitary operator J. 

Let us show that only multiples of <1>0 are invariant 
under the U[T] for all TE'X'. We expandfEL;(Ra) 

in terms of the orthonormal functions ui(x) that we 
used in (38): 

f(x) = 2: 2: p~U1(X - i). 
i j 

Define Tk E 'X' by 

. 
Calculating the quantities (~[f', g')' U[Tk]~[f, gJ), 
we find that they converge towards (~[f', g')' ~o) x 
(<1>0' ~ [j, g]) because Tk converges weakly to zero 
for k ->- 00. By Lemma 3, we have 

(A, If) = (A, U[Tk)\f) ->- (A, ~o)(<I>o, If) 

for arbitrary A E ~ and If invariant under all the 
U[Tk]. Therefore If = (<1>0' If)<I>o. 

Next we shall prove that the representation of the 
CCR is irreducible if ;(k) == 1. Define 

F(x, k) = m-!(k)/(x, k) 
and 

G(x, k) = mi(k)g(x, k). 

The sets of all j(x , k) and of all F(x, k) coincide. If the 
U[f, g] satisfy 1, the Uo[F, G], defined by Uo[F, G] = 
U[f, g], will fulfill 1, too. Equation (15) yields 

(<1>0' Uo[F, G]<l>o) 

= exp ( -t L dk i dx[~(k) IF(x, kW + IG(x, kW]). 

For ~(k) == 1, this becomes e-i[<F.F)i-<G.Gll, the 
reproducing kernel of the Fock representation. I6 

The groups of all Uo[F, G] and of all the UF[f, g] for 
the Fock representation must therefore be isomorphic. 
However, the sets of all U[j, g] and of all Uo[F, G] 
are the same. Hence, every bounded operator that 
commutes with all the U[f, g] is a multiple of the 
identity. This is what irreducibility means. If ~(k) ¥: 1, 
the representation will be reducible. 

The proof that two representations with the same 
reproducing kernel are equivalent has been given by 
NaimarkY To show that two representations with 
different reproducing kernels are inequivalent, we 
use the tag operators. By (36) and (40) we have 
AU[f, g]~o = U[f, g]A~o = aU[f, g]~o for allf, g E 
L. Therefore A = aI on ~ L' Assume there exists a 
unitary operator V such that 

U'[f, g] = VU[f, g]V-l for all f, g E L;(Ra). 

The existence of a weak limit A for U[fk, gk] implies 
that the U'[fk, gk] converge weakly towards an 
operator A' in the image of ~L under V and that 

A' = VAV-l = a. 
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Looking at 

a = exp ( - t In dk[~(k)m-\k)<l(k),J(k» 
+ m(k)(g(k), g(k»]) , 

we recognize that it will always be possible to find j, 
gEL such that a and a' are different unless m(k) == 
m'(k) and Hk) == nk). 

4. THE HAMILTONIAN 

Exponential Hilbert Space 

Consider (44) and (45). It is convenient to put 

h1(x, k) = hex, k), h2(x, k) = h(x, k + (21T, 0, 0» 

and to define a domain D' by kED' if kED or if 
(k - (21T, 0, 0» E D and ~(k - (21T, 0, 0» > 1. Hence 

(<1>[/" g'], <I>[J, g)) = N' N exp (L~k(h'(k)' h(k»). 

(47) 

This suggests a realization of f>. We introduce the 
abbreviation 1) for the Hilbert space V(e, D') with 
elements rp(x, k). Call f>n the symmetrized direct 
product of n factors 1), and let 

71=0 

f> is called the exponential space of 1).18 For cp, 1jJ E 1), 
we have 

eif> == EB (n!)-!(®CP)" E ~ 
n=O 

and (eif>, ef/J) = e(if>,f/J). f> is realizable as a subspace of 

~, f> c ~,ifwe put 

<l>[j, g) = Ne". 

We claim f> = ~. It is not difficult to see that the 
vectors of the form (®h)n span f>n. It remains to 
prove that (®h)n E f> for all n, which we do by 
induction. <l>o spans f>o. We have 

!~n;: s-"(n !)! (N-1<l>[sJ, sg] - 2:(m!r!(®Sh)m) 

= (®ht· 

If the sequence 1jJn converges weakly to 1jJ E 1), 
we have for all cP E 1) 

Since the eif> span f>, this implies that the e~'n converge 
weakly to e'" E f>. 

Operators that Commute with the U[T] 
for T E;r' or T E ;r 

Using the realization of f> that we have just intro­
duced, we shall now consider classes of operators of 
which the Hamiltonians are special cases. From 

(<l>[f',g'], V[T]<l>[j,g)) = N'N2, (n!)-I(h', Th)n, 

it follows that each f>n is invariant under VeT] for all 
TE :I, 

<Xl 

VeT] = 81 V,,[T]. 
,,=0 

The representations V,,[:I'] are disjoint. By this we 
mean that, for p :F: q, no representation of X' in a 
subspace of f>" can be equivalent to a representation 
in a subspace of f>q; i.e., PU,,[TJP = YQVq[TJQY-l 
for all T EX', where P and Q are projections and Y is 
unitary, implies P = Q = 0. 

Proof19,' Consider a sequence T m' T m E X', that 
converges weakly to eI. To see that such sequences 
exist we choose an orthonormal basis in V(e). The 
matrix shown in Fig. 1 determines how T m acts in 
V(e) and, because elements of :I' act similarly in 
each cube, how it acts in V(Ra). We have 

(e"', V[Tm]e") = 2, (n !r1W, Tmht ~ (e"', eC"). 

Lemma 3 states that V[Tm] converges weakly to 
81:=0 enI", where In is the identity operator in f>n. 
PcPIpP = YQeqIqQY-l holds for p :F: q and lei :F: 1 
only if P = Q = 0. 

The set of all bounded operators that commute 
with VeT] for all T E X is called the commutator of 
the VeT] and is written as {VeX]}'. 

c -s 

Imr~ c -s 

c -s 

s c 
s c . 

s c 
'-,,-' c -s m columns c -s . . . 

c 

s c 
s c . . 

FlO. 1. The matrix determining Tm. c stands for cos e and 
s for sin e. 
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Disjointness implies that $ E {U[X']}' has the for any choice of O(k) with sin O(k) = 0 or cos O(k) = 
structure 0 if $(k) = 1, because 

n=O 

f>1 can be considered as a direct integral: 

1
<1) 

f>1 = dkl)(k). 
D' 

Because each Hilbert space l)(k) carries an equivalent 
irreducible representation of X', $lh(x, k) must have 
the form 

[$lh(x, k)](x', k') = b(x' - x)b(k', k)h(x, k), 

which we abbreviate to 

[$lh(X, k)](k') = b(k', k)h(x, k). 

b(k', k) must be understood in the sense of distribu­
tions, e.g., to $ = I corresponds b(k', k) = b(k' - k). 
$n acts as follows20 : 

n 

= b(k~, kl' ... , k~, k,,) IT h(xi , k i ). 
i=1 

Therefore 

(<<I>[/" g'], $«I>[f, gD 

= N' N 2, .l (IT f f dk~ dk,(h'(k~), ii(ki») 
"n! i=1 D' D' 

We may require 

for all permutations i1 , ••• , in of I, ... ,n without 
restricting the generality. A straightforward calcula­
tion shows that for $ E {U[X]}', the b must satisfy 
(20); (19) is fulfilled for symmetric $. 

Construction of Hamiltonians 

In this subsection we shall prove Theorem 2, 
beginning with the part that gives necessary conditions. 
The sufficient conditions will be verified by construct­
ing the operators in question first for irreducible and 
then for reducible CCR representations. 

We could replace hI and h2 in the preceding dis­
cussions of this section by 

il1(x, k) = h1(x, k) cos O(k) - h2(x, k) sin O(k), 

il2(x, k) = h1(x, k) sin O(k) + h2(x, k) cos O(k) (49) 

2, (h;(k), iilk» = 2, (il;ck), illk». 
i=I,2 i=1.2 

The following choice of O(k) wi1I prove useful for the 
construction of Hamiltonians: 

sin O(k) = $-f(k), 

cos O(k) = [$(k) - 1]f$-f(k) == s(k). 

It leads to 

J(x, k) == dlx, k) == - i[im(k)]is(k)g(x, k) 
and 

J(x, k + (217,0,0» 

== d2(x, k) == [2m(k)$(k)]-i 

x [$(k)](x, k) - im(k)g(x, k)]. (50) 

Since ritJe E {U[X]}', we may put 

(<1>[/" g'], e-itJe«l>[f, g]) 

= N'N A{(d'(k'), J(k»} 

= (<<I>[f', g'], «I>[f, g])C{(d'(k'), d(k»}. 

If «I> [f, g] belongs to the domain where Je is defined, 
we shall therefore be able to write 

(<<I>[j',g'), Je«l>[j,g]) 

= (<<I>[f', g'], «I>[j, gDG{(J'(k'), J(k»}. 

We use an adaptation of the method used in Ref. 2 
to derive restrictions on G that follow from (12). Com­
puting a(<<I>[f', g'], «I>[j, g + TeD/aT at T = 0, where 
e E L;(Ra) and T E R, we find 

M = (<<I>[/" g'], 17(e)«I>[f, gD 

= !(<<I>[/" g'l, «I>[f, g]) Ldk[tm(k)]f 

x mk)(e(k), c4(k) + diCk»~ 
+ $-i(k)(e(k), d2(k) + d~(k»]. 

Because of (12) we have 

M = :T (<<I>[f', g'], e-iT4>(e)JeeiT4>(e'cD[f, g])/T=O' 

Calculating this and comparing the two expressions 
for M, one finds 

(<<I>[f', g'), f>«I>[f, g)) 

= !(<<I>[j', g'), cD[f, g)) 

x (In (P(k) - im(k)g'(k),/(k) - im(k)g(k» dk 

+ E{(d{(k'), dl(k»}). (51) 
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The domain conditions that validate the above 
calculations and guarantee that (12) holds will be 
satisfied for all Je that we shall construct. Je<Do = 0 
implies 

E {(J~(k'), ~(k» == O} = O. 

Using [U[T], Je] = 0 for all T E ::r, we find 

tE{(J{(k' ), c4(k»} 

= ~ ~ (IT r r dk: dk;(d~(k;), diCk;»~) 
n=1 n! i=1 J D J D 

x b(k{, k1' ... , k~" k n). 

We complete the proof of the necessary conditions 
given in Theorem 2 by remarking that e(k) > 0 for 
all k with ;(k) > 1 is necessary for a nonnegative 
Hamiltonian with a unique ground state. 

Next we shall construct the Hamiltonian for'the 
irreducible representations of the CCR. We define21 

Je'(@h 1Y'(@h 2)n-p 
p P n 

= L m(ki ) @ h1(X i , k i ) @ h2(x;, k;). (52) 
i=l i=1 i=p-f-1 

By linearity and continuity we can extend the domain 
of definition to f>n. Je' is a positive bounded symmetric 
operator on each f>n. We may consider it as a positive 
symmetric operator on f> and extend it by the method 
of Friedrichs22 to a self-adjoint operator. 

00 n (n)! 
JeI<D[J, g] = N n~ (n !)-! lJ~O P 

p p n 

X L m(k;) @ hixi , k;) @ hlxi , ki ) 
i=1 i=l ;=p+1 

lies in f>, 

(<D[J', g'], JeI<D[J, gD 

= (<D[J', g'], <D(J, g]) Ldkm(k)(h{(k), h1(k». 

Similarly, one determines the (1 matrix elements of 
e-itJC' : 

(<D[J', g'], e-itJC'<D[j, g]) 

= (<D[j', g'], <D[J, g]) 

x exp (L ak(e-itm(k) - l)(h{(k), h1(k»). 

In the case of irreducible representations, Je' has the 
(1 matrix elements required for the Hamiltonian Je. 
Equation (11) is satisfied because 

U[T)(@h1)lJ(@h2)n-p = (@Th1)lJ(@Th2)n-p, 

and (12) because Je' has the (1 matrix elements of the 
form (51). That Je'<D = 0 has only the solution 

<D = c<Do follows for irreducible representations from 
(52). 

There remains to construct the Hamiltonians for 
reducible representations that fulfill the sufficient 
conditions. Let 

11 P n 

= L e(k,) @ (f1(Xi, k;) @ (f2(X;, k;), 
i=l i=l i=p+1 

with e(k) < C and e(k) > 0 for all k with ;(k) > 1. 
This determines, similarly as (52), a positive self­
adjoint operator on f> with 

(<D[j', g'), Je(e)<D[f, g)) 

= (<D[j', g'], <D[J, gD L dke(k)(d{(k), diCk»~. 

Jeo = Je' + Je(e) satisfies assumptions 3. A straight­
forward calculation yields that the operator 19 
defined by 

t)(@h+)11(@h_r-
p 

= C~lm+(ki) +iJ+1m-(ki») 
p n 

X @ h+(xi , k;) @ h_(x;, k;) 
i=l i=p+1 

coincides with Jeo . This result can be used to derive 
(24). 

To construct operators 'lJ with (1 matrix elements 

(<D [j', g'],'lJ<D [j, g]) 

= t(<D[f', g'], <D[j, g])F{(G'(k'), G(k»}, (53) 

where F satisfies (21), it is useful to introduce smeared 
"creation" and "annihilation" operators. Let 

i=l i=p 

where rt. E P(R3)' This determines a linear operator 
with bound N! II rt. lion f> (1V) = (£l~;~o f>n and there­
fore a linear operator on Je. A(rt.) is closable: If we 
take a sequence '¥ n such that each '¥ n is in some f>(N) 
and that '¥ n -+ 0 and A (rt.)'¥ n -+ <D, then <D = O. 

Indirect proof: Assume <D y!:. 0; let I be the smallest 
integer such that the projection PI of <D on f>l is 
different from zero, IJPI<D II = c > O. Then there 
exists N such that IIPIA(rt.)'¥nll > ic for all n > N. 
Hence IIPI+1'¥nll > ic(/ + l)-t 11cx.1I-1 for all n, which 
contradicts '¥ n -+ O. Because'¥ E f)(n) implies A (cx.)'¥ E 

f)(n), it follows that 19 = A(cx.1)· •. , • A (cx. n ) is de­
fined for each vector in any f)(n), f)(n) c:: D(t». An 
argument similar to the one for A(cx.) shows that 19 
is closable, too; hence 19+ exists. One proves then 
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tl(n) c D(O+). Hence 0' = A+(OCl)' ...• A+(ocm) • 
A(OCm+1)' ..•• A(ocn) is an operator with tl(n) c 

D(0').23 Because 

A(oc)<I>[j, g] = (oc, G)<I>[j, g], 

we have, e.g., 

(<I>[j', g'], A+(OCI)A+(OC2)A(OC2)A(ocj)<I>[j, g]) 

= (G', OCI)(G', OC2)(OC2, G)(OCI' G)(<I>[j', g'], <I>[j, g]). 

Notice that the closure of the operator in this equation 
is positive and self-adjoint because it is of the form 
0+0 and 0 = A(OC2)A(OCl) is closable.24 We introduce 
an orthonormal basis ocn(x), n E Za in Vee). Parseval's 
theorem states for g', g E V( e) that 

~idX' g'*(X')ocnCx')idxg(x)oc~(X) = idxg'*(X)g(x). 
Dee c 

F or the €mCk) = eimk , m E Za, one has also such a 
theorem. Let Pm(k) = P(k)€m(k), where IP(k)1 < c. 
We have 

t ~ bM I (<I>[j', g'], A+(OCn,Pm+M)A+(OCn.Pm) 
M m,Dl.n2 

x A( ocn.Pm)A( OCn1Pm+M)<I> [f, g]) 

= t(<I>[j', g'], <I>[f, gD 

x ~ bM ~L L dk~ dkIP(k~)P*(kl)(G'(kD, G(k j » 

x L L dk; dk2P(k~)P*(k2)(G'(k~), G(k2» 

x exp {i[m(k~ + k~ - ki - k2) + M(k~ - kl)]}' 

This coincides with the right side of (53). If bM = 
C > 0 for all M, it becomes 

tC(<I>[j', g'], <I>[f, gD Ldk1 IP(k1)1 2 (G'(kl), G(kl» 
x Ldk21P(k2W (G'(k2), G(k2) 

= tC(<I>[j', g'], [Je(lPI2)f<l>[f, g]). 

tC[Je(IPI2)]2 is positive and self-adjoint because 
Je(IW) is self-adjoint, and it has (] in its domain. To 
prove the existence of'tJ for the sequence bM men­
tioned in Theorem 2, we shall make use of the follow­
ing lemma, which is a weakened form of a theorem 
given by Kato. 25 

Lemma 6: Let On be a nondecreasing sequence of 
positive self-adjoint operators that is majorized by a 
self-adjoint operator 0 0 , Then there exists a positive 
self-adjoint operator 0 with the property 

(<I>,O'Y) = lim (<I>, On'Y) 

for all <I> and'Y in the domain of 0 0 , 

The assumptions of this theorem are satisfied by 

0 0 = tC[Je(IPl2)]2 
and 

On = t ~ bMA+(OCn,Pm+M) 
(n) 

X A+( ocn.Pm)A( ocn.Pm)A( OCn1Pm+M)' 

with 0:::;; bM = b_M < C, where (n) stands for 
M, m, "1' n2 with IMI, Iml, In11, 1"21 :::;; n. Because the 
domains of the three positive, self-adjoint operators 
Je', Je(e), and CD have a dense set in common, their 
sum will be symmetric and can be extended to a self­
adjoint operator Je. It is easy to verify that Je satisfies 
our assumptions. 
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It is. shown ~hat Kerner and ~ut.cliffe's derivation leading to a unique quantum mechanical Hamiltonian 
from Its ~lasslcal c~unte~part IS mdeed not un~que .. This is done by using the same method as Kerner 
and SutclIffe to denve dIfferent quantum Hamlltomans from the same classical Hamiltonian. It is also 
shown that other ordering rules besides that of Born and Jordan can be derived with the same technique. 

INTRODUCTION 

In a recent paperl the Feynman path integral 
formulation of quantum mechanics was used to 
derive a rule for obtaining the quantum mechanical 
Hamiltonian operator from its classical counterpart. 
It is further shown that the rule of Born and Jordan 
is a consequence. It is claimed that, since the derivation 
is unambiguous, the ordering rule derived should 
hence have a fundamental position in quantum theory. 
There have been many rules proposed since the 
beginnings of quantum theory, e.g., the Weyl rule, 
the rule of Born and Jordan, and the symmetrization 
rule. The author2 •3 has obtained a method of gener­
ating all possible rules and has shown that no rules 
can be consistently used to derive quantum operators 
from their classical functions. We demonstrate below 
that the derivation of Kerner and Sutcliffe does not 
lead to a unique rule and indeed that their method 
can be used to derive other rules. 

In Feynman's path integral formulation the 
propagator K(X", X', til - t ' ) is given by 

I eilliA(~), 

~ 

(1) 

where I~ signifies summation over all paths between 
X" and X' and A (t) is the action calculated along a 
given path. Kerner and Sutcliffe consider the case 
where the time difference til - t ' is infinitesimal. They 
calculate the action 

A = fPdX - H dt (2) 

by taking the set of paths between X' and X" such that 
X' and X" are connected linearly with time 

X" X' 
X = X' + - (t - t'). (3) 

til - t' 

This relationship is used in the calculation of the 
action. It is then shown that from 

",,(X", til) = j K(X", X', til - tl}rp(X', t') dX' (4) 

follows 

a (X" t) 
iii "" at' = f k(X", X')",,(X ') dX', (5) 

where 

k(X" X') = _1_ fdPiiei'Ii'P(X"-X') 
'. 27T1i 

(6) 

and ii is the averaged Hamiltonian 

ii = -- H(X, p) dt. 1 it" 
til - t' t' 

(7) 

Therefore, 

H"" = f k(X", X')",,(X') dX', (8) 

where H is the quantum mechanical operator corre­
sponding to the classical Hamiltonian. Since "" is 
arbitrary, it is then straightforward to derive the 
ordering rule between Hand H which for the above 
yields the rule of Born and Jordan. By taking two 
examples we show that there are other k's which 
satisfy Eq. (5) and yield different quantum mechanical 
operators. This relies on the freedom of choice in the 
calculation of the action for infinitesimal time differ­
ences. The examples were chosen to produce the 
two other well-known rules, the Weyl rule and the 
symmetrization rule. 

EXAMPLES 

Example 1: Suppose in calculating the action we 
estimate the Hamiltonian by H(teX' + X"),p). The 
action is then 

A = p(X" - X') - (til - t')HO(X' + X"), p). (9) 

By use of the momentum as a parameter to define 
the set of all paths, the propagator becomes 

K = _1_jdPei1h['P(X"-X')-(t"-t')Hl 
1 27T1i . 

By expanding in powers of til - t' and using (4), we 
have in the limit 

iii ~~ = j k1(X", X')",,(X', t') dX' (10) 

3296 
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and with 

fhp(X") = f k1(X", X')lp(X', t) dX', 

where now 

(11) k2(X", X'} = f t[H(X') + H(X")]eiihP(X"-X') dp. (18) 

k1(X", X') = 2:1i f H(t(X' + X"), p)eiihp(X"-X') dp. 

(12) 

Equations (11) and (12) [also (18) below] correspond 
to Eqs. (6) and (5) of Kerner and Sutcliffe's paper. In 
general, they will give different answers for the 
quantum mechanical Hamiltonian operator even 
though the same classical Hamiltonian is used. 

If we take H in the formf(X}pk, then 

Hlp(X", t) 

= 2:1i ffeiihP(X"-X'10(X' + X"»pkdX' dp (13) 

= (-ili)krjk(X" - X')f(i(X' + X"))dX', (14) 

Hlp(X, t) = (- ili}k ± (k)P(X}(.i)k-!lp(X, t). 
!=o 1 2! oX 

(15) 

Specializing further to the case f(X} = xm, the 
quantum mechanical operator becomes 

ff = f(-ili)!e) (7)~; Xm-!fik-!, (16) 

which is the Weyl rule of ordering. 

Example 2,' Approximating the Hamiltonian by 
t[H(X'} + H(X"}] and following the same procedure, 
we have 

iii ~;= f k2(X", X')lp(X'} dX' (17) 

For a classical Hamiltonian of the form xmpk, this 
yields 

t (-ili)!e) (7)~ (b w + l)xm-!p-!, (19) 

which is the rule of symmetrization. 

CONCLUSION 

One can find other approximations to the action 
which would give other rules of ordering besides these 
well-known ones. The whole set of rules given in 
Ref. 2 can be so derived. The reason for this vast 
choice is that the value of the Hamiltonian between 
the infinitesimally close points X' and X" is not critical 
since the limit will eventually be taken. The only 
requirement is that the H(X', X" ,p) chosen must be 
such that, when X" approaches X', H goes to H(X', pl. 
It is worth noticing that, if the classical Hamiltonian 
is of the formf(X) + g(p), then all the rules give the 
same answer. 

As is well known, the Schrodinger and Heisenberg 
formulation does not force a unique H or a unique 
ordering rule from the classical function. We have 
shown that the Feynman formulation does not either. 
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The behavior of a quantum-mechanical system with a slowly modulated oscillatory Hamiltonian is 
characterized by an adiabatic theorem similar to that for a system with a slowly changing "static" 
Hamiltonian. Quasiperiodic states-solutions of the instantaneous Schriidinger equation with an 
oscillatory Hamiltonian-play the same role as eigenfunctions of the instantaneous Hamiltonian do in an 
adiabatic theorem for a nearly static Hamiltonian. As an example, the theorem is used to establish the 
correct wavefunction to be used in computing the refractive index of atomic hydrogen. 

1. INTRODUCTION 

Consider an isolated system in a stationary state. 
If an off-resonance oscillatory field is slowly turned on, 
into what state does the system go? In a different 
context, Nozieres and Pines l have dealt with this 
question through first order in time-dependent 
perturbation theory, using a particularly simple form 
for the modulated field. Since the conventional 
(variation-of-constants) time-dependent perturbation 
theory converges rapidly only for short times, it does 
not seem an appropriate tool for investigating the 
behavior of the system when the field is turned on 
very slowly.2 Furthermore, it would be useful to have 
an answer to this question which does not depend 
on the exact way in which the field is turned on. 

This paper is concerned with the general question 
of the time development of a wavefunction for a 
system whose Hamiltonian is a slowly modulated 
oscillatory function of time. Separate consideration is 
given to finite-basis (e.g., spin) problems and to 
infinite-basis (e.g. , atomic) problems. Modifications 
needed to adapt the present treatment to the resonant 
absorption of energy are outlined in Sec. 5. 

An oscillatory Hamiltonian may depend on a 
number of parameters, such as the strength, direction, 
or frequency of an applied field. When the Hamil­
tonian is modulated, these parameters become 
functions of time; the course of the modulation may 
be described by their dependence on a single variable 
a which specifies a point on the modulation path. 
The effect of the modulation rate may be studied by 
traversing a fixed segment of the path, say from 
a = 0 to a = 1, at a rate inversely proportional to 
a time scale T, 

a = tiT, (1) 

and by observing the limiting behavior of the system 
as T becomes large. 

An oscillatory quantity is characterized by its 
fundamental frequency (JJ and the values it assumes 
during one cycle of its oscillation. Thus a modulated 
Hamiltonian can he written as 

Je = Je(rp; a), 

where rp is the phase 

rp(t) = fW I dt'. 

(2) 

(3) 

{For convenience, complicated expressions like 
w[a(t')] are abbreviated throughout this discussion. 
For example, w[a(/)] is written w; w[a(/')] is written 
w'. That is, w is given the value it has at time I; w' is 
given the value taken on by w at time I'. Other quan­
tities are abbreviated similarly.} 

2. ADIABATIC THEOREM FOR A 
FINITE-BASIS SYSTEM 

Consider first a system whose description involves 
only a finite basis set. If a were constant, there would 
be a complete set of solutions to the Schrodinger 
equation (quasiperiodic states) of the "normal-mode" 
form3•4 k1p( rp; a) exp [-i kE;(a)t], where the "Bloch 
state" k1p satisfies the equation 

(Je - kE; - iWO",)k1p(rp; a) = O. (4) 

A modulated Hamiltonian is not exactly periodic and, 
strictly speaking, has no quasiperiodic states. Over a 
short period of time, however, such a Hamiltonian 
may be very nearly periodic, so that it makes sense 
to discuss the problem in terms of "instantaneous 
quasiperiodic states" 

k1p(rp; a) exp ( -j fke l dt) 

From the totality of such states, one may select a 
subset S (which might consist of only one state) to 
serve as a basis for an approximate solution of the 

3298 
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time-dependent Schrodinger equation. A general 
time-dependent linear combination of these, 

'f = :L ke(t) exp (- iitkE' dt') k1p( ep; 0'), (5) 
kES 0 

is most nearly a solution of the Schrodinger equation 
if the coefficients are obtained by "solving the Schro­
dinger equation within the limited basis" 5: 

(l1p(ep; 0')1 X(t) - idt l'f(t» = 0, 

o < t < T, alI IE S, (6a) 

dt Ie = - T-1:L exp (i (tCE' - kE') dt') ke(l1p I au k1p). 
kES Jo 

(6b) 

Equation (6b) preserves the norm of 'f(t). From (6b) 
it follows that 

(X - idt)'f 

= -iT-\l - P):Lexp (-i (fkE , dt') ke au k1p, (7a) 
kES Jo 

P = :L 111p(ep; a» (11p(ep; 0')1. (7b) 
IES 

The mixing coefficients vary slowly when T is long: 

Id t lei S; T-1:L 1(11p 1 0" k1p)1 == IB(ep; a)T-1. (8) 
kES 

Theorem: Let the system be initially (t = a = 0) in 
an arbitrary linear combination 'f(0) of quasiperiodic 
states belonging to S: 

'f(0) = :L ke(O) k1p(O; 0). (9) 
kES 

Then, when (J reaches I (t = T), the system will be in 
the state 'Y(T) as given by (5) and (6b), with an error 
that vanishes as T-l when T becomes large, provided 
that, for all t E [0, 11: 

(i) X(ep; 0') is continuous in both variables; w(a) 
and the kE(a), k E S, are continuous in a; 

(ii) the k1p( ep; a) and the auxiliary functions 
k~(cp; a), k E S, defined by 

[X(rp; 0') - kt;(a) - iw(a)o<p] k~(ep; 0') 

= i(l - P)o" k'IjJ, (lOa) 

k~(ep + 271'; 0') = k~(ep; a), all ep, (lOb) 

(11p I kO = 0, all IE S, (lOe) 

and all their partial derivatives are continuous in both 
variables. (See below.) 

Since the end points of the interval are arbitrary, 
this theorem amounts to the assertion that, as the 
time scale becomes long, the exact solution to the 
Schrodinger equation tends to 'f(t). 

Proof' Let 

<il(t) = 'Y(t) + T-1:L ke exp (- i (\t;' dt') k~, (lla) 
kES Jo 

(Je - idt)<il = - iT-2:L exp (- i (ikE' dt') oike kD, 
kES Jo 

(11 b) 

and let 'F(t) and <P(t) be true solutions to the Schro­
dinger equation based on 'f(0) and <il(0). Then, 
according to Appendix C, 

and by use of the triangle inequality it follows that 

II'F(T) - 'Y(T) II 

S; T-11 (1Ike(O) k~(O; 0)11 + Ilke(T) kUep(T); 1]11 

+ fllo,,(ke /cOil dO') (13a) 

S; T-1:L (1Ike(O)k~(O; 0)11 + sup Ilk~(ep; 1)11 
kES 05<p<2rr 

+ e sup [llkB(ep; a) k,(rp; 0')11 
Jo 05<p<2rr 

+ IIO"k~(ep;a)ll]da). (l3b) 

It is a straightforward matter to see that the 
continuity conditions advanced are indeed sufficient. 
Thus II'F(T) - 'f(T)11 is bounded by a constant 
multiple of T-l. 

The existence and continuity properties of the k, 
may be based on the properties of the k1p themselves. 
The following conditions are sufficient (but perhaps 
more restrictive than necessary) to establish that the 
k~ exist, are continuous, and have continuous first 
partial derivatives: 

(a) w(a) and all the kS(a) are continuous and have 
continuous a-derivatives, 

(b) the 11p, I rt S, are continuous and have contin­
uous derivatives with respect to both variables, 

(c) 0" k1p and 0; k1p, all k E S, are continuous in 
both variables, 

(d) no kS(a), k E S, differs by only an integral 
multiple of w from an lS(a), I rt S, 

(e) w(a) is never zero, for all t E [0, T). 
If k~ is expanded in terms of the l1p, I rt S, the 

expansion coefficients are readily obtained; again, it 
is not difficult to see where each of conditions (a)-(e) 
is applied. 
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3. ADIABATIC THEOREM FOR AN 
INFINITE-BASIS SYSTEM 

As discussed previously, it is not expected that an 
infinite-basis system subjected to an oscillatory 
perturbation will possess true quasiperiodic states.3 

Nevertheless, it is generally possible to obtain oscilla­
tory functions, involving truncated perturbation 
series for the Bloch states and quaSi-energies, which 
are good approximate solutions to the time-dependent 
Schrodinger equation for an oscillatory Hamiltonian: 

L 
k1p[LJ(q;; a) = 1;).! k1pW(q;; a), (14a) 

!=o 
Bill 

k1pW(q;; a) = 1; k1pn(!)(a) exp (inq;), (14b) 
n=AIII 

L 
k&[LJ(a) = 1;).lk&W(a) (14c) 

1=0 

(see Appendix B). A modified version of the preceding 
adiabatic theorem holds for such states. For simplicity 
the present treatment is restricted to a Hamiltonian 
having the form 

2 

Je(q;; a) = 1; ).!JeW(q;; a), (lSa) 
!=o 

! 

Je(!)(q;; a) = 1; Hnw(a) exp (inq;), (ISb) 
n=-! 

such as appears in a treatment of a system under the 
influence of nearly monochromatic radiation. It is 
further assumed that Ho(O) is not modulated. (These 
restrictions are easily removed.) 

Consider the approximate wavefunction 

'Y(t) = 1; ke(t) exp (-i [tk&[LJ(a') dt l
) k1p[Ll. (16a) 

k€S Jo 
It turns out to be convenient to choose the ke some­
what differently from (6b): 

dt ke = - T-1 2 IC(k1p I 0" !1p)~LJ 
IES 

X exp (i f[k&[L](a l
) - I&[L](O',)] dt'). (l6b) 

where (k1p I 0" 11p)~L] is the zero-frequency Fourier 
component of the overlap expression, truncated at 
Lth order. Thus 

[Je(q;; a) - idtl'¥ 

= 1; ke exp (-i [lk&[L](a') dt')eR[Ll - T-1 kX[L]), 
keS Jo 

(17a) 
kR[L] = (Je _ keeL] _ icoOq» k1p[L] = O().L+l), (17b) 

_ i kX[L] = 0" k1p[L] _ ~ !1p[Ll(!1p I 0" k1p)~L], (17c) 
IES 

(i1p(Ll I kX(LJ)o = O(,1,L+1), all j, k E S. (17d) 

To obtain bounds on ke(l) and d" ke, we regard (16b) 
as a SchrOdinger equation for the vector e(t) whose 
elements are the "e(t): 

idte = Me, (l8a) 

kiM = _iT-l(k1p I 0" !1p)~L] 

X exp (if[k&[Ll(a l
) - !&[L](a')] dt')' (18b) 

It is possible to arrange for the "1p[L] to be zero­
frequency orthonormal through Lth order [cf. Eq. 
(B3)]: 

(i1p I k1p)~L] = lJ ik , 

from which fact it follows readily that M is Hermitian 
and that IIcll is conserved. Equation (l6b) can again 
be used to obtain bounds on d" kC; for instance, 

Id" kel ~ II c(O) II (21(11p I Oa k1p>~L]12)t == kB(a). (19) 
IES 

It will be necessary to introduce quantities analogous 
to the k, of the preceding discussion: 

L 
k,[Ll(q;; a) = 2 )./k,w(q;; a), (20a) 

!=1 

B(ll 

k,W(q;; a) = 1; k'nW(a) exp (inq;), (20b) 
n=AW 

(Je - k&[Ll _ icooq» k,[L] = kX[L] + kV[L] 

kV[Ll = O(AL+1). (21) 

Their existence and properties will be discussed after 
the modified adiabatic theorem is discussed. 

Theorem: Let the system be initially in an arbitrary 
linear combination 'Y(O) of the k1p[L], k E S: 

'Y(O) = I ke(O) k1p[L](O; 0). (22) 
kES 

Then when a reaches 1, the true state of the system, 
'Y(T), will be approximated by 'Y(T) [Eqs. (16)] 
according to 

II'Y(T) - 'Y(T)II ~ XT-l + Y + ZT (23) 

rX, Y, and Z are constants given in (30)], provided 
that6 : 

(i) the quantities H" (!) k1pt/!')' Hn(!} k,,,,(I'>, 0" k1pn (!), 

and 0" k'nW , k E S, are continuous functions of a, 
(ii) co and the k&[L] are continuous functions of a, 

(iii) the exact solutions to the Schrodinger equation, 
'Y(t) and <P(t), based on the initial conditions (22) 
and (24), 

<1>(0) = ,¥(O) + T-1 ~ kC k,[L](O; 0), (24) 
kES 

have continuous total derivatives dt'Y and dt<P. 
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Proof: Let 

<I>(t) = 'P(t) + T-1 I kcexp (-i C\;lLl(a') dt') k,lLl, 
keS Jo 

(25) 

(Je - idt)<D =! exp (-i tkf,[Ll(a') dt') 
ke8 Jo 

X [kC(kRlLl _ T-1 kV[Ll _ iT-2o" k,[Ll) 

_ iT-2(o" kC) k,lLl). (26) 

Then, according to Appendix C, 

II«P(T) - <I>(T)II ~ Lt"(Je' - idt')<D'11 dt', (27) 

II'Y(T) - 'P(T)II 

~ II'Y(T) - «P(T)II 
+ II«P(T) - <i>(T)11 + II<D(T) - 'P(T)lI (28) 

~ II<D(O) - 'Y(O)II + II<D(T) - 'Y(T) II 

+ fll(Je' - idt·)<I>'11 dt' 

~ XT-1 + Y + ZT, 

X = 2 [llkC(O) k,[Ll(O; 0)11 
ke8 

+ IIc(O)1I sup II k,[Ll(cp; 1)11 

+ f (IIC(O)lIo~~~2uIIO" k,[L)(cp; 0")11 

(29) 

(30a) 

+ kB(a)0~~~2,y,[L)(cp; 0')11) dO'} (30b) 

y =! "C(O)"i
l 

sup IlkV[Ll(cp; 0')11 dO" = O(AL+1), 
kE8 00:0;'1'<211 

(30c) 

Z =! Ilc(O)11 e sup IlkRlLl(cp; 0')11 dO" = O(AHI). 
ke8 Jo 0:0;'1'<211 

(30d) 

Tighter bounds which depend on T are readily 
obtained. 

The crucial question, of course, concerns the 
existence and continuity properties of the k,[Ll. Con­
sider the perturbation equations for the k1p[Ll them­
selves: 

(Ho(O) - iwo", - kf,(O») k1p(O) = 0, (31a) 

(HoW) - iwo<p - ke CO » k1p(O 

L 
= - ! (Jeo') _ keU'» k1p(L-L'~ (3Ib) 

L'~l 

These equations are Rayleigh-Schrodinger perturba­
tion theory in a Hilbert space 1)(A(L), BCL» composed 

of periodic functions of the form? 

BILl 

! In exp (incp), 
n~AILI 

(32) 

where the fn are elements in the Hilbert space 1) of 
phase-independent functions conventionally used to 
describe the physical system. The appropriate inner 
product in this space is the zero-frequency Fourier 
component of the overlap, (I >0' The unperturbed 
operator Ho(O) - iwo<p is self-adjoint in this space, 
and the perturbations JeU) and Je(2) are symmetric 
(assuming that Ho(O) is self-adjoint and the Jem, 1= 
1, 2, are symmetric in f». The unperturbed eigen­
functions and eigenvalues are the k1p(O) and kf;(O), 

The perturbation theory of the k1p[L) is discussed 
in more detail in Appendix B. Suffice it to say that the 
k1p[L) come in families which are degenerate in 
MA(L), BCL» at zeroth order (that is, that have the 
same kf;CO». 

The perturbation equations for the k,[Ll, 

(Ho(O) - iwo<p - kf;(O» k,(O) = kX(O>' (33a) 

(Ho (0) _ iwo", _ kf,(O» k,(l) 

L 

= kX(L} _ ! (Jeu') _ keCl') k,U-L'J, (33b) 
L'~l 

(i1p[L) I kiL1>0 = O(AL+1), all j E S, (33c) 

kXW E l)(AW, BW) f; l)(A CLJ , B(L», (33d) 

are of the same form as those that have recently been 
discussed in connection with the adiabatic theorem 
for pseudo-eigenfunctions of a nearly static Hamil­
tonian. It is safe to assume that the individual Fourier 
components of the rhs of (33a) and (33b) are square 
integrable through as many orders I - I as are pos­
sible to carry the perturbation theory; the entire rhs 
then has finite norm and also satisfies the frequency 
criterion for belonging to f)(ACLJ, BCL». It follows 
from the discussion referred to that these equations 
possess solutions through Lth order provided that the 
set S cont~ins all members of a family corresponding to 
a single kf,(O), if it contains anyone, and that none of the 
numbers kf,(O) - nw, ACLJ ~ n =:;; B(L), lies in the 
continuous spectrum of Ho(O). It is possible for there to 
be solutions even if the second condition is not met.8 

The more difficult investigation of the continuity 
properties of the k,[Ll will not be attempted here. For 
real physical cases involving the interaction of a 
material system with a modulated-monochromatic 
light beam, there is every reason to believe that the 
provisos of the theorem are satisfied. A preliminary 
investigation suggests that it should be possible to 
establish these continuity properties directly on the 
form and continuity properties of the Hamiltonian. 
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4. COROLLARIES 

The following corollaries apply to the finite-basis 
case. 

Corollary 1: When the conditions on the k, are 
violated at a constant number of points during the 
interval (0, T], then II'Y(T) - 'Y(T) II vanishes as T 
becomes large (although the exact manner in which 
it does so may vary from case to case). The proof is 
virtually identical to that of Corollary 1 in Ref. 5. 

According to this corollary, adiabatic behavior is 
not precluded by the presence of points where con­
dition (d) is violated and points where w goes through 
zero (e.g., a point at which an oscillatory perturba­
tion is turned on). In order to insure that nonadia­
batic terms vanish at T-l, it still seems necessary to 
require that w not pass through zero. A corresponding 
experiment might begin at zero intensity and nonzero 
frequency, rather than vice versa. 

Corollary 2: Suppose that the kG, k E S, are identical 
or differ by a constant multiple of w throughout the 
modulation. Then the mixing coefficients ke(l) become 
independent of T, with an error which vanishes as 
T-l provided that the following (probably unduly 
stringent) conditions hold: 

(i) k'IjJ, a" k'IjJ, and aD' 2 k'IjJ, all k E S, are continuous 
in both variables, 

(ii) a"w is continuous in a, 
(iii) w( a) is never zero. 

Since an arbitrary multiple of w may be added to a 
quasi-energy, with a compensating redefinition of the 
corresponding Bloch function, the case of quasi­
energies differing by a multiple of w throughout the 
modulation readily reduces to the case of identical 
quasienergies; without loss of generality, one may 
restrict consideration to the latter case. 

Equation (6b) may be rewritten in the form 

(34a) 

where c is a vector whose components are the ke(t) and 

lkh(q;; a) = _i(I'IjJ I a"k'IjJ). (34b) 

The average of h( q;; 0') over one cycle (with 0' held 
constant) defines its zero-frequency Fourier com­
ponent ho(a), which figures in another "Schr6dinger 
equation" 

(ho - id,,)f(O') = O. (35) 

A more precise statement of the corollary is that, jf 

f(O) = c(O), (36) 

then c(T) - f(l) vanishes as T-l when T becomes 
long. 

The matrices hand ho are Hermitian. Thus, if 
z( q;; 0') is defined by 

z(ep; 0') = -W-lf'(h(q;'; a) - hoCa»)f(a) dq;', 

a = const, (37) 

one may use the error bound in Appendix C to obtain 

Ilc(T) - f(I)11 

::;; T-l(llz(ep(T); 1)11 + Ilz(O; 0)11 

+ f"(h(q;; a) - ia,,)z(q;; 0')\\ da), (38a) 

::;; T- l
( sup I!z(ep; 1)\\ + Ilz(O; 0)11 

OS",<211 

+11 sup 1\ [h(ep; a) - iaO")z(ep; 0')1\ dO'). (38b) 
o os", <211 

If w passes through zero, !lc(T) - f(l)" can be 
shown to vanish, but not as T-l. (See Corollary 1 
above and Corollary 1 of Ref. 5.) 

Corollary 3: The following simple but rather 
restrictive conditions are sufficient for the validity of 
the theorem and Corollary 2: 

(i) the dependence of Je and w on a is 

Je = Je(q;;,u), w = w(,u), ,u = ,u(a), (39) 

(ii) X( q;; ,u) and w(,u) are analytic functions of 
their (real-valued) arguments, 

(iii) ,u(a) possesses a continuous first and piecewise 
continuous second derivative 0 < a < 1 

(iv) at no time does a kf,(~), k E S,differ from an 
If,(,u), I ~ S, by an integral multiple of w, 

(v) w(,u) is nonzero at all times, 
(vi) the ke(T) are determined by integrating (6b). 

Corollary I holds if conditions (4) and/or (5) are 
violated at a constant number of 0' values. 

With a fixed value of ,u, one can solve the Schr6-
dinger equation to obtain an evolution operator 
U(t, 0; ,u). This operator is analytic in both variables 
[conditions 0), (ii), and (V)].9 It follows that the 
k'IjJ( q;; ,u) and the kf,(,u) are analytic functions of their 
arguments. lO 

From this analyticity follow conditions (a), (b), and 
(c), with the exception that aD'2 k'IjJ is only piecewise 
continuous. It is readily seen that this degree of 
discontinuity does not prevent the k, from satisfying 
condition (ii) of the theorem. For details, see Ref. 11, 
where a rather different approach is followed. 
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5. DISCUSSION 

The finite-basis adiabatic theorem, if its require­
ments are met, provides a complete characterization 
of the behavior of a finite-basis system with a modu­
lated oscillatory Hamiltonian in the limit of slow 
modulation: 

(a) Quasiperiodic states whose quasi-energies differ 
by a multiple of W at most a fixed number of times 
during the modulation do not mix, and 

(b) the mixing of quasiperiodic states whose 
quasi-energies are identical throughout the modulation 
depends only on the fraction of the modulation path 
traversed. 

In particular, when the modulation path is such that 
one quasi-energy never differs from any other by an 
integer multiple of w, the corresponding quasiperiodic 
state becomes an exact solution of the time-dependent 
Schrodinger equation (provided that the phase of the 
Bloch function is appropriately chosen as a function 
of a). At intermediate time scales, the theorem can be 
used to describe the way in which the states in one set 
mix with one another while adiabatically not mixing 
with those in another set. 

The conclusions of the infinite-basis theorem must 
be expressed in a somewhat different fashion. Their 
major application is to the interaction of matter with 
a classical radiation field; in that context, one may 
not consider a variable time scale because a vector 
potential of the form A+(r; a) exp (hp) + A_(r; a) X 

exp (-icp) can generally satisfy Maxwell's equations 
for only one value of T. The theorem nevertheless 
establishes an "adiabatic approximation" to the 
solution of the Schrodinger equation for matter 
subjected to a slowly modulated classical radiation 
field. The error bound (30) contains terms of order 
T-I, A,L+l, and },L+lT, where L is the order at which 
the perturbation series terminate. The first represents 
deviation from adiabaticity; the second and third 
result from using truncated perturbation series. When 
no two kt;(O), k E S, differ by an integer multiple of w, 
the first is actually of order AfT, rather than T-1, 

because the 0" k1p(O) may be arranged to be zero. In 
applications, one must choose L on the basis of the 
physical situation: that L which yields the smallest 
error estimate is probably the best approximate 
expression for the time-dependent wavefunction. 

The quality of the "adiabatic approximation" 'Y(t) 
may be illustrated by the example of a hydrogen atom 
irradiated with blue light (4860 A). Let the amplitude 
of the oscillatory vector potential grow from zero at 
t = 0 to a maximum at Tj2 = 1 nsec (lO6 cycles of the 
field) and decrease back to zero at T. (This "rise time" 

would be necessary if the frequency spectrum were 
to be pure within 1 ppm.) Let the maximum amplitude 
correspond to a moderate intensity, 1 W/cm2• The 
perturbation equations admit of a solution through 
third order based on the unperturbed 181p(O); the four­
photon resonance at 4w precludes a fourth-order 
solution. (A higher-order perturbation treatment 
would have to treat Is, 2s, and 2p as degenerate in a 
larger Hilbert space of periodic functions.) If the 
system is initially in the Is state, 181p[31 is a reasonable 
approximate wavefunction through the period of 
irradiation. One may estimate the orders of magni­
tude of XIT, Y, and ZTas 10-14 ,10-22 , and 10-14 at 
times between 0 and T. Thus the error bound on the 
wavefunction is considerably smaller than 11).2 1S1p(2) II 
(10-12) but is larger than 11).31S"P)II; 1S1p[21 is thus a 
demonstrably good approximate wavefunction. Note 
that it is necessary to include A31s1p(3) in the approxi­
mate wavefunction to obtain this estimate. 

There is a limitation on the scope of the theorem 
in cases involving resonance. Suppose S contains the 
members of a family of k1p[Ll corresponding to a 
particular kt;(O) and that there is an eigenfunction of 
Ho (0), cp, which has energy k8(0) - mwo, m = A (L) , 

A (L+l), •.• , or B(L). If w passes through Wo at some 
point in the modulation path, cp exp (imcp) there 
becomes degenerate in l)(A(L) , B(L» with the k1p(O) in 
that family. As a rule the perturbation series "1p[Ll will 
diverge as w approaches Wo , and the theorem becomes 
inapplicable. The corresponding problem in static 
perturbation theory appears when the splitting 
between two manifolds of degenerate unperturbed 
functions is small compared to a perturbation­
a zero-order eigenfunction "should" be a linear 
combination of functions belonging to both manifolds, 
but perturbation theory constraints it to belong to one 
or the other; large higher-order corrections are needed 
to compensate for this weakness in the perturbation 
theory. The difficulty in the time-dependent problem 
might be resolved by slightly altering the unperturbed 
operator so as to render the two manifolds exactly 
degenerate throughout the modulation path and com­
pensating for this change by adding corrective terms 
to the perturbation. In the present example, the new 
unperturbed Hamiltonian would be Ho(O), 

Ho(O) = HoW) + m[wo - w(a)] Icp)<4>I, (40) 

under which 4> exp (imcp) would always be exactly 
degenerate with the former "1p(O). The compensating 
term might be added to JC(1) : 

Ho(l) = ).-lm[w(a) - wollcp)(4)I; (41) 
or to Je(2): 

HO(2) = H o(2) + A-2m[w(a) - woll4»<4>I. (42) 
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The choice between (41) and (42) would be based on 
comparison of m[w(O') - wo] with the effects of 
AJe(l) and J.2Je(2). [It is no great problem to render the 
appearance of A in (41) or (42) consistent with the 
use of A as a formal perturbation parameter.] With 
the unperturbed Hamiltonian thus modified, there 
would be no more k&(O)-crossing points, and the 
present adiabatic theorem would be applicable. It 
should be mentioned that no modification of the 
Hamiltonian is needed for a modulation process 
which can be described in terms of modulated field 
amplitude, phase, and direction but constant fre­
quency (exactly at resonance). Further treatment of 
the resonant case is planned. 

APPENDIX A: EXISTENCE OF SOLUTIONS TO 
RAYLEIGH-SCHRODINGER PERTURBATION 

THEORy12 

The conclusions of this appendix are prerequisite 
to the treatment, in Appendix B, of the existence of 
the functions k"P[LJ. 

Consider the Rayleigh-Schrodinger perturbation 
problem associated with an operator H, 

A 

H = I A1H(!); (AI) 
1=0 

let truncated perturbation expansions of an eigen­
function and eigenvalue of H be 

L 
"Pk[LJ = I A/"Pk(/)' (A2a) 

1=0 

L 
Ek[LJ = I 'A1Ek(l)· (A2b) 

!=o 

Then, through as many orders I as possess solutions, 
"Pk(l) and Ek(l) satisfy 

(H(O) - Ek(O»"Pk(O) = 0, (A3a) 

(H(O) - Ek(O»)"PkW = - [(HU] - Ek[I])"PIP-1]]W, 

I ~ 1, (A3b) 

where the superscript I on the rhs denotes the Ith­
order part of the bracketed quantity and H[LJ is H 
truncated at Ith order. It is assumed that H(O) is self­
adjoint and the H(!), I ~ 1, are symmetric. 

Suppose Eqs. (A3) possess solutions through some 
particular order I = m - 1; is there a solution 
through mth order? Let S be the set of all indices j 
such that "P/O) is a discrete eigenfunction of H(O) with 
the same eigenvalue as "Pk (0), E/O) = Ek (0), and let j(, 
be the linear manifold spanned by the "P/O) , j E S. 
Then (A3b) definitely possesses solutions at order 
I = m if (i) the rhs is square integrable and (ii) 
orthogonal to .J\{, and if (iii) Ek(o) is not embedded in 
the continuous spectrum of H(O). [If EkO) is embedded 

in the continuous spectrum, (A3b) may still possess a 
solution.S] It is safe to assume that condition (i) is met; 
the remainder of this appendix concerns condition (ii). 

If Ek (0) is nondegenerate, the requisite orthogonality 
is trivially achieved by appropriately choosing Ek(m). 

If Ek (0) is degenerate, there are more general solutions 
based on j(" ip/m-ll, of the form 

m-l 
ip/m-l] = "P/m- 1J + I I 'A!a",jW"P",[m-I-IJ, 

",eS l=m-l~lpJ-l 

(A4) 

where M pj is either the highest-order s at which 
Ep (8) = E/8) or m - 1 if E", and Ej are identical 
through (m - l)th order, for 

(H[m-I] _ E/m-I])ip/m-l] = O(J.m). (AS) 

It is desired to choose the coefficients apj(l) and the 
E/m) so that 

("Pi(O)I H[mJ - Elm] IVi}m-l])(m) = 0 (A6) 

for all i, j E S: these ip/m-lJ can then become the 
starting point for an mth-order solution of (A3b). 

After some algebra involving the fact that the 
analogs of (A6) at lower orders must have been 
satisfied, it is possible to convert (A6) to the form 

I <"P/O)I H[m] - Ep[m-lJ l"Pp[m-lJ)(m)(a p/ U) + ~pj) 
pES' 

_ J 1,.3 1-) , 

{
E (m)(a. (0) + ~ .. ) for j E Sf (A7a) 

- (E LMij+1) _ E(lIlii+1»a .. (m- lII ii-1) for i do Sf 
) t l1 'F , 

Sf = {p Ip E S, M",j = m - l}. 

(A7b) 
(A7c) 

For each subset Sf for which the E}m-lJ are identical 
(some such subsets consisting of just one member), 
(A7a) is an eigenvalue equation for the matrix 

{<"P?'I H[m J - Ep[m-lJ l"Pp[m-l]>(ml}. 

Because (H[m] - E j orp[m-l])"Pp[m-I] is already of mth 
order, one may add higher-order terms to "P/O) without 
affecting the value of the matrix element; written in 
the form 

{<wlm- 1
]/ H[m] - Ei • i , or ,,[m-lJ 1"P,,[m-lJ),ml I j E Sf}, 

(AS) 

the matrix is manifestly Hermitian and therefore 
possesses a complete set of eigenvectors. IS After all 
the E/m) and ap /O) (p E Sf) have been determined by 
(A7a), the aij[m-Mi;-l] can be chosen to satisfy (A7b); 
(A 7a) remains satisfied since these coefficients do not 
appear in it. 

Thus condition (ii) can always be met. If Ek(O) is not 
embedded in the continuous spectrum of H(O), the 
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Rayleigh-Schrodinger perturbation equations (A3) 
have solutions through as many orders I as the 
quantities [(H[ll - Ei!-11)tpp-1l](l) are square integ­
rable for all j such that E/O) = Ek (0). According to 
arguments presented previously,5 it may further be 
arranged that these solutions be orthonormal through 
as many orders as exist at all. 

APPENDIX B: EXISTENCE OF THE k1p[Ll 

As mentioned earlier, Eqs. (31) are Rayleigh­
Schrodinger theory in f)(A(L), B(L). The ktpn(O) are 
eigenfunctions of Ho(O): 

[H 0 (0) + nw - ke(O)] ktpn (0) = 0, 

for A(O) ~ n ~ B(O). (81) 

The set S of functions ktpn (0) exp (incp) corresponding 
to solutions of (81) defines a linear manifold JI(, in 
f)(A (L), B(L) which is degenerate w.r.t. the unperturbed 
operator Ho(O) - iwatp. One may base a set of solu­
tions ktp[Ll E f)(A(L) , B(L) on JI(, only if f)(A(L) , B(L) 

contains no other eigenfunctions of Ho (0) - iwa tp' that 
is, only if (81) has no solutions with A(L) ~ n < A(O) 
or B(O) < n ~ B(L). 

The rhs of the higher-order equation (31 b) has finite 
norm if all its Fourier components are square inte­
grable. The number ke(O) does not lie in the continuous 
spectrum of Ho(O) - iwatp in f)(A(L) , B(L) unless one 
of the numbers ke(O) - nw, A(L) ~ n ~ B(L), lies in 
the continuous spectrum of Ho(O). Thus the arguments 
in Appendix A guarantee the existence of solutions 
through as many orders as the Fourier components 
mentioned are square integrable if none of the 
numbers ke(O) - nw, A(L) ~ n ~ B(L), lies in the 
continuous spectrum of Ho(O); and there may yet be 
solutions if this second condition is violated. 

In consequence of the particular form for Je given 
in (15), it is easily seen that A(L) and B(L) may be 
taken to be 

A (L) = A (0) - L, B(L) = B(O) + L. (82) 

The condition on square integrability of the rhs of 
(31 b) can probably be taken for granted; thus, if one 
desires to construct perturbational quasiperiodic 
states on the basis of Ho(O)-eigenfunctions with 
eigenvalues ke(O) - nw in a particular range, A(O) ~ 

n :$; B(O) (none of these eigenvalues lying in the 
continuous spectrum of Ho(O), there is assurance that 
such ktp[Ll exist if the spectrum of Ho(O) includes none 
of the numbers ke(O) - nw with n = A(O) - L, A(O) -

L + 1, ... , A (0) - 1, B(O) + 1, B(O) + 2, ... , B(O) + L. 
Again, if the ktp[Ll exist, it may be arranged that 

they all be orthonormal through Lth order. In the 

present case, this orthonormality reads 

etp[Ll I ktp[Ll)o = ()jk + O(}.L+l). (83) 

APPENDIX C: ERROR BOUND FORMULA 

Let <I>(t) be an exact solution to the Schrodinger 
equation and <P(t) an approximate one. If <P(O) = 
<1>(0), it has previously been shown that5 

<I>(t) - <P(t) = - if U(t, t')[Je(t') - idt,]<P(t') dt'. 

(CI) 

The derivation was rigorous only for the case of a 
finite-dimensional space. In the previous application 
of (CI),5 the weaker formula 

1I<1>(t) - <P(t) II ~ fll[Je(t') - idt']<P(t') II dt' (C2) 

could have been used instead. This appendix offers a 
rigorous proof of a somewhat stronger version of (C2). 

Theorem: Assume throughout the time span of 
interest, [0, T], that Je(t) is self-adjoint with a domain 
that includes <I>(t) and <P(t) and that dt<l> and dt<P are 
continuous6 and satisfy 

dt<l> = -iJe<l>. 

dt<P = -iJe<P - iX, 

(C3a) 

(C3b) 

with X again a continuous function of time. [It is not 
required that <1>(0) = <P(O).] Then 

II <1>( T) - <P( T) II 

~ 11<1>(0) - <P(O) II + iT II [Je(I) - idt]<P(t) II dt. (C4) 

Proof When <I>(t) =;t= <P(t), application of the chain 
rule gives 

dt 11<1> - <PII = (2 11<1> - <P11)-ldt(<I> - <P I <I> - <P) 
(C5) 

= 11<1> - <P11-1 1m (X I <I> - <P), (C6) 

Idt 11<1> - <PIli ~ Ilxll. (C7) 

If <I> =;t= <P throughout [0, T], then 

III<I>(T) - <P(T)II - 11<1>(0) - <P(O) II 1 ~ iTIIX(t) II dt, 

(C8) 

II<I>(T) - <P(T)II 

~ 11<1>(0) - <P(O) II + iTIl [Je(t) - id t ]<P(t)1I dt. (C9) 
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If <1>(t) = <I>(t) somewhere in the interval, (C6) 
breaks down there; even so, 11<1> - <1>11 is still contin­
uous there. Let ibe the largest t-value at which <1> = <1>. 
Then it is easily shown that 

1!<1>(T) - <I>(T)II 

~ JT Ilx(t)11 dt 

~ 11<1>(0) - <1>(0)11 + IT11[Je(t) - idt]<I>(t)!I dt. (CIO) 

An identical result holds in unitary space. 
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Equation (19) is valid only under the condition 
that the short-range forces extend to nearest neighbors 
only or that, if they extend beyond nearest neighbors, 
the short-range forces between like particles are 
independent of k. The above condition is not men­
tioned in the paper. The validity of Eq. (22) and of 
the second-order terms in Eqs. (30), (34), and (36) 
are subject to this condition. The form of Eq. (20) 
does not depend upon this condition. None of the 
other results in the paper are subject to this condition 
except those in Sec. VI, where the condition is ex­
plicitly stated. 

Equations (22), (30), (34), and (36) are easily 
modified to become valid for short-range forces 
arising from central potentials not subject to the 
above condition. In the lower right submatrix in 
Eq. (22), replace the constants b, e, and d by b', e' , 
and d' , respectively. The long-range contributions to 
corresponding primed and unprimed constants are 
the same, but the short-range contributions may 
differ. In Eqs. (30) and (36) replace g(b, (3) with 
g(b, b' , (3) and g(e + d, y + 0) with g(e + d, e' + d', 
Y + 0), where g(x, y, z) = x + f12y + 2f1z. Corre­
sponding replacements are to be made in Eq. (34). 
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